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We construct energy-optimized resonating valence bond wave functions as a means to sketch out the zero-
temperature phase diagram of the square-lattice quantum Heisenberg model with competing nearest- (J1) and
next-nearest-neighbor (J2) interactions. Our emphasis is not on achieving an accurate representation of the
magnetically disordered intermediate phase (centered on a relative coupling g = J2/J1 ∼ 1

2 and whose exact
nature is still controversial) but on exploring whether and how the Marshall sign structure breaks down in the
vicinity of the phase boundaries. Numerical evaluation of two- and four-spin correlation functions is carried out
stochastically using a worm algorithm that has been modified to operate in either of two modes: one in which
the sublattice labeling is fixed beforehand and another in which the worm manipulates the current labeling so
as to sample various sign conventions. Our results suggest that the disordered phase evolves continuously out of
the (π,π ) Néel phase and largely inherits its Marshall sign structure; on the other hand, the transition from the
magnetically ordered (π,0) phase is strongly first order and involves an abrupt change in the sign structure and
spatial symmetry as the result of a level crossing.
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I. INTRODUCTION

Simple spin models have contributed significantly to our
understanding of quantum magnetism. They consist of mutu-
ally interacting spin-S objects arranged in a lattice and are
meant to describe the behavior of localized electrons in a
crystalline environment. Such models are generally viewed
as effective, low-energy descriptions, descended from their
electronic parent models by a process of integrating out the
gapped charge degrees of freedom.1

A tremendous variety of spin interactions can arise.
In particular, a “t/U”-style power series from the strong
correlation limit generates (or at least motivates) an in-
creasingly complicated zoo of multispin interaction terms.2–6

Nonetheless, we know that even the leading-order term in
the expansion, corresponding to Heisenberg models with just
two-spin interactions, can display highly nontrivial physics
if the exchange interactions are sufficiently frustrating.7,8 In
that case, the ground state may be a magnetically disordered,
spin-rotation-invariant state (either liquid9 or solid10,11) having
no classical analog.

Otherwise, conventional magnetic order (at some ordering
vector Q) is a generic feature of the ground state for
Heisenberg models in spatial dimension greater than one.12,13

The absence of frustration is connected to three inter-related
properties: (i) the existence of a bipartite labeling such that
all antiferromagnetic interactions connect sites in opposite
sublattices, (ii) strict adherence to a Marshall sign rule,14

and (iii) the possibility of transforming mechanistically to
a basis in which all amplitudes of the wave function are
real and non-negative. The last of these is why nonfrustrated
models can be easily simulated using quantum Monte Carlo
approaches.15–17

For the S = 1
2 case, all three properties are conceptually

unified in the language of valence bonds.18–22 The collinear,
Q-ordered ground state of a nonfrustrated Heisenberg model

can be described in a bipartite valence bond basis22,23 in
which the AB sublattice labeling coincides with the alternating
pattern laid out by Q and only spins in opposite sublattices are
bound into singlet pairs. In terms of such a basis VAB = {|v〉},
the ground state has an expansion |ψ〉 = ∑

v ψ(v)|v〉 in which
each amplitude ψ(v) is real and non-negative. The exact
amplitudes can be obtained numerically by projection.24–28

It is also possible to find extremely good approximate
values of the form ψ(v) ≈ ∏

[i,j ]∈v h(rij ), where h(r) > 0
is a function of the vector connecting bond endpoints. This
resonating valence bond (RVB) ansatz, due to Liang, Doucot,
and Anderson,29 strictly enforces the geometric tiling con-
straint on the singlet bonds but ignores additional bond-bond
correlations.30 For a magnetically ordered state, one can show
that factorizability into individual bond amplitudes is the
correct assumption.31,32 Moreover, for nonfrustrated systems,
the amplitudes exhibit power-law decay, and hence the wave
function contains bonds on all length scales.

As a specific and illustrative example, we consider the
square-lattice J1-J2 model for spin half. It has two non-
frustrated limits. The model with anitferromagnetic nearest-
neighbor interactions only (J1 = 1, J2 = 0) exhibits a Néel or-
dered ground state whose staggered moment is roughly 60% of
its fully polarized, classical value. The state is almost perfectly
captured by an RVB wave function whose bond amplitudes
are computed as h(r) = ∑

q eiq·r[1 − (1 − γ 2
q )1/2

]
/γq. Here,

γq = (cos qx + cos qy)/2, and the wave-vector sum is taken
over a Brillouin zone reduced with respect to Q = (π,π ). The
opposite limit, with next-nearest-neighbor interactions domi-
nating (J1 = 0+, J2 = 1), is equivalent to two interpenetrating
nearest-neighbor Heisenberg antiferromagnets rotated 45◦.
The spin directions in the two otherwise disjoint subsystems
lock to each other33 provided that J1 is not strictly zero. In this
case, the ground state is equally well described by the RVB
wave function, but with the substitution of γq = cos qx cos qy

and a Brillouin zone defined modulo Q = (π,0) or Q = (0,π ).
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What we present in this paper is an attempt to interpolate
between these two limits (through the entire range of relative
couplings that are highly frustrated) using the RVB state as a
variational wave function. Our approach is inspired by Ref. 34,
but there are several important differences. The first is simply
the scale of the calculation: we have simulated a large number
of lattice sizes up to L = 32 on a dense grid of relative
coupling values (g = J2/J1 ranging from 0 to 1 in steps of
δg = 0.01). Second, we do not require that h(r) respect the
full C4 symmetry of the square lattice. Rather, we impose only
the x- and y-axis reflection symmetry, giving the amplitudes
an opportunity either to acquire (over the course of the energy
optimization) the full symmetry or to settle into a state that
looks different under 90◦ rotation. Third, we explore the space
of AB sublattice labelings by which the bipartite valence bond
basis is constructed.

As in Ref. 34, we make use of an unbiased, stochastic
optimization scheme. Changes to the h(r) values are made in
the downhill direction of the local energy gradient. Step sizes
are randomized, and their magnitude decreases on a power-law
schedule. We do not attempt to guide the optimization, other
than to ensure that none of the bond amplitudes goes negative;
nor do we impose any constraints on the variational parameters
based on any prior knowledge (gleaned, e.g., from mean-field
theory31 or from a master-equation analysis35).

We discover the following. At this level of approximation,
the J1-J2 model does indeed support a magnetically disordered
intermediate phase. But, its width is much smaller than
expected: the phase boundaries are found to be at gc1

.= 0.54(1)
and gc2

.= 0.5891(3). The transitions are unambiguously
second and first order, respectively, with the ground state
achieving the full C4 symmetry for all g < gc2. As the system
is tuned up from g = 0, increasing frustration eventually
extinguishes the (π,π ) ordered moment at gc1 in a continuous
fashion.

The disappearance of magnetic order is preceded by a fail-
ure of the Marshall sign rule at gM1

.= 0.398(4), in agreement
with the scenario first outlined by Richter and co-workers.36

Still, even though the rule is not strictly obeyed beyond gM1,
the Marshall structure inherited from the g = 0 model remains
largely intact throughout the intermediate phase. This is true
in the sense that continuing to define the bipartite bond basis
from a checkerboard sublattice decomposition produces only
a microscopic number of negative h(r) values: only h(±1,±2)
and h(±2,±1) initially. Moreover, when we allow the AB
pattern to arise on its own within the simulation (described in
detail in Secs. II D and III), the checkerboard pattern is the one
selected whenever g < gc2.

On the other hand, the RVB state at large g explicitly breaks
the 90◦ rotation symmetry and has a Marshall sign structure
based on a stripe sublattice decomposition. As the coupling is
tuned down from the g = ∞ limit, the (π,0) ordered moment
is not strongly affected, and it persists with only weak variation
(never dropping below 47% of its fully polarized value) down
to gc2, where the spatially symmetric, checkerboard-based
RVB wave function takes over as the lowest-energy state. This
state in the region gc1 < g < gc2 is, as far as we can tell,
featureless. It exhibits no long-range spin or dimer order, and
it breaks no symmetries. It is not, however, a “short-range
RVB state” in the usual sense since it is not made up of

predominantly short bonds. Its amplitude function h(r) is
highly anisotropic (as anticipated elsewhere35) and remains
long ranged along the principal spatial axes. Spin correlations
appear to be critical and to display circular symmetry at long
distances, despite the anisotropy of the bond weights. Dimer
correlations decay either exponentially or with a high power
law. This is in stark contrast to the usual short-bond-only RVB
state, often referred to as the nearest-neighbor RVB (NNRVB),
which has spin correlations that decay exponentially29 and
dimer correlations that decay algebraically.37,38 Moreover, the
presence of long bonds implies an absence of the topological
order37,38 that is characteristic of a purely short-ranged RVB
state in two dimensions.

II. MODEL AND METHOD

A. Frustrated Hamiltonian

The spin-half, square-lattice Heisenberg model with frus-
trating interactions has a Hamiltonian

H = J1

∑

〈i,j〉
Si · Sj + J2

∑

〈〈i,j〉〉
Si · Sj , (1)

where J1 > 0 and J2 > 0 are the antiferromagnetic exchange
couplings. The summations range over pairs of adjacent sites
〈i,j 〉 and over farther pairs 〈〈i,j 〉〉 that sit diagonally across
a plaquette. The ratio g = J2/J1 is the key tuning parameter
at zero temperature. In the classical version of this model
(S → ∞), two magnetic phases meet at exactly g = 0.5,
separated by a first-order transition.39–42

In the S = 1
2 problem, the two magnetically ordered ground

states obtain for values g � 0.4 and g � 0.6,43–48 and a
magnetically disordered phase intervenes. (There is, however,
a good deal of disagreement over the exact positions of the
critical points; cf. Refs. 49 and 50, which put the lower critical
point as low as 0.35 and as high as 0.45.) The physics of the
phase in the intermediate region is not known with complete
certainty, but it is commonly believed to be short ranged
and not to exhibit any kind of conventional magnetic order.
One possibility is a crystalline arrangement of valence bonds,
a state with broken translational symmetry in which singlet
formation favors an enlargement of the unit cell beyond that
of the underlying square lattice.50–63 A featureless spin liquid
that does not break any symmetries is another possibility.64–74

The case for a spin-liquid ground state has been advanced
by recent tensor product75 and density matrix renormalization
group (DMRG)76 calculations and by a variational approach
based on the entangled-plaquette ansatz.77 With regard to
the DMRG result, Sandvik has suggested that the use of a
cylindrical geometry complicates the detection of crystalline
order.78 His numerical experiments seem to indicate that the
mixture of open and closed boundary conditions significantly
raises the crossover length scale ξ beyond which bond
order takes hold (i.e., where the finite-size scaling behavior
of the dimer-dimer correlations is truly in the asymptotic
regime). Such questions are difficult to resolve. Unlike in
three-dimensional systems, where crystalline bond order, if it
is present, is almost always strong,5,79 in two dimensions it is
quite delicate and can easily be disguised by a U(1) effective
symmetry for system sizes L � ξ . (See Secs. III and IV of
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Ref. 80 and references therein.) Here, we attempt to make the
best of this unsatisfactory state of affairs. We simply take the
point of view that, for the lattice sizes (up to L = 32) we can
simulate, the liquid and the weakly ordered bond crystal are
indistinguishable.

B. RVB trial wave function

In quantum Heisenberg models, competing interactions
that frustrate the order have the potential to stabilize exotic
quantum phases, but they also render the problem computa-
tionally intractable on large lattices. Frustrating interactions of
even infinitesimal strength cause a sign problem81 that makes
quantum Monte Carlo calculations unfeasible. Moreover, the
size of the Hilbert space grows exponentially with system
size and is thus beyond the capability of exact diagonalization
calculations if we want to get near the thermodynamic
limit. (The record for spin-half has recently jumped from
42 sites49,82–84 to 48 sites,85 a terribly impressive technical feat
that nonetheless limits us to two-dimensional length scales
∼√

48 that are quite small.) An approximate method based on
good trial wave functions is therefore one of the few remaining
possibilities for large systems.

We consider a lattice of 2N spins and a factorizable RVB
wave function of the form

|ψ〉 =
∑

v

∏

[i,j ]∈v

h(rij )|v〉, (2)

where the sum is over all partitions of the lattice into N directed
pairs v = ([i1,j1],[i2,j2], . . . ,[iN ,jN ]). To every such dimer
covering v, there is a corresponding singlet product state; e.g.,

|v〉 = 1

2N/2

⊗

[i,j ]∈v

(|↑i ↓j 〉 − |↓i ↑j 〉) (3)

in the S = 1
2 case. The set V = {|v〉} of all possible singlet

product states is both overcomplete and nonorthogonal and
constitutes the so-called valence bond basis.

We can now break up the lattice into two sublattices,
groups of sites labeled A and B, equal in number, and restrict
ourselves to a reduced basis in which valence bonds connect
only sites in opposite sublattices (i.e., v ∈ VAB  SN , rather
than v ∈ V  S2N/ZN

2 ). We adopt the convention that each
bond [i,j ] is arranged with site i in sublattice A and site
j in sublattice B. This has the advantage of rendering the
overlap strictly positive: 〈v|v′〉 = 2Nl (C)−N , where Nl(C) is the
number of loops in the double dimer covering C = (v,v′). (In
this “bosonic” convention, the singlets are AB directed bonds.
In the complementary “fermionic” convention, the bonds are
directionless and all signs are moved into the overlaps.64,86–89)

To start, we consider two families of trial state, each built
using a bipartite bond basis consistent with one of two static
choices of sublattice labeling, viz., the checkerboard and stripe
patterns shown in Fig. 1. Later in the paper, we go on to
describe a procedure in which the trial state is built using an
unrestricted bond basis and the sublattice labeling (and hence
the Marshall sign convention) is determined dynamically.

The RVB wave function is quite expressive. Its degrees of
freedom are the full set of h(r) values with the bond vector
r spanning all lengths and orientations that can be achieved
on an L × L cluster with periodic boundary conditions and

FIG. 1. (Color online) Square grid of lattice sites (circles) whose
shading indicates the sublattice membership. Dashed lines mark the
J1 (red) and J2 (blue) exchange couplings. The basis contains only
product states of singlets connecting sites in opposite sublattices.
(Left) In the limit g = J2/J1 = 0, a checkerboard pattern of A and B
labels that coincides with (π,π ) magnetic order. (Right) In the limit
g = ∞, a stripe pattern that coincides with (π,0) order. In each case,
three permissible singlet pairings are indicated.

that are unique up to whatever symmetries are enforced. (Still,
the total number of parameters grows only linearly with the
number of spins, which is radically slower than the number
of states in the total spin singlet sector.) Previous calculations
of this kind34,35 considered only the checkerboard AB pattern
and imposed on h(r) = h(x,y) the full symmetry of the lattice,
such that h(x,y) = h(|x|,|y|) = h(|y|,|x|). In this calculation,
we impose a less restrictive condition h(x,y) = h(|x|,|y|) that
respects reflection symmetry across the lines x = 0 and y = 0
but not across the lines y = ±x. For the checkerboard pattern,
the number of free parameters is (L/2 − η)(L/2 − 1), where
η = (L/2 mod 2) distinguishes between L/2 even and odd.
For the stripe pattern, the count is only slightly higher: (L/2 +
1)(L/2 − 1) = L2/4 − 1.

To recapitulate, our work involves a basis choice. We do not
construct the trial wave functions from the largest possible set
of valence bond states in which the spins are joined in all possi-
ble ways. Instead, we obtain a more restricted basis by dividing
the system into two groups of sites (A and B) and keeping only
states in which bonds connect A sites and B sites (bipartite
bonds). No approximation is involved in this basis choice since
the restricted basis is so massively overcomplete that even this
subset still spans the relevant part of the Hilbert space.

But in assigning A and B labels to the sites, we are making
a choice about the form of the trial wave function. By working
with the checkerboard and stripe AB patterns, we are in essence
adapting the trial wave function to g = 0 and ∞, respectively,
and taking advantage of the Marshall sign rules that exist
in those two limits. We are not biasing the wave function,
however, at least not in the sense that we are building in
magnetic order. The wave functions constructed from either
AB pattern are fully capable of representing nonmagnetic
states.

C. Sampling algorithm

Every measurement 〈Ô〉 = 〈ψ |Ô|ψ〉/〈ψ |ψ〉 is equivalent
to 〈〈O〉〉, an ensemble average of the appropriate estimator
O :C → O(C) in the gas of fluctuating loops described by

Z = 1

qN

∑

C

qNl (C)
∏

[i,j ]∈C

hij . (4)
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FIG. 2. (a) Two superimposed valence bond configurations form a collection of closed loops. Eight of the sites are numbered for use in
Eq. (6). (b) Breaking one bond leaves an open string with a head and tail located at the former bond’s endpoints. (c)–(e) The head and tail move
by drawing a new bond and erasing the preexisting bond emerging from the destination site. (f) The open string is closed when the head and
tail reconnect. (g) The repaired loop configuration. (h) Exchanging the background and foreground links in any loop is also a valid update.

As before, C = (v,v′) is a loop configuration arising from
the superposition of two dimer coverings, and Nl(C) counts
the number of loops. The value q = 2 is the loop fugacity
appropriate for S = 1

2 . When Marshall’s theorem holds, the
bond amplitudes satisfy hij � 0 and thus every term in Eq. (4)
is non-negative. This model is amenable to Monte Carlo
simulation. We now outline a simple and efficient algorithm
for performing the stochastic sampling.

As a formal trick (in the spirit of Ref. 90), we enlarge the
phase space from �0 to �0 × �1 × · · · × �N , where �n is
the set of configurations in which 2n free endpoints have been
introduced by breaking n valence bonds. (The system has been
converted to one of both closed loops and open strings.) We
take the partition function to be

Z = 1

qN

∑

C

qNl (C)σNs (C)
∏

[i,j ]∈C

hij . (5)

The configurations C are now assembled from all possible
partial coverings v = ([i1,j1],[i2,j2], . . . ,[in,jn]) of variable
length 0 � n � N , and σ is introduced as a fugacity for
the open strings [numbering Ns(C) = N − n]. The loop-only
sector corresponds to the original partition function Z0 =
〈1〉�0 . (In each string sector, there is a Green’s function
defined by the string endpoints: Gij = 〈δi,α1δj,β1〉�1 , Gij ;kl =
〈δi,α1δj,β1δk,α2δl,β2〉�2 , etc. Here, αn and βn denote the positions
of the head and tail of the nth string. It is worth emphasizing
that these 2n-point Green’s functions do not coincide with
expectation values of the physical spin operators. In general,
we must take all measurements in the �0 configuration space
using the loop estimators derived in Ref. 22.)

We will consider a process that involves breaking a single
valence bond (�0 → �1) to produce an open string whose
two endpoints (the “head” and “tail”) serve as walkers subject
to Monte Carlo updates. The walkers move via a series of

two-step motions that involve drawing a new bond and erasing
an old one. When the walkers meet, the loop is closed (�1 →
�0). Figure 2 shows an example circuit. The fives successive
steps shown in Figs. 2(b)–2(f) produce an overall change in
the relative weight

σ

h5,4
× h1,4

qh1,2
× h5,8

qh7,8
× qh3,2

h3,6
× h7,6

σ
. (6)

Since we have chosen the bond amplitudes hij to be
non-negative, we can define a local amplitude Hi = ∑

j hij

and a total overall amplitude H = ∑
i Hi = ∑

ij hij . These
definitions will be useful in the derivations that follow.

To begin, let us consider processes that take the system
from the space of loops to the space of loops and one string.
We move from a configuration C ∼ [i,j ] to a configuration
C ′ ∼ (i)(j ) by breaking a bond [i,j ] and thus leaving string
endpoints (i) and (j ). The transition probabilities for breaking
and repairing the bond obey the detailed balance equation

W break
[i,j ] P (i)πC = W

repair
(i)(j ) P (j |i)πC ′ . (7)

Here, P (i) is the probability of choosing a site i whose bond
we want to break, and P (j |i) is the probability of choosing j

given a walker (string endpoint) at site i. πC and πC ′ represent
the likelihood of the system being found in configurations C

and C ′. Their ratio is given by

πC ′

πC

= σ

hij

. (8)

If we choose which bond to break according to the distribution
of local bond weight P (i) = Hi/H and choose walker move-
ments according to the distribution P (j |i) = hij /Hi , then

δ = W break
[i,j ]

W
repair
(i)(j )

= P (j |i)πC ′

P (i)πC

= σ

H
. (9)
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We are free to choose σ = H, in which case the transition
probabilities W break

[i,j ] and W
repair
(i)(j ) are equal and unit valued.

For motion of the walkers within �1, we need to know
the transition rates between configurations C ∼ (i)[j,k] and
C ′ ∼ [i,j ](k). This represents a process in which a walker at i

draws a new bond to some site j and then erases the preexisting
bond connecting j to k, thus leaving the walker at site k. The
detailed balance equation is

Wwalk
i→k P (j |i)πC = Wwalk

k→i P (j |k)πC ′ . (10)

The ratio
πC ′

πC

= qδNl
hij

hjk

(11)

depends on δNl = Nl(C ′) − Nl(C) = ±1 (or 0 if the moves
do not respect a fixed lattice bipartition; see discussion in
Sec. II D). As before, we attempt moves according to the
distribution P (j |i) = hij /Hi . Then,

δ = Wwalk
i→k

Wwalk
k→i

= P (j |k)

P (j |i)
πC ′

πC

= Hi

Hk

q±1, (12)

which can be solved in the usual way as Wwalk
i→k = δ/(1 + δ) or

Wwalk
i→k = min(1,δ).
Note that the transition rate does not depend on the ratio of

bond amplitudes, as it would if we had, for example, selected
a site uniformly with P (j |i) = 1/N . The ratio hij /hjk may
fluctuate wildly over many orders of magnitude, so subsuming
it into the sampling maximizes the efficiency of the algorithm.

In the case of a translationally invariant system, the
amplitude for pairing spins at i and j must be a function
of the vector rij connecting the two sites; i.e., hij = h(rij ).
Hence, H = H/N = Hi = ∑

r h(r) for all i, which implies
that P (i) = Hi/H → 1/N is uniform and P (j |i) = hij /Hi →
h(rij )/H . The algorithm can be summarized as follows:

(1) Pick any valence bond [i,j ] (by choosing i uniformly
from the set of A sublattice sites and then selecting its partner
site in v or v′) and break it. The resulting string has endpoints
at R = ri and R′ = rj .

(2) To move the head, choose a new bond vector r from the
distribution h(r)/H . So long as R + r �= R′, attempt to draw a
new bond from R to R + r = rk (for some k). The bond [k,l]
that already exists at that site is then erased and the walker is
moved to rl . The move is accepted with probability 1

2 if its
effect is to join another loop to the string and with probability
1 otherwise.

(3) Otherwise, if R + r = R′, close the open string by
drawing a new valence bond from R to R′.

The worm algorithm described here is ergodic and guar-
anteed to have a high acceptance rate. This is in contrast to
the original bond-swap scheme proposed in Ref. 29, wherein
two A-site or B-site bond endpoints sitting diagonally across
a plaquette are swapped using Metropolis sampling. This
antiquated algorithm runs into difficulty when the function
h(r) is short ranged. In particular, short bonds that are adjacent
but not sharing a common plaquette generate long bonds
under rearrangement, so whenever the amplitudes for long
bonds become small, the acceptance rate can become corre-
spondingly small. Worse, there are typically many trapping
configurations from which the simulation can not emerge. The
worm algorithm does not suffer from these problems because
it can traverse any local barriers by stepping outside the space
of closed loops. (We make no claims of novelty in this regard.
Other approaches to overcome the sampling difficulty have
been presented elsewhere.37,38,91)

D. Fluctuating sublattice assignment

The discussion in the previous section was specific to
the case in which (i) the AB pattern is regular and (ii)
the r vectors that have nonzero h(r) only connect sites in
opposite sublattices. If those conditions hold, there are only
two possible consequences to the motion of the open string:
a loop is joined to the string (δNl = −1) or a loop is split
off from it (δNl = +1). In both cases, represented in Fig. 3
by panels (a)→(b) and (d)→(e), the AB pattern itself is left
undisturbed.

3

1

1

2

3

4 4
4

2

(a)

(d) (e) (f) (g)

(b) (c)

FIG. 3. (Color online) (a) Two possible paths, marked 1 and 2, take the worm head to a site in the opposite or same sublattice of another
closed loop. In either case, the loop is absorbed. (b) Path 1 leads to a rearrangement of the worm that preserves the AB labeling. (c) Path 2
requires that the AB labeling be reversed in the highlighted region. (d) Another worm, following two possible paths marked 3 and 4. (e) For
path 3, the AB labeling is preserved, and the worm emits a new closed loop. (f),(g) Path 4 requires that the AB labeling be reversed in the
highlighted region. The number of loops remains unchanged.
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More generally, as the open string propagates, it lays down
a chain of singlet bonds whose alternating site labels may be
at odds with the traversed sites’ current AB assignments. A
simple workaround is to flip the sublattice labels as required to
correct the mismatch. The relevant processes are now those in
which a moving open string absorbs a closed loop (δNl = −1)
or reorganizes itself without impinging on any additional sites
(δNl = 0). The first case is depicted in Fig. 3 by panels (a)→(c)
and the second by (d)→(f) or (d)→(g). A crucial consideration
is that, since the singlets are directional, flipping sublattice
labels along a loop segment has the effect of reversing a chain
of singlet bonds. If an odd number of singlets is effected, the
overall sign of the wave function will change. This is true for
all δNl = 0 worm steps.

The sublattice mismatch can either be a temporary condi-
tion, lasting only until the worm updates succeed in laying
down a global AB pattern that is an invariant of the worm
motion, or it may be that the motion described by a given
h(r) is incompatible with any static AB site labeling. For
example, consider the one-parameter family of short-range
states on the square lattice described by h(±1,0) = h(0,±1) =
cos θ and h(±1,±1) = sin θ (with 0 � θ � π/4). Regardless
of the initial sublattice labeling (it can be any random
assignment having an equal number of A and B labels), the
simulation will dynamically establish the checkerboard pattern
provided that θ = 0. We keep track of the AB labeling pattern
by measuring a function (Q) = ∑

r,r′ eiQ·(r−r′)〈〈λ(r)λ(r′)〉〉,
where λ(r) takes the value −1 or 1 depending on the current
sublattice assignment at site r. If θ = 0, (Q) starts off broad
but systematically flows toward the distribution consisting
of a single delta function peak at Q = (π,π ); once that is
achieved, the pattern ceases to evolve. Similar behavior is
exhibited at θ = π/4, where the system settles into a static
pattern with either Q = (π,0) or Q = (0,π ). Only in those

two extreme cases is the sublattice pattern eventually static
and the simulation sign-problem free.

III. RESULTS

As a test of the worm implementation, we compare its
output to analytical results obtained for the 4 × 4 lattice.
We exploit the fact that the bipartite valence bond basis
VAB for 2N spins is isomorphic to the set of permutations
on N elements.22 Hence, the basis states have a natural
lexical ordering via the Lehmer code92,93 and can easily be
enumerated. For 4 × 4 = 16 sites, the total number of the states
is only 8! = 40 320, which means that expectation values of
the trial wave function can be evaluated exactly at very little
computational cost. Moreover, we can carry out the calculation
symbolically. Each observable takes the form of a rational
function of order [16/16]:

〈Ô〉 = O(x)

Z(x)
= 3

4

∑16
k=0 okx

k

∑16
l=0 zlxl

. (13)

The argument of the polynomials appearing in the numerator
and denominator is the real-valued ratio x = h(2,1)/h(1,0),
and the coefficients ok and zk are all integers. Specific values
for various observables are listed in Table I.

For this test, we have focused on the nearest-
and next-nearest-neighbor spin correlation functions C1 =
1
L2

∑
〈i,j〉〈Si · Sj 〉 and C2 = 1

L2

∑
〈〈i,j〉〉〈Si · Sj 〉; the Q = (π,π )

staggered and Q = (π,0) stripe magnetization, M2(Q) =
1
L4

∑
r,r′(−1)eiQ·(r−r′)〈Sr · Sr′ 〉; and the order parameter for

a columnar dimer crystal D2 = 1
L4

∑
r,r′(−1)ex ·(r+r′)〈(Sr ·

Sr+ex
)(Sr′ · Sr′+ex

)〉. We have verified that the worm algorithm,
conventional bond-swap Monte Carlo, and exact evaluation
give consistent results for all these quantities.

TABLE I. The integer coefficients appearing as zn and on in Eq. (13) are presented for various observables. These coefficients specify the
rational polynomials in x = h(2,1)/h(1,0) that arise from taking expectation values with respect to the product amplitude trial state on the
square lattice of linear size L = 4. The columns correspond to the wave-function normalization, the nearest- and next-nearest-neighbor spin
correlations, the staggered and stripe magnetization, and the columnar dimer order parameter (with measurements of both its absolute value
and its square).

n Z −L2 C1 L2 C2 L4 M2(π,π ) L4 M2(π,0) L2 |D| L4 4D2/3

0 1 559 232 22 241 280 9 902 080 113 983 488 17 383 424 4 376 064 102 133 760
1 13 008 384 194 568 192 104 726 528 1 117 618 176 139 902 976 28 540 928 645 455 872
2 66 018 816 997 232 640 585 695 232 6 104 383 488 709 410 816 127 591 424 2 844 606 464
3 223 842 816 3 395 051 520 2 137 292 800 21 861 335 040 2 381 496 320 389 861 376 8 395 677 696
4 568 694 016 8 564 477 952 5 689 352 192 57 653 526 528 6 069 354 496 932 687 872 19 758 309 376
5 1 108 661 760 16 547 069 952 11 594 661 888 116 342 292 480 11 792 498 688 1 697 314 816 35 459 866 624
6 1 767 412 224 25 797 685 248 18 932 629 504 189 239 033 856 18 888 998 912 2 580 870 144 53 692 563 456
7 2 302 253 568 32 679 444 480 25 148 850 176 250 229 981 184 24 519 589 888 3 165 620 224 65 523 884 032
8 2 528 419 968 34 418 749 440 27 661 209 600 275 349 995 520 27 030 159 360 3 329 164 288 68 794 482 688
9 2 302 253 568 29 878 050 816 25 148 850 176 250 229 981 184 24 519 589 888 2 857 185 280 58 976 903 168
10 1 767 412 224 21 512 073 216 18 932 629 504 189 239 033 856 18 888 998 912 2 089 987 072 43 192 369 152
11 1 108 661 760 12 538 503 168 11 594 661 888 116 342 292 480 11 792 498 688 1 223 688 192 25 387 999 232
12 568 694 016 5 848 903 680 5 689 352 192 57 653 526 528 6 069 354 496 594 391 040 12 360 392 704
13 223 842 816 2 070 282 240 2 137 292 800 21 861 335 040 2 381 496 320 218 601 472 4 580 990 976
14 66 018 816 528 863 232 585 695 232 6 104 383 488 709 410 816 60 980 224 1 313 734 656
15 13 008 384 84 836 352 104 726 528 1 117 618 176 139 902 976 11 331 584 254 992 384
16 1 559 232 6 254 592 9 902 080 113 983 488 17 383 424 1 074 688 31 887 360
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FIG. 4. (Color online) RVB trial wave-function results for the
4 × 4 lattice. (a), (b) Spin correlations C1 and C2 between nearest- and
next-nearest-neighbor spins, computed as a function of the amplitude
ratio x = h(2,1)/h(1,0). The worm Monte Carlo (MC) results are
compared to the corresponding symbolic (symb) expression. As x

becomes increasingly negative, the stochastic evaluation becomes
dominated by noise from the sign problem. (c) The energy-optimized
value xopt remains positive up to g = J2/J1 = 0.40756. (d) The
optimized trial state gives a good approximation to the true ground-
state energy (exact) up to where the Marshall sign rule breaks down.

The comparison of the energetics is shown in Fig. 4. Note
that in Figs. 4(a) and 4(b), the stochastic evaluation of C1 and
C2 continues to work in some range of x < 0 but breaks down
as x becomes strongly negative. For the symbolic result, the
determination of the best energy is carried out by considering
the two-parameter function E(x,g)/J1L

2 = C1(x) + gC2(x),
which is known exactly by way of Eq. (13). For every value
of the relative coupling strength g, the optimal value of x

[Fig. 4(c)] is the one that produces the lowest energy [Fig. 4(d)]
according to

E(g) = E(xopt,g) = min
x

E(x,g). (14)

In practice, Eq. (14) represents a root-finding problem in
x for ∂E(x,g)/∂x = 0; this is solved via Newton-Raphson.
We find that the optimized value xopt is positive for weak
frustration. It decreases monotonically from its nonfrustrated
value xopt = 0.278 013 851 9, and drops below zero when the
coupling strength exceeds g = 0.407 56. This marks the point
at which the Marshall sign rule first fails. For reference (it
may be of use in benchmarking RVB calculations accom-
plished by other methods, e.g., Ref. 94), we report that the
specific values xopt = 0.006 787 458 952, −0.037 771 217 11,

−0.078 810 726 79, and −0.112 818 471 1 obtain at coupling
strengths g = 0.40, 0.45, 0.50, and 0.55.

Having established confidence in our numerical implemen-
tation, we proceed with unbiased optimization calculations
using a static sublattice assignment on lattices up to size
L = 32. Convergence is limited by statistical uncertainty in the
(energy to bond count) correlation function that determines the
local energy gradient,34 and it is difficult to optimize reliably
for larger system sizes. (See Appendix A for more details.)
We first consider the checkerboard AB pattern. At g = 0, the
bond amplitudes are given an initial value

h(x,y) = [min(x,L − x)2 + min(y,L − y)2]−3/2 (15)

for |x| + |y| odd and zero otherwise. The new set of amplitudes
obtained from this first run serves as the input for the next
optimization process. That is to say, we daisy chain the
calculations, at each step using the converged result at g to
seed the simulation at g + δg. An analogous procedure is
carried out for the stripe AB pattern, starting from g = ∞
and stepping the relative coupling down.

One finds that the two sets of simulations do not join
smoothly but instead meet with strongly opposite slopes
dE/dg. A careful extrapolation to the thermodynamic limit,
presented in Fig. 5, puts the location of the energy-level
crossing at gc2

.= 0.5891(3). As Fig. 6 makes clear, this point
represents the rightmost edge of an intermediate phase that

g

g c2
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1/L3

0.54

0.000050 0.0001 0.00015 0.0002

0.56 0.58 0.620.60 0.64

0.590
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0.575

0.570
0.590

0.588

0.586

0.584

0.582

0.580

0.565

0.560

0.555
0 0.004 0.008 0.012 0.016

−0.45

−0.46

−0.47

−0.48

−0.49

fit 1
fit 2

(π,π) check, g
(π,0) stripe, g

L = 16

FIG. 5. (Color online) The level crossings are plotted versus
1/L3 and extrapolated to the thermodynamic limit. Several different
second-order polynomial fits (two shown) are used to estimate the
uncertainty in the intercept. The solid blue line (fit 1) is an attempt
to fit the L � 6 data to c0 exp(c1L

−3 + c2L
−6); the dashed green line

(fit 2) is a fit to c0 + c1L
−3 + c2L

−6 for L � 4. Our analysis suggests
a value gc2

.= 0.5891(3). The upper inset shows the analysis behind
the L = 16 data point, which is marked in the main graph as an open
circle. The lower inset is a magnification of the shaded region.
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FIG. 6. (Color online) (Upper panel) The energy per site versus
the coupling strength. The solid lines are best energies from the
trial wave-function optimization. From bottom to top, system sizes
L = 4,6,8,10,12,16,20,24,28,32 are shown. The thick black line,
providing an upper envelope to the curves, is the extrapolation to
L = ∞. The ground-state energy of the one-dimensional Heisenberg
chain is shown for comparison, as are the energies of the NNRVB state
and its 45◦-rotated, next-nearest-neighbor analog, the NNNRVB state.
(Lower panel) Magnetization data are shown, with the same system
sizes now increasing from top to bottom. The thick black lines above
the gray shading are the L = ∞ extrapolation. The magnetic order for
Q = (π,π ) and Q = (π,0) both vanish in the small region between
gc1

.= 0.54(1) and gc2
.= 0.5891(3).

is magnetically disordered. The leftmost edge sits at gc1
.=

0.54(1), where the Q = (π,π ) antiferromagnetism vanishes
in a continuous fashion. As a rough gauge of the quality of
the RVB trial wave function, we note that for g = 0.5 the
energy density extrapolates to ERVB = −0.490 23(2) in the
thermodynamic limit. This result is bracketed by the energies
of the best projected entangled pair states (PEPS) with bond
dimension D = 3 [EPEPS = −0.486 12(2); see Ref. 94] and
D = 9 [EPEPS = −0.4943(7); see Ref. 75].

An important detail is that the optimizations are carried
out with the bond amplitudes constrained to have x- and
y-axis reflection symmetry but not necessarily 90◦ rotation
symmetry. In the case of the checkerboard simulation, the
amplitudes nonetheless realize the full lattice symmetry under
optimization up to large values of the relative coupling. For
small lattice sizes L = 4,6,8, the symmetry breaks down
beyond values g ≈ 0.51,0.55,0.57. For all larger sizes, that
point is pushed well to the right of gc2. This means that, in
the thermodynamic limit, h(r) shares a common symmetry

0.25

0.30

0.20

0.15

0.10

0.05

0

g

0 0.3 0.40.20.1 0.5 0.6

0.43

0.42

0.41

0.40

0.39

1/L

gM1

0 0.05 0.1 0.15 0.2

L = 32

L = 28

L = 24

L = 20

h(2, 1)
h(1, 0)

FIG. 7. (Color online) (Main panel) The knight’s move amplitude
measured relative to the nearest-neighbor bond amplitude, offset
vertically by 0.05 × (8 − L/4) to aid viewing, decreases as a function
of g. (Inset) The coupling strength at which h(2,1) extrapolates to zero
is plotted against the inverse linear system size. The point style for
each system size matches the intercept in the main panel. The shaded
region represents the envelope containing plausible fits. We estimate
that the checkerboard Marshall sign rule fails at gM1

.= 0.398(4) in
the thermodynamic limit.

across both the staggered magnetic phase and the disordered
intermediate phase. But, it experiences a sudden break at the
onset of stripe magnetic order, dropping from C4 to C2.

In the vicinity of g = 0, the optimized bond amplitudes
are positive definite and an almost perfect function of bond
length. As the frustration increases, the amplitudes begin to
deviate from circular symmetry, developing strong lobes of
weight along the x and y axes. Bonds not aligned along those
preferred directions become increasingly short ranged, and
the eight knight’s move bonds, those symmetry equivalent to
h(2,1), eventually trend through zero to negative values. The
extrapolation shown in Fig. 7 pinpoints the breakdown of the
Marshall sign rule at gM1

.= 0.398(4). What this suggests is
that there is strict adherence to a checkerboard Marshall sign
rule only below gM1; in the range gM1 < g < gc2, the sign
rule is violated, even though the overall sign structure is still
partially consistent with the checkerboard pattern. [There is no
indication that the amplitudes of any other bond type are on
track to change sign. Attempts to extrapolate the amplitudes
next most likely to turn negative, viz. h(4,1) and h(6,1), put
their vanishing points deep in the intermediate phase or beyond
it.] We find that the behavior on the large coupling side is not
comparable. There, the coupling at which bond amplitudes first
go negative scales as gM2 ∼ L4 and hence does not converge
in the thermodynamic limit. We interpret this to mean that
the static stripe pattern is only ever a weak description of the
Marshall sign structure (see Fig. 8).

We have attempted to confirm this picture by running
simulations in which the Marshall sign structure is determined
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FIG. 8. (Color online) Schematic representation of the model’s
zero-temperature phase diagram. Critical couplings gc1 and gc2 mark
the boundaries of the magnetically disordered phase. Staggered order
ends with a continuous transition at gc1; stripe order ends with a first-
order transition at gc2. The three diagrams on the right illustrate the
optimized h(r) values at g = 0, g = 0.55, and g = 0.8. Each circle,
offset by a vector r (measured from the small cross at the center), has
an area proportional to the corresponding h(r) value. The text on the
left describes the Marshall sign structure that predominates.

dynamically. More specifically, we want to verify that the
strongly first-order transition at gc2 is not merely an artifact of
two static, incompatible sublattice conventions colliding. And,
we would like to see if any pattern other than checkerboard or
stripe could emerge on its own. If permitted, might the system’s
sublattice structure smoothly interpolate over some range of
g, with the peak in (Q) migrating from (π,π ) to (π,0)? Or,
perhaps with the peak in (Q) broadening into incoherence?
We follow the procedure outlined in Sec. II D, whereby the
sublattice labeling is no longer fixed and the worm motion itself
is allowed to reconfigure the current AB pattern. Our approach
is to simulate for various g values, with no daisy chaining, in
each case starting from a random AB pattern and a random loop
configuration. The bond amplitudes are initialized with h(r)
forming a broad peak around r = 0 and having no zero entries.
We perform a crude simulation in which the signs associated
with the worm updates are thrown away (see Appendix B).
Otherwise, the optimization of h(r) proceeds as before. What

we find is a result that exactly tracks the state of lower energy
produced by assuming one of the two static AB patterns. The
simulation flows to the checkerboard for all g < gc2 and to the
stripe for all g > gc2; the peak in (Q) jumps discontinuously.
Obviously, we should not read too much into a result that
follows from an uncontrolled approximation (sampling by
ignoring the signs), but it does give us a sense that the stability
of the checkerboard pattern through the intermediate phase
and the abrupt change in Marshall sign structure at gc2 might
be genuine features of the model.

The optimized state in the intermediate phase is definitely
not a bond crystal. For a given lattice, the dimer correlations are
somewhat enhanced in the strongly frustrated region, but with

FIG. 9. Grid lines depict the dimer correlations Cijkl = 〈(Si ·
Sj )(Sk · Sl)〉 on the nearest-neighbor links (k,l) of the square lattice,
measured with respect to the thick, dark dimer (i,j ) at the center.
The correlations are computed for the L = 28 system. The grayscale
intensity represents correlation strength, presented as the fourth power
of (1 + 3

2 r
3/2
ij ;kl)Cijkl , where rij ;kl is the distance measured from the

center of the (i,j ) bond to the center of the (k,l) bond. Dotted lines
indicate a negative (anticorrelated) value. The top panel shows results
for the NNRVB state, presented for comparison’s sake. The bottom
panel shows results for the energy-optimized state at g = 0.58. In each
case, a 10 × 10 section of the full valence bond loop configuration,
obtained from a snapshot of the Monte Carlo simulation, is overlaid.
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FIG. 10. (Color online) Dimer correlations of the product-
amplitude trial wave function optimized at g = 0.58 (solid points)
and the short-bond-only RVB state (open points) are compared on
the L = 28 lattice. Presented are the dimer line (squares) and dimer
stack (circles) correlation functions. See Eq. (16) and accompanying
text for definitions.

increasing lattice size they show clear convergence to zero.
Still, spatially resolved dimer correlations do give us important
information. One can see in Fig. 9 that the optimized state
shows the same pattern of dimer correlation and anticorrelation
as the NNRVB, but it decays much faster as a function of dimer
separation. The comparison is made more explicit in Fig. 10,
which shows correlations along a line and a stack of dimers.
The functions measured are

Cline(d) = 〈B̂(0,0)B̂(d,0)〉 − 〈B̂(0,0)〉〈B̂(d,0)〉,
(16)

Cstack(d) = 〈B̂(0,0)B̂(0,d)〉 − 〈B̂(0,0)〉〈B̂(0,d)〉,
which we have expressed in terms of the x-directed bond
operator B̂(x,y) = S(x,y) · S(x + 1,y).

IV. CONCLUSIONS

We have used an optimized valence bond trial wave function
to study the square-lattice J1-J2 Heisenberg model, with an
eye to both mapping out the zero-temperature phase diagram
and determining how the Marshall sign structure breaks down
near the phase boundaries. In the first instance, we fix the
AB sublattice labeling to coincide with the order that exists at
small and large coupling. For each lattice size, the intermediate
phase is approached in two independent simulations (or, rather,
chains of history-dependent simulations) by evolving the states
progressively out of the two ordered phases, minimizing
their energy at each step. These simulations are fully non-
sign-problematic since the AB pattern is fixed and the bond
amplitudes are restricted to be positive.

Finite-size scaling of the dimer order parameter suggests
that there is no long-range dimer order at any value of g. This
is as expected since the trial state explicitly ignores bond-bond
correlations beyond those generated by the hard-core tiling
constraint. Measurements of the staggered magnetization show
clear evidence of a continuous phase transition in which the
staggered magnetization vanishes at gc1

.= 0.54(1). On the

other edge of the intermediate phase, an energy-level crossing
at gc2

.= 0.5891(3) results in the sudden disappearance of the
otherwise robust stripe magnetization. This is accompanied by
the restoration of the system’s rotational symmetry. [Since the
trial state is least able to describe the intermediate phase (again,
because of its lack of explicit bond-bond correlations) we
should probably view gc1 and gc2 as upper and lower bounds,
respectively, on the true positions of the phase boundaries.]
We have also performed calculations (approximate and uncon-
trolled, but suggestive) in which no sublattice labeling is put in
by hand and the AB pattern is allowed to emerge dynamically.
We find that, regardless of the initial sublattice assignment,
the simulation reliably settles into the checkerboard pattern
for all g < gc2 and the stripe for all g > gc2. Taken together,
our results point to the checkerboard AB pattern being the
best choice throughout the intermediate phase. Hence, within
the context of our particular trial wave-function scheme, we
surmise that the state beyond gc1 is a “bosonic” spin liquid
with the lowest-lying magnetic excitations at (π,π ).

Figure 8 gives a quick summary of our results. We observe
that at high frustration the bond amplitudes take on a highly
anisotropic form. This is quite different from the long-bond to
short-bond picture that is usually invoked. Recall that Liang,
Ducot, and Anderson studied long-range RVB states on the
square lattice with amplitudes h ∼ r−p that decay as a power
law in the bond length r .29 In that framework, the state becomes
magnetically disordered when p exceeds a critical value of
3.3,31,95,96 and the entire family of states in the range p > 3.3
is continuously connected to p = ∞, which is the (short-bond-
only) NNRVB. The intermediate phase state obtained in our
simulations is of a quite different character: (i) the state is
magnetically disordered not because its bond amplitudes are
uniformly short ranged but because they have become short
ranged over some sufficiently large angular interval of bond
orientation; (ii) its spin and dimer correlations are distinct from
those of the NNRVB; and (iii) the presence of many system-
spanning bonds implies that the usual topological invariant
for short-ranged RVB states, defined by the parity of bond
cuts along a reference line,7,37 is almost certainly not a good
quantum number.
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APPENDIX A: NUMERICAL OPTIMIZATION OF THE
RVB BOND AMPLITUDES

The RVB ansatz assumes that the quantum amplitude
ψ(v) associated with each valence bond state |v〉 is of the
factorizable form

ψ(v) ≈
∏

[i,j ]∈v

h(rij ) ≡
∏

r̃

h(r̃)n(r̃;v). (A1)

The first product ranges over all pairs of spins forming a singlet
bond. The second ranges over the minimal set of vectors r̃
that are inequivalent under whatever lattice symmetries have
been enforced. The whole-number exponent n(r̃; v) represents
how many times a bond amplitude h(r), with r symmetry
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equivalent to r̃, appears in the product for a given v. [Hence,∑
r̃ n(r̃) = L2/2 = N , the number of bonds appearing in |v〉.]
Accordingly, the energy expectation value is

E = 〈ψ |Ĥ |ψ〉
〈ψ |ψ〉 =

∑
C H (C)w(C)∑

C w(C)
≡ 〈〈H 〉〉, (A2)

where H (C) = 〈v|Ĥ |v′〉/〈v|v′〉 is the loop estimator of the
Hamiltonian. The notation 〈〈· · · 〉〉 denotes averaging with
respect to the Monte Carlo weight

w(C) = 〈v|v′〉ψ(v)ψ(v′) = ±qNl (C)
∏

r̃

h(r̃)n(r̃;C). (A3)

Here, each configuration C = (v,v′) is a superposition of two
dimer coverings, and the sum n(r̃; C) ≡ n(r̃; v) + n(r̃; v′) is
the combined count of r̃-type bonds in states |v〉 and |v′〉. The
± on the right-hand side of Eq. (A2) acknowledges that the
configuration weight may be negative if the sublattice pattern
is not fixed. By way of the identity

∂w(C)

∂h(r̃)
= n(r̃; C)w(C)

h(r̃)
, (A4)

we find that the downhill direction in the energy landscape
parametrized by {h(r̃)} is related to the energy to bond count
correlation function

Gk(r̃) ≡ − ∂E

∂ ln h(r̃)
= 〈〈H 〉〉k〈〈n(r̃)〉〉k − 〈〈Hn(r̃)〉〉k. (A5)

In anticipation of Eq. (A6), we have used 〈〈. . .〉〉k to denote
averaging with respect to the kth Monte Carlo bin.

Our optimization procedure is carried out as follows. For
a given logarithmic amplitude λ(1) = ln h(r̃), we generate a
sequence of (not always energy-reducing) steps

λ(k+1) := λ(k)R δλ

k1/3
sgn Gk. (A6)

R is a random number chosen from the uniform distribution
on the interval [0,1], and k = 1,2, . . . ,1000 counts the steps
taken through the landscape. The 1

3 power ensures that the
step-size envelope decreases by a factor 10 over the course
of 1000 steps. The optimization is run repeatedly with restarts
for step sizes beginning at δλ = 0.1 and reduced by successive
powers of two until convergence is achieved.

The most serious difficulty is that the correlation function
estimates Gk(r̃) become increasingly noisy for large system

sizes, to the point where the determination of sgn Gk(r̃) is
no longer reliable. The problem is most acute for the longest
bonds, which appear least frequently and thus have the
worst statistics. (The bond amplitudes, which represent the
probability of a given type of bond appearing during the Monte
Carlo sampling, fall off rapidly as a function of bond length.)

In small amounts, this noise does not interfere with
the energy optimization. It simply overlays a randomizing
motion, somewhat akin to the effect of nonzero temperature in
simulated annealing. Nonetheless, good convergence requires
that the noise fall below a certain threshold (set by the depth
and curvature of the well in which the energy minimum sits.)
In practice, mitigating the noise means taking the Monte Carlo
bin size large enough so that the longest bonds in the system
(with length |r̃| ∼ L) appear often enough in the sampling.
This consideration sets the limit on the systems sizes we can
optimize.

APPENDIX B: SIGN-PROBLEMATIC SIMULATIONS

The energy computed by ignoring signs [i.e., by sampling
with respect to the magnitude of Eq. (A3)] is

E� =
∑

C H (C)|w(C)|∑
C |w(C)| ≡ [[H ]]. (B1)

Making the substitution w = |w|sgn w, we can rewrite
Eq. (A2) as the ratio of averages

E =
∑

C H (C)|w(C)|sgn w(C)∑
C |w(C)|sgn w(C)

≡ [[H sgn w]]

[[sgn w]]
; (B2)

hence, the energy discrepancy �E = E� − E takes the form
of a correlation function

�E = E� − E = [[H ]] · [[sgn w]] − [[H sgn w]]

[[sgn w]]
. (B3)

If the sgn w term fluctuates within the simulation so that
[[sgn w]] ≈ 0, evaluation of �E is impossible due to large
statistical uncertainties. Despite this, the actual value of �E

may itself be small if there is only a weak correlation between
the sign and the energy estimator. Moreover, �E is identically
zero if the h(r) values evolve to produce a static sublattice
labeling. So, at the very least, we can view as a rigorous result
the fact that no new static pattern emerged over the course of
our simulations.
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