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Anisotropic magnetothermal resistance in Ni nanowires
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We present measurements of the electrical and thermal transport properties of individual Ni nanowires as a
function of the applied magnetic field, recorded in the temperature range between 78 and 380 K. In analogy to
the anisotropic magnetoresistance (AMR) effect observed in ferromagnetic conductors, we find that the thermal
resistance of Ni nanowires depends on the angle between magnetization vector and current direction. This
anisotropic magnetothermal resistance effect turns out to be weaker than the AMR effect in Ni nanowires over
the temperature range investigated. As a consequence, also the Lorenz number is found to be anisotropic with
respect to the magnetization direction. To explain our observation, we propose a simple model that considers
spin mixing due to electron-magnon scattering.
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I. INTRODUCTION

In ferromagnetic metals the electrical resistivity depends
on the direction of the current relative to the magnetization
vector.1 This effect is known as anisotropic magnetoresistance
(AMR) and its physical origin has been ascribed to the
spin-orbit interaction.2–7 The AMR effect in ferromagnetic
nanowires has been used, for example, to determine the critical
fields for magnetization reversal,8–11 or to detect magnetic
domain walls.12,13 The work of Kamalakar et al. focused on the
electrical transport properties of Ni nanowires.14,15 Thermal
and thermoelectric transport measurements were reported for
lithographically patterned thin films.16,17 Anisotropies similar
to AMR have been observed in the Seebeck coefficient
of ferromagnetic nanowires18,19 and of ferromagnetic thin
films.20 Research in the coupling of spin, charge, and heat
currents in magnetic thin films and nanostructures is nowadays
categorized in the field of spin caloritronics.21 Occasionally,
the physical origin of the AMR effect is ascribed to spin-
dependent scattering ignoring that the symmetry breaking
element arises from the spin-orbit interaction.20 In this context
it is interesting to know that in 1999 Ebert et al. saw an
upcoming trend in the literature to connect the AMR with the
giant magnetoresistance and the colossal magnetoresistance.7

To emphasize the quite different physical origin of these
effects they used the name “spontaneous magnetoresistance
anisotropy” instead of AMR.7

We have measured the electrical and thermal transport
properties of individual Ni nanowires as a function of the
applied magnetic field in the temperature range between
78 and 300 K. Similar to the AMR effect, we observe an
anisotropy of the thermal resistance that in the following
will be called anisotropic magnetothermal resistance (AMTR)
effect. Investigating the thermal conductivity requires accurate
temperature measurements and control over heat generation
and heat flow. Our experimental technique is based on the
so-called 3ω method that has widely been used for determining
the thermal properties of bulk materials,22 thin films,23 and
suspended wires.16,24 The characteristic heat diffusion lengths
for 3ω measurements range from 100 μm for bulk materials
and thin films, to a few micrometers for nanowires. Due
to the small length scale, the 3ω method is insensitive to
background thermal leakages caused by radiation.22 Likewise,

the corresponding time scales are short, of the order of 1 μs
for the Ni nanowire device employed in our work. This is
advantageous for observing the AMTR effect. Moreover, in
the case of suspended wires, simultaneous measurements of
the resistance of the wire, in principle, allows for the direct
measurement of the field dependence of the Lorenz number.

The AMR and AMTR effects can be quantified using AMR
and AMTR ratios. We define the ratios to be

�R

R⊥ = R‖ − R⊥

R⊥ ;
�W

W⊥ = W ‖ − W⊥

W⊥ , (1)

where R‖ (R⊥) is the electrical resistance and W ‖ (W⊥)
is the thermal resistance at saturation fields applied parallel
(perpendicular) to the wire axis; �R denotes the absolute
AMR; and �W denotes the absolute AMTR. Before we
discuss the experiment and present the results, we describe
the AMTR effect in terms of a simple model that is developed
in analogy to the AMR effect. To explain our measurement
results, we recapitulate basic knowledge on the AMR effect.

II. ANISOTROPIC MAGNETOTHERMAL RESISTANCE

Most of the theoretical models on AMR are based on the
two-current s-d scattering model.25 This model separates the
current into a contribution from majority-spin electrons with a
resistivity ρM and a contribution from minority-spin electrons
with a higher resistivity ρm > ρM . The spin-orbit interaction
gives rise to mixing or hybridization of the two spin subsystems
that causes anisotropic scattering probabilities, for example,
of majority spin electrons into minority spin states.2–7 This
mechanism results in a difference �ρ = ρ‖ − ρ⊥ between
the resistivities parallel and perpendicular to the spontaneous
magnetization. Although the semiclassical models are not
rigorous, they provide intuitive understanding of the AMR
effect. Campbell et al.3 assumed that ρm is solely due to s-d
scattering arising form isotropic scattering potentials. They
considered spin mixing due to electron-magnon scattering by
using the spin-flip parameter ρsf .26 The AMR ratio is given
by3

�ρ

ρ⊥ = γ
(ρm − ρM )ρm

ρMρm + ρsf(ρM + ρm)
,

(2)
ρσ = ρ0

σ + ρν
σ (T ), σ ∈ {m,M},
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where γ is a constant that is related to the spin-orbit coupling
constant, ρ0 is the residual resitivity, and ρν is the resistivity
due to electron-phonon scattering. According to this model,
the temperature dependence of the AMR ratio is due to
inelastic scattering: electron-magnon scattering that tends to
equalize the spin-dependent resistivities, and electron-phonon
scattering that is characterized by a different spin asymmetry
compared to the scattering at disordered magnetic impurities
(α0 ≡ ρ0

m/ρ0
M �= ρν

m/ρν
M ≡ αν).

For ferromagnetic alloys, it was suggested that the main
origin of the temperature dependence of the AMR ratio lies
in an anisotropic scattering potential for electron-phonon
scattering.27 It was shown by Smit that for nonspherical
scattering potentials arising from phonons, grain boundaries,
and nonmagnetic impurities, the anisotropy of the transition
probability is reduced compared to the transition probability
arising from disordered magnetic impurities.2 Therefore, the
AMR ratio decreases as the number of phonons rises, and thus
as the temperature rises. In this case the following expression
allows for determining the different AMR ratios originating
from electron-impurity scattering and from electron-phonon
scattering:27,28

�ρ

ρ⊥ (T ) =
(

�ρ

ρ⊥

)
ph

+
[(

�ρ

ρ⊥

)
im

−
(

�ρ

ρ⊥

)
ph

]
ρ⊥(0)

ρ⊥(T )
, (3)

where ρ⊥(0) = ρ⊥
im is the residual resistivity at zero tempera-

ture. While experimental data on ferromagnetic alloys follow
the behavior predicted by Eq. (3), the situation is different for
pure ferromagnets. There, due to the lack of magnetic impuri-
ties, electron scattering at grain boundaries and phonons lead
to a small AMR ratio with a weak temperature dependence.2

In this case, electron-magnon scattering is required to explain
the weak decrease of AMR, which is typically observed at
high temperatures.

A thermal analog of the two-current model has recently
been proposed by Heikkilä et al.29,30 Within this spin-
dependent heat model the two spin channels are characterized
by spin-dependent thermal conductivities and temperatures.
Assuming a homogeneous ferromagnet (no spin-dependent
temperature), the AMTR ratio is given by the equivalent
expression of Eq. (2), replacing electrical resistivities by
thermal resistivities:

�w

w⊥ = γ
(wm − wM )wm

wMwm + wsf(wM + wm)
. (4)

In contrast to Campbell et al.3, who described ferromagnetic
alloys, we assume that all spin-dependent scattering is intrin-
sically caused by the spin-polarized band structure of pure Ni.
Therefore, we assume that all scattering mechanisms j are
characterized by the same asymmetry parameter:

αj = ρ
j
m

ρ
j

M

= w
j
m

w
j

M

≡ α. (5)

The equality between electrical and thermal resistance ratios in
this equation is tantamount to the assumption that the Lorenz
number Lj = ρj/(wjT ), where T is the temperature, is solely
determined by the nature of the scattering mechanism j , and
thus equal for both spin subsystems. Inserting Eq. (5) into

FIG. 1. Scanning electron micrographs of the microdevice used
for 3ω measurements on individual nanowires. (a) Top view of a Ni
wire with a diameter of 210 nm that is suspended over a trench and
connected to four platinum electrodes. (b) Side view of a Ni wire
with a diameter of 250 nm that is suspended over a trench (tilt angle:
70◦ with respect to the substrate normal). The depth of the trenches
between the inner contacts is 1 μm.

Eqs. (2) and (4) we obtain
�ρ

ρ⊥ = γ
α(α − 1)

α + ρsf

ρM
(1 + α)

, (6)

�w

w⊥ = γ
α(α − 1)

α + wsf
wM

(1 + α)
. (7)

If the major contribution to ρsf and wsf comes from inelastic
electron-magnon scattering, it can be expected that ρM/wM >

ρsf/wsf . To summarize, the simple model developed above
suggests two hypotheses: (i) there is an AMTR effect in
ferromagnetic conductors due to the spin-orbit interaction, and
(ii) in the presence of electron-magnon scattering the AMTR
ratio is smaller than the AMR ratio.

III. EXPERIMENT

Nickel wires with diameters between 100 and 300 nm
and lengths of ∼50 μm were grown by electrodeposition in
porous alumina membranes.31 The wires are polycrystalline
with an average grain size of ∼30 nm, as determined by
x-ray diffraction on bundles of nanowires from the same batch.
Figure 1 shows scanning electron micrographs of the microde-
vice employed for 3ω measurements. The device includes a Ni
nanowire and four metal electrodes with ohmic contacts to the
nanowire. Thermal isolation from the substrate is achieved by
suspending the nanowire over a micrometer-sized trench. The
specimen is connected to the measurement apparatus using
a cryogenic probe station (LakeShore EMPX) that contains
an electromagnet for applying horizontal fields up to 550 mT
over a temperature range between 8 and 400 K. To avoid
heat loss through convection the sample chamber is evacuated
to pressures less than 5 × 10−5 mbar. Below we present
results on three nanowires. Diameters and lengths of the
suspended segment of the nanowires were determined using
scanning electron microscopy. These values are summarized in
Table I. Small contact resistances were achieved using rf

TABLE I. Geometrical properties of the nanowires investigated.

Wire number Diameter (nm) Suspended length (μm)

NW1 160 ± 10 5.8 ± 0.1
NW2 180 ± 10 5.5 ± 0.1
NW3 210 ± 10 5.8 ± 0.1
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sputter etching with Ar gas to remove the native nickel oxide
shell, directly before sputter deposition of the contact materials
(4 nm Ti and 150 nm Pt). By comparing four probe measure-
ments with pseudo four probe measurements, we confirmed
that the contact resistances were negligible. The outer contacts
are used to inject an alternating current at frequency 1ω into
the nanowire that generates Joule heat at frequency 2ω. Due
to the temperature-dependent resistivity of the nanowire, the
temperature oscillation leads to a resistance oscillation at
frequency 2ω that modulates the voltage measured between
the inner contacts. The third harmonic component of this
voltage, U3ω, is proportional to the amplitude of the temper-
ature oscillation and therefore contains information about the
thermal properties of the nanowire.22,24 The heating current
at frequency 1ω is generated using the voltage output of
a lock-in amplifier (Stanford Research Systems SR830) in
combination with a 10 k	 resistor. Due to imperfections, the
voltage output contains a small component at frequency 3ω that
generates a current at frequency 3ω. Furthermore, it is possible
that besides the specimen, other time-varying resistances are
included in the circuit that contribute to this spurious 3ω

current.32,33 Across the resistance of the specimen, the spurious
3ω current generates a spurious 3ω voltage that contributes to
the measurement signal. To obtain the pure 3ω voltage that
arises from the temperature oscillations of the specimen, we
determined the spurious 3ω voltages at each temperature by
measuring the 3ω current using a heat sunk 10 	 precision
resistance that has a negligible temperature coefficient. The
precision resistance is connected in series with the specimen.
The amplitude of the 3ω voltage measured is typically of the
order of 50 μV. The amplitude of the spurious 3ω voltage
is of the order of 1–5 μV. The phase difference between the
two signals is 180◦, i.e., the amplitude of the pure 3ω voltage
is obtained by adding both amplitudes. Given by the length
of the suspended part of the wire (∼5 μm) the characteristic
time of the heat diffusion process is of the order of 1 μs. The
output frequency was 277 Hz; whence, the 3ω measurements
are performed in the low-frequency limit where the thermal
resistance is given by24,32

W (H ) = 48U3ω(H )

R(H ) dR(H )
dT

I 3
, (8)

where R is the resistance of the suspended part of the
nanowire, and d/dT denotes the temperature derivative; I

is the amplitude of the applied current. In this equation we
have indicated that besides W (H ), also R(H ) and dR(H )/dT

are functions of the applied magnetic field strength H . As a
consequence, the heating and sensing properties of the device
change in the presence of magnetic fields. To consider this we
measured simultaneously the 3ω and the 1ω components of the
voltage signal across the nanowire using two lock-in amplifiers
(Stanford Research Systems SR830). Figures 2(a) and 2(b)
show representative curves of U3ω(H ) and U1ω(H ) for fields
applied perpendicular and parallel to the wire axis, measured at
a temperature of 240 K. A comparison of the field dependence
of U3ω(H ) and of U1ω(H ) at different temperatures is given in
the Supplemental Material.34,35 The field dependence of R(H )
follows directly from U1ω(H ) = R(H )I . The field dependence
of dR(H )/dT can, in principle, be determined from the

FIG. 2. (a) and (b) Field dependence of the third harmonic
(a) and the first harmonic (b) components of the voltage signal at
a temperature of 240 K, measured on NW1. The upper (lower) curves
show the response to magnetic fields applied parallel (perpendicular)
to the wire axis. (c) Temperature dependence of the resistance
R⊥ at saturation fields applied perpendicular to the wire axis.
(d) Temperature dependence of the difference �R = R‖ − R⊥, where
R‖ denotes the resistance at saturation fields applied parallel to the
wire axis. Circles, triangles, and squares in (c) and (d) indicate data
measured on samples NW1, NW2, and NW3, respectively. Solid lines
in (c) and (d) are fit curves to the measurement data using polynomial
fits.

consecutive measurements of R(H ) at different temperatures.
It was shown by Wegrowe et al. that the field dependence of
dR(H )/dT arises from two terms.36 The first term considers
the temperature variation of the absolute AMR, �R, and
the second term is due to the thermal susceptibility of the
magnetization.36 At this point we should emphasize that with
our work we aim to describe and observe the AMTR effect
that is quantified by the AMTR ratio [Eq. (1)]. The interest
of our work is not on the behavior of W (H ) during the
magnetization reversal process. Therefore, we can focus on
the saturation values denoted by W⊥, R⊥ and W ‖, R‖ for
saturation fields applied perpendicular and parallel to the wire
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axis. At saturation fields, dR‖/dT is given by36

dR‖

dT
= dR⊥

dT
+ d�R

dT
. (9)

The temperature dependence of R⊥ and of �R of samples
NW1, NW2, and NW3 are depicted in Figs. 2(c) and 2(d).
The graphs include fit curves to the measurement data that
were used to determine dR⊥/dT and d�R/dT . Due to the
fact that the resistivity of Ni has a complicated temperature
dependence in the temperature range under consideration,37

we applied polynomial fits of second order. Inserting Eq. (8)
into the second expression of Eq. (1) we can write the AMTR
ratio in terms of the measurement quantities:

�W

W⊥ = U
‖
3ωU⊥

1ω
dR⊥
dT

U⊥
3ωU

‖
1ω

(
dR⊥
dT

+ d�R
dT

) . (10)

It can be seen from Fig. 2(d) that the variation of �R becomes
very small for temperatures between ∼300 K and 380 K.
Therefore, it is possible to neglect d�R/dT in Eq. (10) in
this temperature range. This approximation was also used by
Wegrowe et al. for determining the thermal susceptibility of
the magnetization of Ni nanowires of diameters between 25
and 40 nm.36 We return to this point when discussing the
experimental results on the AMTR ratio.

IV. RESULTS AND DISCUSSION

We commence the presentation of the experimental results
with the temperature dependence of the transport properties
shown in Fig. 3. Depicted are the electrical resistivity ρ⊥
(a), the thermal conductivity κ⊥ (b), and the Lorenz number
L⊥ (c), measured at saturation fields applied perpendicular to
the wire axes. The usage of the specific quantities in (a) and
(b) allows for the comparison of our results with literature
values on bulk Ni,38 which are plotted in the same graphs.
As expected from the polycrystalline nature of the nanowires
investigated, ρ⊥ is larger and κ⊥ is smaller than the bulk values
of Ni (stars) measured by White and Woods.38 The enhanced
residual resistivity is also responsible for the lack of the low
temperature peak of the thermal conductivity that is typically
observed in pure bulk metals.39 The Lorenz number can be
written in the same form using either specific quantities or
nonspecific quantities:

L = ρκ/T = R/(WT ). (11)

Generally, at high temperatures (T 	 TDebye) and at low
temperature (T → 0) elastic scattering of electrons predom-
inates, and the Lorenz number of metals approaches the
Sommerfeld value of L0 ≈ 2.45 × 10−8 V2 K−2.39 A constant
L is known as the Wiedemann Franz law. In the intermediate
temperature range, deviations from this law are observed due
to inelastic scattering of electrons.39 Figure 3(c) reveals that
the determined values of L⊥ for samples NW1 and NW3
are in good agreement with the reference bulk values. L⊥
of sample NW2 shows some deviation, of which we have no
clear explanation. Below 120 K the observed decrease of L⊥ is
weaker compared to the bulk values due to the larger residual
resistivity of the polycrystalline nanowires.

FIG. 3. Temperature dependence of electrical resistivity (a),
thermal conductivity (b) and Lorenz number (c) of Ni nanowires,
measured under saturation fields applied perpendicular to the wire
axes. The bulk values for Ni (stars) were measured by White
and Woods (Ref. 38). Circles, triangles, and squares indicate data
measured on samples NW1, NW2, and NW3, respectively. Solid
lines in (a) are fit curves to the measurement data using polynomial
fits. Solid lines in (b) and (c) are guides to the eye.

The results on the AMTR effect, namely, the AMTR ratios
defined in Eq. (10), are plotted against the temperature in
Fig. 4. The error bars shown were calculated considering
Gaussian error propagation of the standard deviations of U3ω,
U1ω, dR⊥/dT , and d�R/dT . A quantitative comparison of
the different contributions to the total error is given in the
Supplemental Material.40 As discussed in Sec. III it is possible
to neglect the dominant contribution arising from the standard
deviation of d�R/dT for temperatures above ∼300 K. This
would result in a reduction of the error shown in Fig. 4 by a
factor of ∼5. For comparison we present the corresponding
AMR ratios in the same graph. The curves are nonmonotonic
with maxima at temperatures between 160 and 200 K. To
explain the reduced AMR ratios at low temperatures, we can
use Eq. (3) and consider electron-defect scattering instead of
electron-impurity scattering:

�ρ

ρ⊥ (T ) =
(

�ρ

ρ⊥

)
ph

+
[(

�ρ

ρ⊥

)
def

−
(

�ρ

ρ⊥

)
ph

]
ρ⊥(0)

ρ⊥(T )
,

(12)

where (�ρ

ρ⊥ )def is the AMR ratio due to electron-defect

scattering. If (�ρ

ρ⊥ )def < (�ρ

ρ⊥ )ph, Eq. (12) predicts that the
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FIG. 4. (Color online) Temperature dependence of the AMR ratio
(open symbols) and the AMTR ratio (solid symbols) of Ni nanowires.
Red circles, blue triangles, and green squares indicate data measured
on samples NW1, NW2, and NW3, respectively. Solid lines are guides
to the eye.

AMR ratio increases as the temperature rises, before it
saturates at temperatures where electron-phonon scattering
dominates. A further effect that can cause a reduction of the
AMR ratio at low temperatures is the Lorentz deflection of
electrons due to the internal field B = μ0MS , where MS is the
saturation magnetization.27,41 The decrease of the AMR ratio
at higher temperatures can be explained by electron-magnon
scattering, using the model of Campbell et al.3 [Eq. (2)]. The
AMTR ratios are smaller than the AMR ratios, which is in
agreement with the prediction of the simple model presented in
Sec. II. The inequality of the AMR and AMTR ratios results in
an anisotropic Lorenz number. However, we have to point out

that the total thermal conductance that is measured contains
isotropic contributions, for example, from phonons. Electrons
contribute about 90% to the total thermal conductance in Ni
wires with radii above 150 nm.42 Therefore, we expect that
the corrected AMTR ratios would still be well below the
AMR ratios.

V. CONCLUSION

We measured the field-dependent electrical and thermal
transport properties of individual Ni nanowires in the tem-
perature range between 78 and 380 K. In analogy to the
AMR effect observed in ferromagnetic conductors, we found
that the thermal resistance of Ni nanowires depends on the
angle between magnetization vector and current direction.
This anisotropic magnetothermal resistance effect turned out
to be weaker than the AMR effect in Ni nanowires over the
temperature range investigated. As a consequence, also the
Lorenz number was found to be anisotropic with respect
to the magnetization direction. Using a simple model, we
proposed that spin mixing due to electron-magnon scattering
is responsible for this observation. To extend the studies on
AMTR we suggest similar measurements on nanowires from
ferromagnetic alloys.
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