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On-site magnetization and entanglement
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For the antiferromagnetic J1-J2 quantum spin chain with an even number of sites, the point J d
2 = J1/2 is a

disorder point. It marks the onset of incommensurate real space correlations for J2 > J d
2 . At a distinct larger

value of J L
2 = 0.520 36(6)J1, the Lifshitz point, the peak in the static structure factor begins to move away from

k = π . Here, we focus on chains with an odd number of sites. In this case, the disorder point is also at J d
2 = J1/2

but the behavior close to the Lifshitz point, J L
2 � 0.538J1, is quite different: starting at J L

2 , the ground state goes
through a sequence of level crossings as its momentum changes away from k = π/2. An even length chain, on
the other hand, is gapped for any J2 > 0.24J1 and has the ground-state momentum k = 0. This gradual change
in the ground-state wave function for chains with an odd number of sites is reflected in a dramatic manner
directly in the ground-state on-site magnetization as well as in the bipartite von Neumann entanglement entropy.
Our results are based on DMRG calculations and variational calculations performed in a restricted Hilbert space
defined in the valence bond picture. In the vicinity of the point J2 = J1/2, we expect the variational results to be
very precise.
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I. INTRODUCTION

Disorder points were first discussed by Stephenson in mod-
els described by classical statistical mechanics.1–4 On one site
of a disorder point, the correlation function shows monotonic
decay, on the other oscillatory decay. Depending on how the
wavelength of the oscillation depends on the temperature,
one distinguishes between two kinds of disorder points. If
the wavelength of the oscillation depends on the temperature,
one speaks of a disorder point of the first kind, if it does not, one
speaks of a disorder point of the second kind.2 In the first stud-
ies, disorder points were found where the paramagnetic phase
of frustrated two-dimensional Ising models starts to show
incommensurate instead of commensurate behavior. In models
with competing commensurate and incommensurate order, one
might expect such a point to occur where the short-range
correlations with the largest correlation length change from
being commensurate to being incommensurate. Such a point
should then be associated with a cusp in the correlation length,
a fact that was quickly established.5 Schollwöck, Jolicoeur and
Garel first investigated disorder points in a quantum spin chain
for the bilinear-biquadratic S = 1 quantum spin chain,6 which
has H = cos θ

∑
Si · Si+1 + sin θ

∑
Si · Si+1. They pointed

out that the disorder point in this gapped quantum model
coincides with the AKLT point where tan θVBS = 1/3 and
the known ground state is a valence bond solid (VBS) with
correlation length ξ = 1/ ln(3). They also identified another
distinct point, the Lifshitz point, at tan θL = 1/2, where the
peak in the structure factor is displaced away from π due
to incommensurability effects. A third distinct point in this
S = 1 model, tan θdisp � 0.4, has also been located7 where the
minimum in the magnon dispersion shifts away from π and
the curvature (velocity) vanishes. These three points can be
distinct since no phase transition occurs and the correlation
length remains finite. Subsequently, it was confirmed8 that for
the S = 1/2 J1-J2 spin chain with Hamiltonian

H = J1

∑
i

Si · Si+1 + J2

∑
i

Si · Si+2, J1,J2 > 0 , (1)

the situation is similar. For the calculations presented in this
paper, we set J1 ≡ 1 and vary the remaining parameter J2.
The disorder point, with minimal correlation length (ξ � 0),
occurs at the Majumdar-Ghosh9 (MG) point, J d

2 = J1/2, and
the Lifshitz point at JL

2 = 0.520 36(6)J1.8

At the disorder points, the ground states of these two
quantum spin models share important features: the system
is gapped and an exact wave function is known. For both,
the momentum of the lowest excitations changes at a distinct
point. Yet, there are also important differences between the two
systems. While the S = 1 VBS state remains an exact state for
a chain with an odd number of spins, this is not the case for the
S = 1/2 J1-J2 chain at the MG point where no analytical
expression for the odd length ground-state wave function
is known. Moreover, the odd length J1-J2 chain is gapless
in the thermodynamic limit within the STot = 1/2 subspace,
and a large spin gap exists. The onset of incommensurability
effects for odd length chains must then be quite distinct from
the onset in even length chains. Here, we show that this is
indeed the case. While the disorder point remains unchanged,
the nature of the Lifshitz point, JL

2 � 0.538, is rather dif-
ferent. At JL

2 , a sequence of level crossings starts, changing
the ground-state momentum away from k = π/2. Although the
correlation length remains small, the change in ground-state
momentum induces pronounced oscillations directly in the
on-site magnetization as well as the entanglement entropy.
The modulations in the on-site magnetization are potentially
observable in experiments. This scenario is reminiscent of a
real Lifshitz transition10–13 in which the ground state becomes
modulated. The scaling of the entanglement entropy at Lifshitz
transitions recently has been the subject of interest.14,15

The S = 1/2 J1-J2 antiferromagnetic (AF) spin chain is
one of the simplest frustrated Heisenberg spin models, but it
has a rich phase diagram. The system undergoes a transition16

from a gapless Luttinger liquid to a dimerized phase at a
critical value of J c

2 = 0.241167J1.17–19 For even length chains,
the ground-state wave function at the MG point J2 = J1/2
is known to be formed by nearest-neighbor dimers.9,20,21
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FIG. 1. (Color online) The odd length J1-J2 chain. Two different
dimerization patterns are separated by a soliton.

It is twofold degenerate, corresponding to the two possible
nearest-neighbor dimerization patterns, indicated in Fig. 1. As
is evident from Fig. 1, an unpaired spin, a soliton22,23 can act as
a “domain wall” and separate regions of different dimerization
patterns. In the Luttinger liquid phase, unpaired spins are more
commonly called spinons since they do not act as domain
walls. Spin excitations in the even length chain correspond to
introducing two solitons, and it is known24 that in the vicinity
of the MG point, the solitons do not bind and a large spin
gap of � = 2�sol (at the MG point �sol/J1 = 0.1170(2))24

exists. The spin gap for even length chains is known to remain
sizable25,26 beyond JL

2 . The presence of a large soliton mass
�sol renders variational calculations based on a reduced Hilbert
space consisting of soliton states very precise;22,23 a fact that
we shall exploit here.

In contrast, for odd length chains it is not possible for the
chain to be fully dimerized and the ground-state wave function
is not known for any value of J2. An S = 1/2 soliton that
effectively behaves as a free particle27 is always present in the
ground state and gives rise to gapless excitations. Depending
on the quantity in question, odd and even length chains can
show very different behavior. Under open boundary conditions
(OBC), this has, for example, already been seen in the on-
site magnetization,24 the entanglement entropy,28,29 and the
negativity.30 As mentioned above, here we focus on odd length
chains.

While it is possible to perform highly precise density matrix
renormalization group (DMRG) calculations well beyond the
onset of incommensurability for even chains,25,26 the sequence
of level crossings that we encounter for odd length chains for
J2 > JL

2 significantly restrains the usefulness of the DMRG
technique in a large region of parameter space for J2 > JL

2 .
Fortunately, using the picture of Shastry and Sutherland,22 it
is possible to quite efficiently perform very precise variational
calculations for both open and periodic boundary conditions
(PBC). Here, we mainly present results of such variational
calculations and supplement them with DMRG results.

A number of spin-Peierls compounds, which to some extent
realize the J1-J2 spin chain, have been identified. One of the
most well known is CuGeO3.31 In these materials, impurities
often cut the chains at random points. Therefore both odd and
even length chains are present. A particular point of focus
has been the study of S = 1/2 solitons32–35 in these systems.
Thus our results might be directly verifiable if materials with
sufficiently large J2 > Jd

2 can be found.
The outline of the paper is as follows. In Sec. II, the

variational approach is described. Section III begins with
a presentation of our DMRG results for the correlation
functions, correlation lengths, and the structure factor. In
Sec. III A, we discuss our variational results for the J1-J2

with periodic boundary conditions and show the change in

ground-state momentum developing at the Lifshitz point.
Section III B contains variational and DMRG results for the
on-site magnetization and level crossings occurring with open
boundary conditions. Variational and DMRG results for the
entanglement entropy for a range of J2 for odd length chains
(OBC) are presented in Sec. IV and contrasted with results for
even length chains (OBC). Finally, estimates for the location
of the Lifshitz point are presented in Sec. V.

In the following, we shall take J1 ≡ 1. This leaves us with
only one parameter J2 that governs the properties of the system.

II. THE VARIATIONAL METHOD

Most of the results presented in this paper were generated
using variational calculations,22,23,28,30,36 i.e., the results were
obtained by minimizing the expectation value of the Hamilto-
nian within a reduced Hilbert space:

〈H 〉 = (ϕ|Hϕ)

(ϕ|ϕ)
, (2)

where

ϕ =
∑

cjϕj (3)

and the minimization is done with respect to the cj . To get
a good estimate of the true ground state of the system, it is
necessary that the ground state has a sizable projection onto
the subspace one diagonalizes in. The quality of the result
of a variational calculation thus depends very strongly on
the choice of subspace. Often one has to rely on physical
insight and intuition to choose well. For the J1-J2 model,
which we consider, the selection of an appropriate subspace is
straightforward as long as one stays in the dimerized phase. In
contrast, in the Luttinger liquid phase, selecting an appropriate
subspace seems intractable.

The first variational calculations on the J1-J2 model were
done in a space that we in the following shall call R0.22,23

It is spanned by the states in which there are domains that
have one of the two ground-state configurations of the MG
chain and which are separated by one soliton. Examples can
be seen in Figs. 1 and 2. The arrows in Fig. 2 serve to fix
the phase of the dimers that make up the ground state. Our
convention is such that if the arrow goes from site i to site
j , the spins are in the state: 1√

2
(|↑〉i |↓〉j − |↓〉i |↑〉j ). For a

chain with an odd number of sites, a set of single soliton states
can be generated by leaving the chain maximally dimerized
and taking the remaining site to be in the Sz=1/2 state. For
a chain with open boundary conditions, the soliton can only
reside on every second site. The dimension of this variational

(a)

(b)

FIG. 2. Two variational states used in the calculations within R0

for a chain with an odd number of sites. The arrows between sites are
used to fix the phase of the dimers (see main text).

094415-2



INCOMMENSURABILITY EFFECTS IN ODD LENGTH . . . PHYSICAL REVIEW B 87, 094415 (2013)

(a)

(b)

FIG. 3. Two variational states used in the calculations within R1

for a chain with an odd number of sites. The arrows between sites are
used to fix the phase of the dimers (see main text).

subspace is then D = (N + 1)/2. We use N to denote the
length of the chain. For calculations on odd length chains
with periodic boundary conditions, it is necessary to allow
a nearest-neighbor dimer across the boundary and to let the
soliton cross the boundary by going from site N to site 2. In
this case, R0 has dimension N and incorporates states with the
soliton at every site with the remaining spins paired in nearest
neighbor dimers. (For odd N and PBC, it becomes difficult to
distinguish the two dimerization patterns since they twist into
each other at the boundary. Still, the soliton clearly denotes a
domain wall between the two patterns.)

To improve upon R0, it is natural to act with the Hamiltonian
onto the space as doing this repeatedly generates a space that
contains the ground state if the starting space had any overlap
with and all symmetries of the ground state. It was shown
that acting onto R0 with the Hamiltonian only once is at
the MG point already enough to make the calculation almost
exact.23 For the J1-J2 model with J2 	= 0.5J1, the linearly
independent states generated by acting with the Hamiltonian
onto R0 fall into three classes, each of which corresponds
to a variational subspace. (1) The variational space R0 itself.
(2) The variational space R1 which is spanned by states in
which sites to the left and right of the soliton are connected by
a valence bond. Pictorial representations of example states are
shown in Fig. 3. (3) The variational space R2 which is spanned
by states in which two neighboring sites are in a valence bond
with their next-nearest neighbor. These states are generated by
the action of the nearest-neighbor-terms and the next-nearest
neighbor terms in the Hamiltonian on adjacent dimers in the
states in R0. Pictorial representations of example-states are
shown in Fig. 4. In the case of the MG chain, J1 and J2 are

(a)

(b)

(c)

FIG. 4. Three states that are generated by acting with the
Hamiltonian onto R0. The arrows between sites are used to fix the
phase of the dimers (see main text).

balanced in such a way that these states are not generated
because they occur with a weight of 2J2 − J1.

The number of states in R0 and R1 scales linearly with
the size of the chain, whereas the number of states in R2

scales quadratically. Due to computational cost, we have thus
not found it practical to use the union of the three as the
variational subspace for chains longer than 101 sites. We
performed calculations using the union of R0 and R1 (in the
following called Zs) for chains up to 1001 and the union of all
three (in the following called Zb) for a chain of 101 sites. In
this way, we could go to long chains and also check the validity
through the comparison at N = 101. We found that while there
were small quantitative differences between calculations done
in Zs and Zb, the overall qualitative features of the results
where the same. Therefore we chose to use Zs , the union of
R0 and R1, or just R0 for the variational calculations shown in
this paper.

All the states in these spaces have STot
z := ∑

i S
i
z = 1/2.

We could equally well have worked in the STot
z = −1/2 space.

States of higher total spin are of little importance to the low-
energy physics since they contain more solitons and are thus
gapped by at least twice the soliton mass �sol. Since �sol

is sizable24 in the regime of our study, such states can be
disregarded for both odd and even N .

A variational description of a chain with an even number
of sites can be done along the same lines. Again, the states
are chosen in order to leave all but two spins in the favored
dimerized state. In this way, one can gain insight into the
low-energy singlet as well as triplet excitations by choosing
the two spins to be in singlet or the triplet states, respectively.

If one considers a subspace with an orthogonal basis, one
can just diagonalize the Hamiltonian. While an easy way to
orthogonalize R0 is known,27 this is generally not true for other
subspaces. Importantly, for R1, no such method is known. We
thus have to solve the generalized eigenvalue problem given
by

H 
ϕ = λ B 
ϕ , (4)

where Hij := (ϕi |Hϕj ) and Bij := (ϕi |ϕj ). Such generalized-
eigenvalue problems can be solved numerically by standard
routines. We calculate H and B by evaluating their defining
expressions. This is possible because for valence-bond states
the action of H on them as well as the overlap between them
can straightforwardly be calculated in an automated manner.
How to do all other calculations necessary to get the results
presented in this paper has already been described in an earlier
publication.30 We took the coefficients cj in Eq. (3) to be real.
Also for PBC, the resulting wave function is not an eigenstate
of the translational operator, which would have required the
use of complex cj ’s. Effectively, we obtain states that are
linear combinations of translationally invariant states with k

and −k, degenerate in energy. While this has no bearing on
the obtained energies, it does affect real-space quantities like
the on-site magnetization and entanglement, which cannot be
translational invariant.

III. THE INCOMMENSURATE BEHAVIOR

Previous numerical studies of disorder points in S =
1/28,17,25,26,37,38 and S = 16,7,39–41 quantum spin chains have

094415-3



ANDREAS DESCHNER AND ERIK S. SØRENSEN PHYSICAL REVIEW B 87, 094415 (2013)

concentrated on the behavior of even length chains. For the
S = 1/2 J1-J2 chain, it has been shown that the disorder point
of this one-dimensional quantum system can be understood as
a 1 + 1 dimensional classical disorder point. In particular, it
was shown42–44 that in the “commensurate” region of the phase
diagram the correlation function behaves asymptotically, with
r � ξ , as

〈SiSi+r〉 ∼ (−1)r
e−r/ξ

√
r

, (5)

and in the “incommensurate” region of the phase diagram as

〈SiSi+r〉 ∼ (−1)r
e−r/ξ

√
r

cos [(q − π )r + φ] . (6)

Here, q is the wave vector of the incommensurate correlations
and φ a phase shift. However, right at the disorder point
separating commensurate and incommensurate correlations
the correlation function is asymptotically purely exponential:

〈SiSi+r〉 ∼ (−1)re−r/ξ . (7)

For these quantum spin models it appears that this purely
exponential behavior is in part connected to the fact that
the ground state is an exact nearest-neighbor dimer state.
Interestingly, as we shall see, the correlation functions at the
MG point for odd length chains display the same behavior
in the absence of a unique nearest-neighbor dimer ground
state. Furthermore, it is known42,43 that as the disorder point is
approached from the commensurate side, the derivative of the
correlation length with respect to the driving coupling becomes
infinite, while it is finite on the incommensurate side. It is also
known that the disorder point has special degeneracies that
are exact for any system size N . For instance, for the J1-J2

chain with periodic boundary conditions and an even length,
the two dimerization patterns are degenerate at the disorder
point while their symmetric and antisymmetric combinations
are split with an exponentially small gap away from this point.

We now present our results for the incommensurate effects
in odd length S = 1/2 J1-J2 chains. Our first point of focus
is the location of the disorder point. As stressed above, when
N is odd, the nearest-neighbor dimer wave function is not an
exact solution,22 and there are also no special degeneracies.
There is therefore no reason to expect that the behavior of
the correlation length at the MG point is in any way unique.
However, as we shall see, it is unique indeed. DMRG results for
C(r) = 〈SiSi+r〉 for an open chain with N = 201 are shown
in Fig. 5(a) for J2 = 0.5 and 0.51. The correlation function
follows a purely exponential decay at the MG point, J2 = 0.5,
with a finite correlation length:

ξMG ∼ 2.8 (odd N ). (8)

Distant spins in odd chains are correlated even at the MG point,
because the soliton is present in the chain. The correlations can
be thought of as correlations in the soliton wave function.
Secondly, as can be seen in Fig. 5(a), incommensurate
correlations are clearly present for J2 = 0.51. They were
present in every calculation we performed with J2 > 0.5. We
conclude that the disorder point remains at J2 = J1/2, albeit
with a finite correlation length compared to the case of even
N where the correlation length is nominally zero.

FIG. 5. (Color online) (a) The spin-spin correlation function
C(r) = 〈SiSi+r〉 for a chain with 201 sites and J2 = 0.5,0.51. The
correlation length (b) and the static structure factor (c) for chains
with an odd (201) or an even (200) number of sites. The data were
obtained with DMRG. Open boundary conditions were employed
and m = 256 states kept. For both, odd and even length chains,
the correlation length displays a minimum at the MG point. The
static structure factors of odd and even are shown for J2 = 0.51 and
J2 = 0.57. The maximum remains at q = π until the Lifshitz point
is crossed (not shown in figure).

The precise behavior of the correlation length around the
disorder point J2 = 1/2 appears to have been studied neither
for even length nor for odd length chains. Results for larger
J2 > 0.6 are available for even N .26 By fitting DMRG results
for chains of 200 and 201 sites to the forms of Eqs. (5) and (6)
we have determined ξ as a function of J2 for both even and odd
N [see Fig. 5(b)]. The results for the even and the odd length
chain are remarkably similar. At the disorder point, there is a
discontinuity in the slope of ξ and on the commensurate side
the slope of ξ approaches −∞. We found that close to the
disorder point in the commensurate region combined forms
like |C(r)| ∼ C exp(−r/ξC)/

√
r + D exp(−r/ξD) with ξC >

ξD fit the data better than the single forms of Eqs. (5) and (6)
because the dominant short-ranged correlations change at the
disorder point. The results presented in Fig. 5 do not use such
combined forms. We also note that for odd N and for a range of
J2 > 0.538 it becomes very difficult to obtain reliable DMRG
results due to the appearance of many almost degenerate states.

The structure factor for even chains has been studied in
some detail previously,8,17 and the Lifshitz point has been
located, JL

2 = 0.520 36(6)J1.8 Our DMRG results are shown
in Fig. 5(c). In agreement with previous studies for even N ,
we observe that the maximum in the structure factor remains
at q = π for J2 = 0.51 but has clearly moved away from
π at J2 = 0.57. This is clearly also the case for odd N .
Due to the above mentioned difficulties in obtaining reliable
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DMRG results for odd N and J2 > 0.538, we have not been
able to determine the precise point where the peak in the
structure factor is displaced from q = π . Using the variational
techniques outlined above, it is possible to understand in detail
what happens close to J2 � 0.538.

A. Variational results in periodic boundary conditions

We now turn to a discussion of our variational results
obtained using the method outlined in Sec. II. We begin
by focusing on the case of odd length chains and periodic
boundary conditions. The case of open boundary conditions
will be the subject of the next section. The results shown in
this subsection were obtained using the space R0 (see Sec. II),
consisting of all single soliton states with STot

z = 1/2.
At the MG point, the spectrum of the J1-J2 model has been

studied extensively. The feature that is most important to us
is the low-lying dispersive line that is well separated from the
continuum24 and roughly follows a cosine as found in previous
variational studies:22,45

E(k) = 1
8 [5 + 4 cos(2k) − 3N ]. (9)

Our variational method reproduces this estimate and agrees
well with the low-energy data of an exact diagonalization of
a chain of 23 sites (see Fig. 6). It may be surprising that
the minimum of the dispersion relation is not at k = π but
at k = π/2. This is a natural consequence of the effective
doubling of the unit cell that occurs because the action of the
Hamiltonian displaces the soliton by two sites.

One of the strengths of the variational method is that within
the limits of the approximation it is possible to easily access
not only the ground state but also the entire energy spectrum
within the subspace of STot

z = 1/2 states. Computing the
spectrum through the transition region reveals very surprising
behavior (see Fig. 7). All the states are twofold degenerate
corresponding to the energetically degenerate k and −k. As
one approaches the transition, the excited states linearly move
closer and closer to the ground state. At the Lifshitz point
JL

2 ≈ 0.53, the energy of the first excited state crosses the

FIG. 6. (Color online) Comparison of the estimate by Shastry
and Sutherland,22 the variational method and exact diagonalization
(ED) data.24 Data were taken for a chain with 23 sites and J2 = 0.5.
Only the lowest energy of a spin 1/2 excitation for every momentum
is shown. The deviations to ED occur at higher energies where the
dispersive mode enters the continuum and the variational calculation
is only of limited value.

FIG. 7. (Color online) The excitation spectrum with periodic
boundary conditions in the variational subspace with STot

z = 1/2. The
energies of the first few excited states are shown. The ground-state
energy was set to zero. The energies of the excited states approaches
the ground-state energy until, at J2 = J L

2 , level crossings start to
occur. All energy levels are doubly degenerate. The data were taken
for a chain with 401 sites.

ground-state energy. This level crossing marks the first shift in
the ground-state momentum and is followed by a series of other
level crossings at larger J2 that further shift the ground-state
momentum. Clearly, the presence of the many adjacent level
crossings hinders the effectiveness of DMRG calculations.

This is in stark contrast to the spectrum of even length
chains—the ground state of even length chains is exactly
twofold degenerate at the MG point for any N , whereas
for larger J2, the symmetric and antisymmetric combinations
are split with an exponentially small gap in N . The excited
states are separated from these two states by a large gap
of approximately 2�sol. This gap persists throughout the
transition region and no level crossings are observed.17,26

It is very instructive to look at how the dispersion relation in
Fig. 6 evolves with J2. As can be seen in Fig. 8, the dispersion
relation changes its shape when J2 is increased. The minimum
at k = π/2 first becomes flat very close to J2 = 0.53 and then
becomes a local maximum. In the process, two minima are

FIG. 8. (Color online) Dispersion relation for varying J2. The
data were taken for a chain with 401 sites. To avoid cluttering,
the dispersion relations for the smaller two J2 were shifted. As J2

is increased, the minimum first flattens and then turns into a local
maximum.
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FIG. 9. (Color online) The second-order coefficient of the dis-
persion relation c changes sign [(a) and (b)], while the forth-order
coefficient d stays positive (b). The data are results off a fit to data of
the kind shown in Fig. 8. The dotted horizontal line in (a) separates
positive from negative values.

created, which move away from k = π/2 with increasing J2.
The ground-state momentum is then clearly changing away
from k = π/2 beyond J2 = 0.53 and we may identify the
point where this happens with a real Lifshitz transition11,46–50

as opposed to the corresponding point in the S = 1 bilinear
biquadratic chain where the ground-state momentum remains
unchanged and the shift is in the excited magnon dispersion.
Due to the shift in the ground-state momentum, we conclude
that the maximum of the structure factor will shift away from
k = π at the same point. This is consistent with the data
in Fig. 5. We therefore in the following refer to this point
as the Lifshitz point JL

2 . The precise behavior of the dispersion
relation close to JL

2 is analyzed in Fig. 9. For a range of J2,
we fitted the dispersion relation to the form7

E(k) = E(k0) + c

2
(k − k0)2 + d

24
(k − k0)4 (10)

and confirmed that the second-order coefficient c changes its
sign at a J2 close to 0.53, while the fourth-order coefficient d

stays positive (see Fig. 9). This behavior is typical of a Lifshitz
transition and if the coefficient c = v2/�sol is associated with
a velocity v, the Lifshitz point signals the vanishing of this
velocity.7

The variational calculations with periodic boundary condi-
tions presented in this section were limited to the subspace R0

described in Sec. II. This basis only includes nearest-neighbor
valence bonds and it is quite noteworthy that the physics of
the Lifshitz point along with the associated level crossings are
captured within this simple basis set. However, as we discuss
in Sec. V, we do not expect the precise location of the Lifshitz
point to be accurately determined within R0.

B. Open boundary conditions

In materials that realize the J1-J2 spin chain, impurities
are always present. They often act as nonmagnetic impurities
effectively breaking the linear chains into finite segments.
The use of open boundary conditions is therefore closer to
the experimental situation than the use of periodic boundary
conditions. Furthermore, it is natural to expect half of the

FIG. 10. (Color online) The on-site magnetization at a range of
values of J2 for N = 601 sites. Additional structure appears beyond
J L

2 . For J2 = 0, J c
2 , 1, and ∞ DMRG data (obtained with m =

256 states kept) are shown (red). For the remaining J2 variational
calculations are shown (blue).

chain segments to have an odd number of sites. In this
section, we therefore focus on odd length chains with open
boundary conditions. In particular, we describe the change that
switching from periodic to open boundary conditions causes.
The variational results shown in this section were obtained
using the space Zs (see Sec. II).

One quantity that very directly shows the qualitative
difference between PBC and OBC is the ground-state on-site
or local magnetization 〈Sz

i 〉, which is of importance to, for
instance, NMR measurements.32,33 Figure 10 shows the on-site
magnetization at eight different values of the frustrating
interaction J2 between J2 = 0 and J2 = ∞ in a chain of
601 sites. Figures 10(c)–10(f) show variational calculations
through the Lifshitz point JL

2 where DMRG calculations are
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less effective, the remaining results, Figs. 10(a), 10(b), 10(g),
and 10(h), are obtained with DMRG.

a. The Luttinger liquid phase (J2 � J c
2 ). The transition to

the dimerized phase occurs at J c
2 , see Fig. 10(b). At this point,

as well as throughout the Luttinger liquid phase (J2 < Jc
2 ), the

on-site magnetization agrees very well with the prediction for
the on-site magnetization in the ground state with STot

z = 1/2
from conformal field theory:51

〈
Sz

i

〉 = C(−1)i
√

π

2N
sin

(
πi

N

)
+ 1

2N
, (11)

where C is a constant. In this phase, 〈Sz
i 〉 increases with the

characteristic behavior 〈Sz
i 〉 ∼ √

i for small i close to the
boundary.

b. Dimerized phase with J2 < JL
2 . Once the dimerized

phase is entered, 〈Sz
i 〉 is drastically altered. The on-site

magnetization roughly follows the behavior of a massive
particle in a box28 with 〈Sz

i 〉 ∼ i2 close to the boundary. This
behavior is visible at the MG point [see Fig. 10(c)]. As J2 is
increased beyond the MG point towards the Lifshitz point, JL

2 ,
the central peak sharpens [see Fig. 10(d)].

c. “Incommensurate” phase J2 > JL
2 . At the Lifshitz

point, there is another dramatic change in 〈Sz
i 〉: additional

maxima develop and the magnetization is modulated by an
oscillating function [see Fig. 10(e)]. Upon increasing J2

further, more such maxima form and the wavelength of the
modulation decreases [see Figs. 10(f) and 10(g)]. If J2 is
fine-tuned for a given N , it is possible to find a point where
two maxima occur in 〈Sz

i 〉, then three maxima, and so forth.
It is natural to expect this behavior based on the results

for PBC presented in Sec. III A. The local magnetization is
effectively modulated with the momentum of the ground state.
The running wave found under periodic boundary conditions is
converted to a standing wave under open boundary conditions.
Then, as the momentum of the ground states changes with
growing J2, the wavelength of the modulation shrinks. Finally,
in Fig. 10(h), we show results for J2 → ∞. In this limit, the
odd length chain with N sites is split into two chains with
(N − 1)/2 and (N + 1)/2 sites, one of which will have an even
number of sites and hence 〈Sz

i 〉 ≡ 0. The on-site magnetization
of the other chain can be found by calculating 〈Sz

i 〉 for a chain
with J2 = 0 of the same length. The results shown in Fig. 10(h)
were obtained in this way, i.e., from data for a chain with
N = 301 and J2 = 0 that was then interspersed with zeros
from the half of the chain that had an even number of sites.

To estimate the wavelength of the incommensurate mod-
ulation, we make use of the fact that, if our system had
translational invariance, the distance between maxima in the
on-site magnetization would be equal to half of the wavelength,
as indicated in Fig. 10(e). Thus, by calculating the mean
distance of the central maxima, we are able to determine an es-
timate for the wavelength of the incommensurate modulation.
The inverse of this quantity can then be used to calculate the
wave number, qest = 2π/λest. In Fig. 11(a), we show how qest

varies with J2 for four chains whose length ranges from 301
to 1001 sites.

Since the incommensurate behavior can only be seen if the
wavelength is shorter than the system, it starts later in smaller
chains. Aside from small deviations, which can be attributed

FIG. 11. (Color online) The wave number qest against J2. Data
are shown for four chains of different length (a) and with the result
of a fit qest = 1.2062 	(J2 − 0.528)(J2 − 0.528)0.4806 for a chain of
601 sites (b).

to finite size effects, the wavelength does only depend on
J2 and not the length of the chain [see Fig. 11(a)]. In the
limit of infinite J2, the next-neighbor interaction J1 can be
neglected and the chain be partitioned into two subchains that
do not interact. As mentioned, the J1-J2 model in this limit
approaches two uncoupled chains with intrachain coupling J2.
The wavelength of the incommensurate behavior in this limit
reaches its minimum with λ = 4 lattice spacings.

For J2 > JL
2 , one expects the wave number q to behave as

q ∝ (J2 − JL
2 )α , where 0 < α < 1.6 In a study of correlations

functions around the disorder point in the S = 1/2 J1-J2 model
with an even number of sites and modified interactions on the
edge of the chain, the exponent was reported to have been
calculated to be α = 1/2.52 This is consistent with calculations
on classical Lifshitz points,11,46 which at the mean-field level
find α = 1/2. In the present case, where the ground-state
momentum is changing, one might also expect corrections
to the mean-field value of α = 1/2 as described in Refs. 11
and 46.

Our calculations indeed confirm that qest(J2) follows a
power law with exponent smaller than 1 [see Fig. 11(b)].
The line in Fig. 11(b) is a fit of the three-parameter function
f (x) = c1	(x − c2)|x − c2|α , where 	(x) is the Heaviside
step function, to the blue data points also shown in the plot.
Using this form, we find a value for the exponent α = 0.4806.
The data in Fig. 11 show steplike features. The cause of
the steps is the introduction of new maxima: every time
a new maximum appears, qest jumps abruptly in order to
accommodate the new maximum and there is a step. Between
the appearance of new maxima, the maxima that are present
move closer together and qest increases smoothly. As one
increases the system size, this effect affects the mean distance
between maxima less and thus leads to less pronounced steps.
Due to the different range of J2 values, the steplike features
explained above are more pronounced in Fig. 11(b) than in
Fig. 11(a). Because of the inaccuracies, the steplike features
introduce to the fitting procedure, we cannot comment on
whether or not the corrections mentioned above are necessary.

While the on-site magnetization could relatively easily be
understood from the results obtained with PBC, this is not
the case for the energy spectrum. To the left of the transition
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FIG. 12. (Color online) The excitation spectrum with open
boundary conditions in the variational subspace with STot

z = 1/2. The
energies of the first few excited states are shown. The ground-state
energy was set to zero. The values at which the scaling with N is
studied in Fig. 14 are indicated by dashed vertical lines. The data
were taken for a chain with 601 sites.

(J2 < JL
2 ), the spectrum for OBC (see Fig. 12) looks exactly

like the spectrum for PBC (see Fig. 7)—yet there is an
important difference: the spectrum for OBC is not degenerate.
Introducing the boundary splits the degenerate states. On
the other side of the transition (J2 > JL

2 ), the behavior
of the energy of the first excited state also looks familiar:
it hits the ground-state energy, grows, approaches it again, and
another level crossing occurs. Repeated level crossings of just
the two states follow. Higher-excitation levels, however, do not
cross many other levels as they do for PBC. They approach the
ground state, then turn around and form a pair with the state
they would have been degenerate with under PBC. The two
states exhibit a repeated pattern of intertwining level crossings,
while their mean energy difference to the ground state grows.
We do not know of an intuitive way of understanding the
spectrum for OBC from the spectrum with PBC. Modifying
the couplings at the boundary of the chain by a multiplicative
factor of λ and varying λ between 0 and 1, we have studied the
crossover from PBC to OBC. A low-energy spectrum similar
to the one for OBC is observed until λ ≈ 0.9.

It is reasonable to ask if the Lifshitz point is a well defined
point in the spectrum. In order to answer this question, we show
results in Fig. 13 for chains of length 301 and 451 sites for a
range of J2 close to JL

2 . As can be clearly seen, the turnarounds
of the higher energy levels occur much closer to the first level
crossing of the ground state for N = 451 than for N = 301.
In the thermodynamic limit we expect the turnarounds for all
higher lying levels to occur at JL

2 .
We next focus on the scaling of the energy levels with N .

In Fig. 14(a), we show data for N2En taken at J2 = 0.526, to
the left of the transition as indicated in Figs. 12 and 13. As can
be seen, it converges to a constant value indicating that for this
value of J2 En ∝ N−2. For the first excited state, this behavior
is apparent for quite short chains already and it seems plausible
that for higher-excited states longer chains would lead to the
same decay proportional to N−2. This scaling is not surprising
since the soliton behaves like a massive particle in a box. We
therefore expect the low-energy spectrum to be approximated

FIG. 13. (Color online) Spectrum with open boundary conditions
for chains of 301 and 451 sites. The values at which the scaling with
N is studied in Fig. 14 are indicated by dashed vertical lines.

by h̄2k2/(2�sol) with k = πn/2N , n = 1,2, . . ., yielding the
expected scaling of the energies as N−2.

In Fig. 14(b), we show data taken on the other side of
JL

2 at J2 = 0.531 (again indicated in Fig. 12 and 13). For
the smallest N shown, the higher excited states still show
signs of the transition at this value of J2. For short chains the
second, third, forth, and fifth excited states thus have minimum
in Fig. 14(b). For chains with more than roughly 160 sites,
we see of intertwining pairs of states familiar from Figs. 12
and 13. The average energy of the pair at big N also scales
proportionally to N−2. We therefore conclude that sufficiently
far away from the transition point, for the first few energy
states, �En ∝ J2/N

2.
In order to study the scaling of the spectrum at the Lifshitz

point JL
2 , we focus on the minimum in the second excited

state. Although this minimum occurs at slightly different J2,
as N is varied, it serves as the best possible definition of
an excited energy scale at the Lifshitz point. Specifically, we
define the minimal energy difference of the ground and the
second excited states as Emin

2 = minJ2 (E2 − E0). Our results
for Emin

2 are shown in Fig. 15. As can be clearly seen in this

FIG. 14. (Color online) The energy scales proportionally to N−2.
Plot of N 2�En to the left of the transition (a) and to the right of the
transition (b) for the first five excited states.

094415-8



INCOMMENSURABILITY EFFECTS IN ODD LENGTH . . . PHYSICAL REVIEW B 87, 094415 (2013)

FIG. 15. (Color online) The energy at which the second excited
state turns around goes to zero faster than N−2. The value of J2 of
Emin

2 was found up to �J2 = 10−5. The resulting uncertainty of the
value of the minimum energy is smaller than the size of the symbols
in the plot.

figure, Emin
2 goes to zero faster than N−2 violating the simple

scaling found elsewhere.
We now turn to an estimate of the location of JL

2 within the
variational approach. The level crossing of the first excited and
the ground state allows for an easy way to define the value of
JL

2 for a given N . As one could already see in Figs. 12 and 13,
JL

2 varies slightly with the length of the chain. Our results are
shown in Fig. 16 for chains out to N = 701. The main panel in
Fig. 16 shows that JL

2 converges to approximately JL
2 = 0.528

as one increases the length of the chain.
The value of J2 at which the second excited state has its

minimum also approaches JL
2 . To show this, we use the value

of J2 at which the nth state reaches its first minimum for a
given N . We call this quantity Cn. The inset in Fig. 16 shows
�C21 = C2 − JL

2 . As can be seen, this quantity approaches 0
and the minimum for big N thus lies at the Lifshitz point.

FIG. 16. (Color online) J L
2 as a function of the length of the chain.

(Inset) The difference between J L
2 and the C2 at which the minimum

of the second excited state occurs. All values were determined up to
�J2 = 10−5. The resulting uncertainty of the value of the minimum
energy is smaller than the size of the symbols in the plot and causes
deviations from very smooth behavior.

IV. INCOMMENSURATE BEHAVIOR IN THE
ENTANGLEMENT ENTROPY

The scaling of the entanglement entropy at a (quantum)
Lifshitz transition has recently been the subject of interest.14,15

In free fermion models, analogous to the spin chain model
discussed here, the Lifshitz transition is associated with
a change in the topology of the Fermi surface. In one
dimension, new Fermi points appear at the Lifshitz transition
and, analogously, new patches appear in higher dimensional
models. If one associates a chiral conformal field theory with
each patch, it can be argued53 that, when the number of points
(patches) increases by a factor K , the entanglement should
be multiplied with the same factor K . For a free fermion
model with next-nearest-neighbor hopping, t2, one expects
the number of Fermi points to double at the Lifshitz transition
tL2 = 1/2 at half-filling with a corresponding doubling in the
entanglement entropy. This behavior is well confirmed in
numerical calculations.15

In this section, we discuss our results for the entanglement
entropy across the Lifshitz point in the odd length J1-J2

quantum spin chain which is the quantum spin analog of
the model considered in Ref. 15. We study the entanglement
in terms of the von Neumann entanglement entropy of a
subsystem A of size l and reduced density-matrix ρA defined
by54,55

S(l,N ) ≡ −Tr(ρA ln ρA) , (12)

where N again stands for the total system size. We consider
exclusively open boundary conditions.

FIG. 17. (Color online) The entanglement entropy of a bipartition
of an odd chain. The data were taken for chain of 301 sites and the
variational subspace R0 (see Sec. II) was used.
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If one uses the restricted space R0, which was introduced in
Sec. II, as the variational subspace, one can also calculate
the entanglement entropy using the method employed in
this paper.28 Away from MG and Lifshitz points, where
the variational method is not reliable, we complement the
variational results with DMRG calculations.

We first discuss the variational results for odd length chains
close to the Lifshitz point shown in Fig. 17 for N = 301. The
entanglement entropy at the MG point for the odd length chain,
shown in Fig. 17(a), has previously been discussed in detail.28

Since the entanglement entropy is very directly connected to
the wave function of the state, drastic changes of the wave
function should also be present in the entanglement entropy
when the Lifshitz point is reached. This is clearly the case as
can be seen in Fig. 17. As the Lifshitz point, JL

2 , is reached, the
entanglement entropy develops plateaus [see Fig. 17(c)]. As
J2 is increased more plateaus appear [see Fig. 17(d)]. For the
free fermion model studied in Ref. 15, analogous oscillations
in the entanglement entropy are observed beyond t2 > 1/2.
Because a different subspace was used in the previous parts of
this paper, the transition begins at J2 ∼ 0.529, which is slightly
higher than J2 ∼ 0.528, which could be inferred from Fig. 13.

For an even length system, no such plateaus are visible [see
Fig. 18(a)]. As J2 → ∞ the entanglement increases towards

(a) Even number of sites

(b) Odd number of sites

FIG. 18. (Color online) The entanglement entropy of a bipartition
of an even chain (200 sites) (a) and an odd chain (201 sites) (b). The
data were obtained using DMRG with m = 256 states kept.

that of two independent gapless Heisenberg chains as it must.
A similar increase is seen for an odd number of sites but
with pronounced signatures of the incommensurability [see
Fig. 18(b)].

V. THE TRANSITION POINT

The numerical value of JL
2 for the Lifshitz point depends

not only on the length of the chain but also on the basis set that
one uses in the variational calculation. While this is a small
concern when one looks at qualitative features, it is of course
detrimental if one is interested in a precise estimate of the
Lifshitz point. Just using the different basis sets introduced in
Sec. II, this is evident. Using the smallest basis, R0, for a chain
with N = 301 sites, we obtained JL

2 ≈ 0.5295 (see Fig. 17) for
the onset of oscillations in the entanglement. This is a slightly
bigger value than what was found in Fig. 13, JL

2 ≈ 0.528,
based on the calculations with the larger basis Zs .

DMRG can give us a more reliable estimate for JL
2 at

least for small chains. For a chain with 201 sites, we found
the first indications of incommensurate behavior in the local
magnetization at

JL
2 ≈ 0.538(1). (13)

We expect this estimate to depend on N in roughly the
same way as the variational estimate does in Fig. 16. If this
is the case, an eventual extrapolation to the N → ∞ limit
might change this estimate by 0.0005, which is smaller than
the uncertainty to which we have determined the point.

VI. CONCLUSION

We have studied incommensurability effects as they occur
in the odd length antiferromagnetic J1-J2 chain. Even though
no exact ground-state wave function is known at the MG
point, J2 = J1/2, this point is the disorder point with minimal
correlation length. The Lifshitz point JL

2 = 0.538J1 marks
the onset of significant modulations directly in the ground
state 〈Sz

i 〉 as well as a shift in the ground-state momentum. A
series of intertwining level crossings causing the shift in the
ground-state momentum starts at the Lifshitz point. The shift
in the ground-state momentum and the associated modulations
directly affect the entanglement entropy, which shows distinct
plateaus developing for J2 > JL

2 .
In realistic compounds with chain breaking impurities, one

would expect half the chain segments to be of odd length. The
experimentally well studied compound CuGeO3 has a J2 ∼
0.36J1 < J1/2.56 If compounds with a J2 in excess of J1/2
can be identified, it would be very interesting to experimentally
look for the odd length effects that we have detailed here. In
particular, the effects on the on-site magnetization shown in
Fig. 10 might be observable using NMR techniques or other
local probes.
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Rev. B 60, 9468 (1999).

36C. Zeng and J. B. Parkinson, Phys. Rev. B 51, 11609 (1995).
37K. Nomura and K. Okamoto, J. Phys. Soc. Jpn. 62, 1123

(1993).
38K. Nomura and K. Okamoto, J. Phys. A 27, 5773 (1994).
39A. Kolezhuk, R. Roth, and U. Schollwöck, Phys. Rev. Lett. 77, 5142
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