
PHYSICAL REVIEW B 87, 094418 (2013)

Nonreciprocal light diffraction by a vortex magnetic particle of spherical shape
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We report a theoretical study of light diffraction by a spherical magnetic particle with a vortex magnetization
distribution. It is shown that the intensity of the diffracted light involves a nonreciprocal contribution. This
contribution depends on the vorticity of particle magnetization. It appears due to the excitation of an electric
quadrupole, magnetic dipole, and the addition to the electric dipole moment in the particle, which depend on the
particle magnetization vorticity. The dependence of the nonreciprocal contribution on particle parameters and
geometry of diffraction is analyzed separately for the specified moments. The calculation of the effect for a cobalt
particle and two linear polarizations of the incident light fits the data of recent experimental studies in the lattice
of triangle magnetic particles by an order of magnitude.
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I. INTRODUCTION

Remarkable achievements in microtechnologies and nan-
otechnologies open possibilities in fabrication of optical
media with interesting properties. Photonic three-dimensional
crystals exhibit extraordinary optical effects, such as photonic
band gap,1,2 negative refractive index,3,4 and ultraslow light
propagation.5 Surface plasmons in planar metal structures lead
to enhanced magneto-optical effects,6–8 extraordinary light
transmission through subwavelength holes,9 and effective gen-
eration of the second harmonic.10,11 Interesting objects actively
investigated in the past decade are planar chiral structures.12–16

Such a structure is ordinarily a two-dimensional regular lattice
of nonmagnetic particles that possesses the time and spa-
tial inversion symmetries.17 Nevertheless, light transmission
through a planar chiral structure experiences polarization
rotation, which is different for the light traveling in oppo-
site directions due to the absence of mirror symmetry and
strong anisotropy in the orientation of the structure elements.
The term “nonreciprocal” is often used for this effect, and
some speculations appear on the time-reversal symmetry
violation.14–16 Note that the intensity of light diffracted by
a planar chiral structure does not change with a reversal of
the propagation direction, in accordance with the reciprocity
law. The nonreciprocal intensity effects can appear only in the
presence of a magnetic field18–20 or in magnetic systems.21–25

Such effects have been observed recently in a two-dimensional
lattice of magnetic vortices.26 The particles had a triangular
shape, which allowed manipulation of their vorticity by an
uniform external magnetic field, thus making it identical for
all particles.

The problem of scattering of electromagnetic waves by
a particle of an arbitrary size with gyrotropic dielectric
permittivity and magnetic permeability has been addressed in
a general form27 and for magnetic particles specifically.28,29

However, the gyrotropy terms are always supposed to be
constant over the particle, which corresponds to uniform
magnetization. This paper is devoted to theoretical calculations
of the diffraction of light by a magnetic vortex that turns out
to be a nonuniform magnetic particle. Our theory describes
the mechanisms underlying the effect of nonreciprocal light
scattering by such a particle and also allows us to estimate
its magnitude and compare the theoretical data with the

experiment.26 Note that this effect is assumed to be simply
summed over the lattice of particles (i.e., the collective
phenomena are neglected), thus making it possible to focus
on the light diffraction by a single particle.

In Sec. II we consider some phenomenological arguments
in favor of the nonreciprocal light diffraction by a vortex
particle. Then a microscopic model of the effect is proposed
in the approximation of a spherical particle that is small
compared to the wavelength. The main assumptions are
outlined in Sec. III. Further, we consider two approaches to
the problem. A simple Born approximation (permittivity is
close to unity) that helps reveal the existence of the effect
is described in Sec. IV. Yet, within this approximation the
effect occurs only for one linear polarization of the incident
light. Section V is devoted to calculation for the arbitrary
permittivity, based on the first-order perturbation theory with
respect to the particle size-to-wavelength ratio. We show
that the nonreciprocal term appears due to excitation of the
electric quadrupole, magnetic dipole, and a small addition to
the electric dipole moment, that emit light interfering with
the main magnetization-independent electrodipole radiation,
which agrees to well-known mechanisms.30 The analysis of
the results is given in Sec. VI. We perform simple estimations
for the parameters of cobalt and an appropriate particle size
and compare our calculations to the experimental results.26 A
summary of our results is outlined in Sec. VII.

II. PHENOMENOLOGICAL CONSIDERATIONS

We begin with some phenomenological arguments in favor
of the nonreciprocal light diffraction by the vortex particle.26 If
we consider the light scattering cross section summed over the
polarizations of incident and diffracted light, the reciprocity
law takes a simple form

σ (k,k′,M (r) ) = σ (−k′,−k,−M (r) ), (1)

where σ is the differential cross section for the diffracted light,
k and k′ are the wave vectors of the incident and diffracted
beams, M (r) is the magnetization spatial distribution. The
term “nonreciprocal effect” implies the following inequality:

σ (k,k′,M (r) ) �= σ (−k′,−k,M (r) ), (2)
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which can be transformed using Eq. (1) to

σ (k,k′,M (r) ) �= σ (k,k′,−M (r) ), (3)

thus making it possible to observe the effect by inverting the
magnetization direction instead of swapping the source and
the detector.26

For systems without center of inversion the scattering
cross section may contain the term ((k + k′) · C), where C
is a vector. Being linear in the wave vector, this term leads
to the nonreciprocal effects described by (2) and (3). The
C vector should be a polar vector that also changes its
sign under the time reversal. For a magnetic scatterer of a
centrosymmetrical shape and material C can be chosen in the
simplest form C = α〈[r × M(r)]〉, which is a toroidal moment
of the particle associated with the magnetic vorticity,31 the
brackets mean the spatial averaging over the scatterer, α is a
constant. According to these considerations, the diffraction of
unpolarized light by a particle with the vortex magnetization
distribution is nonreciprocal and the scattering cross section
has a contribution depending on the vorticity,

σ (k,k′,M (r)) = · · · + α[(k + k′) · 〈r × M(r)〉]. (4)

The weak point of this phenomenological consideration
is the polarization dependence of the nonreciprocal effect.
Indeed, the existence of the effect for unpolarized light means
it exists for at least one linear polarization, but the question
about the contribution of different polarizations to it arises.
However, the experiments currently are performed exactly for
a linearly polarized light.26

III. MAIN ASSUMPTIONS AND DEFINITIONS

As has already been mentioned, we assume that the
diffracting particle has a spherical shape with radius a. The
incident wave is assumed to be monochromatic (all fields
change in time as eiωt , ω is the wave circular frequency) and
plane. Its wavelength λ is much bigger than a,

λ � a. (5)

The particle has a vortex magnetic moment (see Fig. 1)

M = eφ = eycosφ − exsinφ. (6)

Here eφ is the unit vector in spherical coordinates, ex and ey are
the unit vectors in Cartesian coordinates, φ is azimuthal angle

FIG. 1. (Color online) The geometry of light diffraction by a
vortex magnetic particle. (a) The incident light is s polarized. (b) The
incident light is p polarized.

in spherical coordinates, magnetic moment M is normalized
to unity.

The magnetic permeability tensor is unit, while the dielec-
tric permittivity tensor is assumed to have a locally gyrotropic
form

(ε̂)j l = εδjl + iγ ejlmMm, (7)

where δjl is the Kronecker δ, ejlm is the completely an-
tisymmetric tensor (the Levi-Civita tensor). Since M is
normalized to unity, the γ coefficient includes its magnitude.
Expression (7) is valid if the magnitude of quasiclassic electron
oscillations is small compared to the scale of the magnetic
moment variation. In our case it is equal to the particle radius
a, hence, we get applicability criterion

eE0λ

mc2
λ � a, (8)

where e is the absolute electron charge, m is the electron mass,
E0 is the magnitude of the electric field of the incident wave,
c stands for the light velocity. The first term in the left-hand
part of (8) is the ratio of the energy the electron gains while
oscillating in the electric field of the wave, to its rest energy.
In the optical range this ratio is very small for the existing
sources, which allows simultaneous fulfillment of conditions
(5) and (8).

Another assumption used in our symmetry considerations
(Sec. II) and elsewhere throughout the paper is that the
diffracted wave is plane. In fact, the wave diffracted by a small
particle is spherical at a large distance from the latter. But on a
scale much smaller than the distance between the particle and
the measuring point the wave may be considered plane.32 Its
intensity, indeed, depends on the distance from the particle.

Since the experiments on light diffraction by the lattice
of magnetic vortices have been carried out for the linear
polarizations of incident light, we also use these polarizations
in theoretical calculations. The following designations for the
linear polarizations are used throughout the paper: the wave
polarized so that its electric field vector lies in the plane defined
by the k vector and the axis of the magnetic vortex ez is
termed p polarized (see Fig. 1); the wave with the electric
field perpendicular to that plane is s polarized.

One more important approximation consists in restricting
ourselves to the first order in the magnetic moment, which
mathematically corresponds to the first order in a small
parameter γ /ε [see Eq. (7)]. Our choice of approximation
is determined by both the fact that the phenomenon described
by Eq. (4) is linear in M and that γ /ε is a very small parameter
for the existing ferromagnets.33,34

IV. BORN APPROXIMATION

The simplest calculation is based on the assumption that
permittivity tensor ε̂ is almost equal to unit tensor 1̂,

ε̂ = 1̂ + δ̂ε. (9)

The Maxwell equations can be solved in this case for a
scattering particle of an arbitrary shape.32 According to the
well-known theory, the electric field of diffracted wave Escat
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can be written as

Escat = − eik′R0

4πR0

[
k′ ×

(
k′ ×

∫
V

δ̂εE0e
iqrdV

)]
. (10)

Here E0 is the electric field of the incident wave, q stands
for k − k′, V is the volume of a scattering particle, R0 is the
distance between the scattering particle and the point where
Escat is measured. According to our assumptions (Sec. III), R0

is much bigger than the linear dimension of scatterer V 1/3.
We can now use (7) and (9) to determine δ̂ε and calculate

the diffracted electric field. It is convenient to use the matrix
form to represent the diffraction coefficients for different linear
polarizations,

Ŝ = k2
0

4πR0

(
Sss Ssp

Sps Spp

)
, (11)

where the diagonal terms represent the diffraction without a
change of polarization, while the off-diagonal terms stand for
the diffraction to another polarization. The term k0 in Eq. (11)
is the absolute value of the wave vector k0 = ω/c. The matrix
components in (11) are

Sss =
∫

V

(ε − 1)eiqrdV (12)

Ssp = iγ

(
k ·

∫
V

M (r) eiqrdV

)
(13)

Sps = −iγ

(
k′ ·

∫
V

M (r) eiqrdV

)
(14)

Spp = (k · k′)
∫

V

(ε − 1)eiqrdV −

− iγ

[
(k × k′) ·

∫
V

M(r)eiqrdV

]
(15)

When analyzing Eqs. (12)–(15) we should first note that the
linear polarizations do not mix without magnetization. Since
we are interested in the intensity effect that is linear in M, only
the diagonal terms of matrix (11) should be taken into account.
The matrix component Sss does not depend on the magnetic
moment, hence, we come to a conclusion that the s polarized
light diffraction does not feature nonreciprocal properties,
while for the p-polarized light there is a nonreciprocal
contribution in the diffraction intensity.

Finally, taking into account Eq. (5), we can expand the term
eiqr into a Tailor series and neglect all but the first two terms
(eiqr ≈ 1 + iqr). These correspond to the electrodipole and
electroquadrupole terms that are of the zero and the first order
in a/λ. Calculation of the intensity for M as given by (6) leads
to

Is = k4
0a

6

9R2
0

|ε − 1|2 (16)

Ip = k4
0a

6

9R2
0

{
|ε − 1|2(n · n′)2 − [(n + n′) · ez]

× 3k0a

16
[(n · n′) − (n · n′)2]Re[(ε − 1)∗γ ]

}
. (17)

Here Ip and Is are the intensities of the diffracted light for
p and s polarizations of incident light, n and n′ are the wave
vectors of the incident and diffracted waves normalized to
unity: n = k/k0, n′ = k′/k0, ez is the unit vector along the
vortex axis.

In order to find the intensity of diffracted light for the
unpolarized incident light (we label it Inp), the intensity
should be averaged over the polarizations. Formally, it leads
to Inp = 1

2 (Is + Ip), where Inp ∼ σ . From Eqs. (16) and (17)
it is clear that the above calculation is consistent with the
phenomenological considerations.

In the conclusion of this section, we point out that the
nonreciprocal light diffraction was of the same order of
magnitude for both s and p polarizations of incident light in the
experiment.26 But within the used approach the nonreciprocal
contribution exists only for the p-polarized light. In the next
section we propose a more general theory that has no such
shortcoming.

V. PERTURBATION THEORY

A more exact solution of the problem is gained through
the perturbation theory based on condition (5). To account
for the electroquadrupole and magnetodipole terms, we need
to expand the solution up to the first order in a/λ. The
correction to the electrodipole term will be gained naturally.
Unlike in some simple models35 we cannot use the quasistatic
Maxwell equations here. Hence, our approach is based on the
approximations of the Maxwell equations

rot E = ik0H, (18)

rot H = −ik0ε̂E, (19)

div (ε̂E) = 0, (20)

div H = 0, (21)

which follow from the estimation

rot E ∼ E/a, (22)

rot H ∼ H/a. (23)

Next, we assume that the permittivity tensor is not large. Taking
into account that γ /ε � 1, we impose the condition on ε:
|ε| � λ/a [λ/a � 1 due to (5)]. Introducing a typical scale of
fields in the particle L ∼ λ/

√|ε| (for real ε L is the wavelength
in the medium, for imaginary ε it is the skin depth), we have

a � L2/λ. (24)

This condition along with Eq. (5) allows us to derive the
equations for the fields of zero and first order in a/λ from
Eqs. (18)–(21). These equations are derived inside and outside
the particle. The solutions are connected via the boundary
conditions

Ein
τ = Eout

τ , (25)

Ein
n = (ε̂E)out

n , (26)

Hin = Hout. (27)
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First, let us find the electric field inside the particle. As is
well known, in zero order in a/λ and in γ /ε the electric and
magnetic fields inside the particle have the form

E0,0
in = 3

ε + 2
E0, (28)

H0,0
in = H0 = n × E0. (29)

The first upper index in E0,0 and H0,0 is used to denote the
order in a/λ, the second index specifies the order in γ /ε.

The equation for E1,0 follows from Eqs. (18) and (22)

rot E1,0 = ik0H0,0. (30)

By solving this equation with a plane wave boundary condition
at the infinity we arrive at

E1,0
in = i

2
[(k · r)E0 − (E0 · r)k]

+ 5

2

i

2ε + 3
[(k · r)E0 + (E0 · r)k]. (31)

We now calculate the fields linear in the magnetic moment.
The equation for H0,1 is

rot H0,1 = 0, (32)

div H0,1 = 0, (33)

and, taking into account the zero boundary condition at the
infinity, we have H0,1 = 0.

Finally, the equations for E0,1 and E1,1 inside the particle
are very similar:

rot El,1 = 0, (34)

div{εEl,1 + iγ [El,0 × M(r)]} = 0, (35)

where l = 0,1. Using Eq. (34), the solution can be found as
El,1 = −∇ψl (r), where ψ is the scalar function that satisfies
the equation

�ψl = i
γ

ε
div[El,0 × M]. (36)

We should mention here that the equation for ψl outside the
particle is simply

�ψl = 0. (37)

The right-hand part of Eq. (36) may be treated as a charge
density distribution. Solving this equation we have

ψl
in = − i

4π

γ

ε

∫
V

div[El,0(r′) × M(r′)]
|r − r′| dV ′. (38)

Substitution of Eqs. (6), (28), and (31) in Eq. (38) yields a
partial solution to the nonhomogeneous equation (36) inside
the particle. The ψl

out function could be considered zero since
the equation defining it is already homogeneous. It should be
mentioned that the integral over the particle in the right-hand
part of Eq. (38) cannot be expressed as elementary functions.

In order to satisfy boundary conditions at the edge of the
particle we should add a complete solution to a homogeneous
equation

�ϕl = 0. (39)

The electric field is thereby defined as follows:

El,1 = −∇ψl − ∇ϕl. (40)

The solution to (39) is well known32 and reads

ϕl
out =

∞∑
m=0

m∑
n=−m

Gl
mnYmn

am+2

rm+1
, (41)

ϕl
in =

∞∑
m=0

m∑
n=−m

H l
mnYmn

rm

am−1
, (42)

inside and outside the particle correspondingly, taking into
account that ϕ is finite at r = 0 and ϕ → 0 at r → ∞. Here
Ymn are spherical functions. The coefficients Hl

mn that we need
to calculate the electric field inside the particle are found from
boundary conditions at the edge of the particle,

Hl
mn = iγ

∫
Y ∗

mn

[(
El,0

in × M
)
r
− ε(ψl)′r − l+1

a
ψl

]
d2�

(ε + 1)m + 1

∣∣∣∣∣
r=a

.

(43)

The integral here is taken over the boundary of the particle.
Substitution of l = 0,1 into Eq. (43) leads to the coefficients
H 0

mn and H 1
mn that define the electric field in zeroth and

first order in a/λ. Practically, we need to calculate only
H 0

1n,H
0
2n, and H1

1n in order to find the electrodipole, electro-
quadrupole, and magnetodipole moments of the particle.

The next step of our solution procedure is calculation of the
electric current density j that is related to the electric field32

j = − iω

4π
(ε̂ − 1̂)E. (44)

Substitution of (7) in (44) yields

jl,0 = − iω

4π
(ε − 1)El,0, (45)

jl,1 = − iω

4π
(ε − 1) El,1 + γω

4π
(El,0 × M). (46)

Knowing the electric current density distribution over the
particle, we can calculate the electric field of the diffracted
wave far from the diffracting particle36

Escat = ik2
0e

ik0R0−iωt

ωR0

∫
V

j (r) e−ik′rdV. (47)

We expand the expression e−ik′r in this formula in the
Tailor series and keep the first two terms (e−ik′r ≈ 1 − ik′r).
This expansion corresponds to the inclusion of the electro-
quadrupole, magnetodipole, and the first-order correction to
the electrodipole term. All of these terms have the same order
of magnitude in a/λ. The waves radiated by them all interfere
with the zero-order electrodipole radiation. There is no point
in separating them here.

Finally, for the electric field of the diffracted wave we have

Escat = ik2
0e

ik0R0−iωt

ωR0

∫
V

[(j0,0 + j1,0 + j0,1 + j1,1)

− i(r · k′)(j0,0 + j0,1)]dV, (48)

where j 0,0,j 1,0,j 0,1, and j 1,1 are determined by Eqs. (45) and
(46). We have earlier noted that the integral defining the electric
field inside the particle cannot be expressed as elementary
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functions; however, the double integral that appears in Eq. (48)
is taken by changing the integration order. Thus, Escat turns out
to be expressed as elementary functions, indeed.

The last step of the calculation is to find the intensity of
the diffracted light. Again, for two linear polarizations of the
incident light we get

Is = k4
0a

6

R2
0

∣∣∣∣ε − 1

ε + 2

∣∣∣∣
2 {

1 − [(n + n′) · ez]
πk0a

32
Re

(
6γ

2ε + 3

)}
, (49)

Ip = k4
0a

6

R2
0

∣∣∣∣ε − 1

ε + 2

∣∣∣∣
2 [

(n · n′)2 − {[n + n′] · ez}πk0a

32
Re

(
6γ

2ε + 3

{
(n · n′) + 5

ε − 1
[(n · n′) − (n · n′)2]

})]
. (50)

Equations (49) and (50) manifest that the nonreciprocal
contribution exists for both s- and p-polarized incident light.
For the p-polarized light they show a somewhat different
dependence on the angle between n and n′ from that yielded
by the Born approximation. These formulas are completely
consistent with the phenomenological considerations (Sec. II).

VI. DISCUSSION

In this section we give the calculations of Is and Ip depen-
dence on different system parameters and its analysis. First,
we take the constants and parameters that correspond to the
experiment.26 The wavelength is λ = 632.8 nm. The particle
is made of cobalt. At this wavelength cobalt absorbs light quite
well, so the permittivity ε is defined by the complex constants
ε = −12.6 + 18.6i,γ = 0.749 − 0.602i.33 The incident light
propagates along the vortex axis (n = −ez).

Generally, the particles used in the experiment26 are flat
(their thickness is much less than their lateral size), whereas
our theory is developed for a sphere. The most important scale
in this theory is the scale of variation of the Foucault current
density that the electromagnetic wave generates in the particle.
In a sphere it is obviously equal to the particle radius a. In a
flat disk the vortex electric current changes its direction at the
particle thickness length near edges (see Fig. 2). Therefore
the important scale here is the particle thickness. So we take
the particle diameter 2a = 30nm.

The dependence of calculated absolute and relative
nonreciprocal terms for s-polarized incident light de-
fined as �Is = Is(−M) − Is(M) and �Is/Is = 2(Is(−M) −
Is(M))/(Is(−M) + Is(M)) on the angle between n and n′ is
depicted in Fig. 3. Contributions of the electroquadrupole,

FIG. 2. (Color online) Foucault current density scale in (a) sphere
and (b) disk.

magnetodipole, and correction to the electrodipole term are
shown separately in the same figures. Figures 3(a) and 3(b)
are identical, which is caused by the fact that Is is independent
of the angle in the electrodipole approximation if the magnetic
moment is neglected. These pictures show that all three
contributions are of the same order of magnitude.

The dependence of calculated absolute and relative
nonreciprocal terms for p-polarized incident light de-
fined as �Ip = Ip(−M) − Ip(M) and �Ip/Ip = 2(Ip(−M) −
Ip(M))/(Ip(−M) + Ip(M)) on the angle between n and n′ is
represented in Fig. 4. We see that �Ip/Ip tends to infinity at
±π/2 which are the Brewster angles for small particle. Indeed,
Fig. 4(a) shows that �Ip tends to zero at these angles. However,
it could be convenient to observe the effect experimentally
in the vicinity of the Brewster angle. Analyzing different
contributions into �Ip, we see that the relative value of the
electrodipole term remains constant over the angle, while the
electroquadrupole and magnetodipole relative values lead to
the divergence of �Ip/Ip at the Brewster angles. These two
terms become dominating close to these angles, but far from
them all three terms are of the same order of value.

Comparison of Figs. 3 and 4 leads to the conclusion
that relative nonreciprocal contributions have equal values for
s- and p-polarized incident light at zero angle. The relative
value grows for p polarization when n′ is deflected from n

FIG. 3. (Color online) The dependence of nonreciprocity on the
angle between n and n′. The incident light is s polarized; n is parallel
to the vortex axis n = −ez. (a) Absolute value �Is . (b) Relative value
�Is/Is . Solid bold line (black online) represents the overall �Is , Solid
thin gray line (green online) shows the electrodipole contribution
into it, dashed line (blue online) displays the electroquadrupole term,
dotted line (red online) is the magnetodipole contribution.
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FIG. 4. (Color online) Same as Fig. 3 for p-polarized incident
wave. Vertical dot-and-dash lines correspond to the asymptotes of
relative nonreciprocity at ±π/2.

and decreases for s polarization, which explains the fact that
the effect is greater for p-polarized incident light than for
s polarized.

The linear dependence of relative nonreciprocal contribu-
tion into light diffraction for s- and p-polarized incident light
on particle size a is shown in Fig. 5 for the 30◦ angle between n
and n′. The important scales L2/λ and 1/k0 [see (5) and (24)]
calculated for the chosen parameters are approximately 25 and
100 nm. We see that 2a = 30 nm (that have been chosen as a
good approximation of the experimental setup) is of the order
of value of L2/λ here.

A plot of different contributions into the relative nonrecip-
rocal intensity term versus the dielectric constant ε for s- and
p-polarized incident light is depicted in Fig. 6. It is important
to note that ε is assumed real here, while the magnetic
contribution into ε̂ is defined by constant γ = 0.749 − 0.602i

that does not depend on ε. This leads to the divergence of
the relative nonreciprocal contribution for p polarization at
ε = 1 [Fig. 6(b)]. The absolute value of the intensity tends
to zero at this value of ε. Another divergence is observed
for both polarizations at ε = −3/2 and is explained by a
quadrupole resonance. However, adding absorption (which is
quite strong at a quadrupole resonance) will lead to degrading

FIG. 5. (Color online) The dependence of relative nonreciprocity
�I/I on the particle size a. The incident light is (a) s polarized,
(b) p polarized. n is parallel to the vortex axis n = −ez, angle
between n and n′ is 30◦. Solid bold line (black online) represents
the overall �I/I , Solid thin gray line (green online) shows the elec-
trodipole contribution into it, dashed line (blue online) displays the
electroquadrupole term, dotted line (red online) is the magnetodipole
contribution. Vertical dot-and-dash lines correspond to the size of
particle at which a = L2/λ, k0a = 1 consequently [see (5) and(24)].

FIG. 6. (Color online) The dependence of relative nonreciprocity
�I/I on the dielectric constant ε. The incident light is (a) s

polarized, (b) p polarized. n is parallel to the vortex axis n = −ez,
angle between n and n′ is 30◦. Solid bold line (black online)
represents the overall �I/I , Solid thin gray line (green online)
shows the electrodipole contribution into it, dashed line (blue online)
displays the electroquadrupole term, dotted line (red online) is the
magnetodipole contribution. Dot-and-dash lines correspond to the
asymptotes at ε = −3/2 and ε = 1.

of this singularity. Also the electroquadrupole term of zero
order in M is big here and thus should be taken into account.
It is important to note that there is no peculiarity at the
dielectric resonance ε = −2, which could be explained by
exactly the same singularity both in linear in magnetic moment
nonreciprocal term and in zero-order intensity.

Finally, we perform the calculation of the diffracted light
intensity for the direction of n′, particle size and dielectric
constants that correspond to the parameters of experimental
measurement.26 The diffracted light is deflected from the
vortex axis so that the angle between n and n′ is 30◦, other
constants are specified above. For these parameters we have
�Is/Is ≈ 6.8 × 10−3,�Ip/Ip ≈ 7.7 × 10−3. The experimen-
tal value of the effect is 2 × 10−3. So, we come to a conclusion
that although this calculation does not agree to the experiment
exactly it turns out to be a satisfactory fit. The difference could
be attributed to the triangle shape of the particle. Another
possible reason is that the particle radius a is nearly equal to
L2/λ [see (24)].

VII. CONCLUSION

We have solved the problem of light diffraction by a spheric
magnetic particle with the vortex magnetization distribution up
to the first order in the a/λ parameter. Our results show that the
vorticity-dependent nonreciprocal contribution in the intensity
of the diffracted light takes place for both s and p polarizations
of the incident light. The nonreciprocal term arises due to
the interference of the zero-order electrodipole radiation and
the first-order electrodipole, electroquadrupole, and magnetic
dipole radiation that linearly depends on the magnetic moment
of the particle. The estimations of the effect value for the
parameters of cobalt yield a relative value �I/I ∼ 7 × 10−3

that fits the experiment26 by an order of magnitude.
It should be noted that our approach can easily be expanded

to the next-order calculation, but generally it is not necessary
in order to gain an insight into the nature of these phenomena.
The method could also be easily modified to describe different
distributions of magnetization.
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