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We present a method called SISYPHUS (stochastic iterations to strengthen yield of path hopping over upper
states) for extending accessible time scales in atomistic simulations. The method proceeds by separating phase
space into basins and transition regions between the basins based on a general collective variable (CV) criterion.
The transition regions are treated via traditional molecular dynamics (MD) while Monte Carlo (MC) methods
are used to (i) estimate the expected time spent in each basin and (ii) thermalize the system between two MD
episodes. In particular, an efficient adiabatic switching based scheme is used to estimate the time spent inside
the basins. The method offers various advantages over existing approaches in terms of (i) providing an accurate
real time scale, (ii) avoiding reliance on harmonic transition state theory, and (iii) avoiding the need to enumerate
all possible transition events. Applications of SISYPHUS to low-temperature vacancy diffusion in bcc Ta and
adatom island ripening in fcc Al are presented. A CV appropriate for such condensed phases, especially for
transitions involving collective motions of several atoms, is also introduced.
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Achieving usefully long timescales (seconds or longer)
in atomistic simulations of materials is a problem of great
interest, and the search for a practical and general solution
has generated intense activity in the field over the last several
decades1–9 (see Refs. 10–12 for excellent reviews of these
and other efforts). The problem arises because, as the system
moves from one energy basin to another through infrequent
rare events, it stays trapped in some energy basin for extended
periods of time. Along with the small time steps (on the
order of femtoseconds) needed for the total energy staying
conserved, this severely restricts the time scales accessible
in molecular dynamics (MD) simulations and also leads to
limited phase-space exploration.

Although many methods exist to increase the rate of
rare events and efficiently explore the rugged free energy
landscape, a frequent limitation is the inability to efficiently
obtain an accurate estimate of the “real’ time scale of the
simulation in general physical systems. Existing schemes to
achieve this either

(1) require cataloguing all possible transitions paths out of
a given basin,4–6 which can be computationally prohibitive in
low-symmetry systems, or

(2) rely on harmonic approximations to the system’s energy
surface,13 or

(3) involve computing averages that converge slowly, espe-
cially for large system sizes, because they involve exponentials
of the system’s total energy.2,14

In this paper, we propose a mixed Monte Carlo–molecular
dynamics method that uses a collective variable (CV) χ solely
to discriminate between basins and transition regions, thus
placing very weak requirements on the choice of CV, less
stringent than what is required in metadynamics methods.32

The method still provides the system’s dynamics via conven-
tional atomic coordinates and thus provides more detailed in-
formation than the coarse grained dynamics typically provided
by metadynamics methods.1,15 The method also provides an
accurate real time scale that does not deteriorate with system
size and that does not rely on harmonicity assumptions. There

is no need to construct a priori or in situ a catalog of possible
transition mechanisms. The method is specially suited for
exploiting massive parallel computing.

The proposed algorithm generalizes our previous work3

along multiple dimensions. First, we use a general CV χ (in-
stead of the system’s potential energy) to discriminate between
basins and transition regions and propose a type of CV suitable
for this purpose in condensed phases. (Recently proposed
dimensionality reduction algorithms16,17 that discover CVs
automatically could be used as well.) Second, we introduce
an adiabatic switching scheme to efficiently calculate the real
time spent inside wells. Finally, we use a more robust criterion
to determine when the system has been trapped in a basin for
sufficiently long time to have equilibrated therein.

Let the N-particle system be characterized by position
x = (r1, . . . ,rN ) and velocity v = (v1, . . . ,vN ). The CV χ is
a function of x (we give an example of such a function later
in this paper). For a user-specified cutoff value χcut, we define
the basins, or wells, W in this χ space as a set of connected
states for which χ < χcut. In the wells, the method does not
follow the system’s exact trajectory in phase space, but instead
provides the expected amount of time spent in each well. In
contrast, the χ � χcut region of the phase space contains the
interesting but infrequently occurring events whose dynamics
is fully described. The choice of χcut thus specifies the level of
details one wishes to retain in the simulation. Large values of
χcut may cause wells to merge and limit the ability to resolve the
precise dynamics of some events. The method is still formally
correct but the definition of the wells W may not have an
obvious physical meaning. Nevertheless, the method is very
robust to changes in χcut that do not change the topology of
the well structure (we will provide numerical evidence of this
fact).

When the CV χ of the system is above the threshold χcut,
the system evolves via MD according to its true Hamiltonian
with constant-pressure (or volume) or constant-temperature
(or energy) ensemble as entailed by the simulation. When
χ < χcut, the algorithm continues performing MD until either
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(i) χ � χcut (in which case the system is considered to have
exited the well and standard MD continues as described above)
or (ii) a time equal to the system’s decorrelation time τc has
elapsed. In that latter case, the system is considered to have
been trapped in the well for long enough that it has reached a
local thermodynamic equilibrium. This criterion is similar to
the one used in other methods8,18 to define a transition event.
At this time, we launch a Monte Carlo (MC) simulation (called
MCa) whose aim is to generate a new random starting position
at the well’s boundary to initialize the next MD episode. MCa

is run for long enough that the system loses memory of how
it entered the well and visits the boundary of the well a few
times. MD is restarted with the position x where the system
last visited the well’s boundary and with velocities v drawn
from a truncated Maxwell-Boltzmann distribution conditional
on v · ∇χ (x) > 0 (i.e., we only consider velocities in the half
space pointing outwards of the well).

There is an inherent assumption here that the system is
thermalized in whichever basin it entered before leaving it.
This assumption is well justified because we have already
verified that regular MD stays in this well for longer than the
system’s correlation time [around τc; see (ii) above]. Hence, by
definition, we assume thermalization only when thermalization
did take place.

In parallel to the first MC (MCa) we perform a second
MC run (called MCb) that calculates the expected time tW
the system would have spent inside the well. This separation
of two MC runs makes our algorithm extremely parallelizable
and especially amenable to be used on loosely coupled clusters
of computers. We can launch as many MCb runs as we have
processors available. These runs do not need to communicate
with each other, and because of the system’s ergodicity, we can
make a quick estimate of the quantity tW by averaging over
these independent runs. This parallelization is even simpler
than for the parallel replica method.18

Before we describe how we calculate the time the system
would have spent in whichever well it visited, we describe
specifically how MCa is implemented. We define the boundary
of the well W with thickness w:

SW = {x = (r1,...,rN ) : |χ (x) − χcut| < w}. (1)

Trying to visit SW with an unbiased potential would be of no
avail, since we will rarely visit states in SW. We thus do MC
with a biased potential V ∗(x) defined as follows:

V ∗(x) = V (x) +
{∞ χ (x) � χcut,

V0
(

χcut−χ

χcut

)m
χ (x) < χcut.

(2)

Per Eq. (2), MCa never visits the outside of the well W and
biases states with a penalty function that increases with their
depth inside the well. Note that the bias is zero at the well
boundary, which is important to obtain the correct sampling
distribution of the boundary.2 The bias inside the well changes
the fraction of time spent at the boundary but not the ratio
of the times spent at any two points of the boundary. The
parameter m determines how sharp the boundary of the well
is (a value around 0.5 is found to perform well in practice).
V0 is kept around the standard deviation in potential energy
of the system. As we demonstrate numerically later, the

algorithm is very robust with respect to choice of parameters
in Eq. (2).

Having described a way to accelerate the exploration of
various wells, we now turn to the question of calculating (via a
Monte Carlo labeled MCb) the expected time the system would
have spent inside well W if there had been no acceleration of
the dynamics. This time, denoted tW, can be calculated as the
reciprocal of the flux of states exiting the well:

tW = lim
w→0

(〈
v

w
1(x ∈ Sw)

〉)−1

, (3)

where the average 〈· · ·〉 is taken over x drawn from the well
W with a probability density proportional to e−V (x)/(kBT ). kB

is Boltzmann’s constant, T is the temperature, and 1(A) equals
1 if the event A is true and 0 otherwise. v denotes the mean
projection of a Maxwell-Boltzmann-distributed velocity along
the unit vector u parallel to ∇χ (x), conditional on v · ∇χ (x) >

0. When all atoms have the same mass m, v = √
kBT /2πm (a

general expression can be found in Ref. 3).
A straightforward implementation of Eq. (3) will again

suffer from a rare event problem. Even an importance sampling
scheme, as suggested in Ref. 3, is not very efficient. Consider
what happens if we use the biased potential as defined in
Eq. (2) to calculate tW:

tW = lim
w→0

〈e−β(V (x)−V ∗(x))〉∗〈
v
w
e−β(V (x)−V ∗(x))1(x ∈ Sw)

〉∗ , (4)

where 〈· · ·〉∗ denote expectations taken under a density
proportional to e−βV ∗(x), in which β is 1/(kBT ). This approach
is exact in the limit of an ensemble average, but there is
a fundamental trade-off that limits its usefulness: A large
bias V ∗(x) − V (x) leads to a more rapid convergence of
the denominator (due to an increased sampling rate of the
boundary) but a slower convergence of the numerator [due to
an increase in V ∗(x) − V (x)].

To avoid this problem, we now propose a technique that
bears some resemblance to adiabatic switching methods,19,20 in
which the system is continuously, adiabatically switched from
V (x) (the true potential) to V ∗(x) (identical to the potential
used in MCa). Let V̂ (x,α) smoothly interpolate between
V̂ (x,0) ≡ V (x) and V̂ (x,1) ≡ V ∗(x). Then we can express
the ensemble average in Eq. (4) as below (working in terms of
rate t−1

W ):

t−1
W = lim

w→0

∫
v̄
w

1(x ∈ Sw)e−βV̂ (x,0)dx∫
e−βV̂ (x,0)dx

≡ lim
w→0

〈
v1(x ∈ Sw)

w
e−β(V̂ (x,0)−V̂ (x,1))

〉
1

R, (5)

where dx denotes a differential volume in 3N dimensional
configuration space for N particles, the integration being
performed over the entire configuration space within the well
W and the expected value 〈· · ·〉α in Eq. (5) defined by

〈· · ·〉α =
∫

(· · ·)e−βV̂ (x,α)dx∫
e−βV̂ (x,α)dx

. (6)
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FIG. 1. (Color online) Diffusion constant for vacancy diffusion
in Ta at various temperatures as through brute-force MD (circles) and
SISYPHUS (stars). Error bars (roughly same as marker size) are also
provided as obtained over 16 independent runs.

Below we define the term R in Eq. (5) and reexpress it in a
computationally tractable form:

R =
∫

e−βV̂ (x,1)dx∫
e−βV̂ (x,0)dx

= exp

(
ln

∫
e−βV̂ (x,1)dx − ln

∫
e−βV̂ (x,0)dx

)

= exp

(∫ 1

0

(
∂

∂α
ln

∫
e−βV̂ (x,α)dx

)
dα

)

= exp

(
−β

∫ 1

0

∫
∂V̂ (x,α)

∂α
e−βV̂ (x,α)dx∫

e−βV̂ (x,α)dx
dα

)

= exp

(
−β

∫ 1

0

〈
∂V̂ (x,α)

∂α

〉
α

dα

)
. (7)

We pick a linear switching scheme for V̂ (x,α), i.e., an
interpolation scheme between V̂ (x,0) and V̂ (x,1):

V̂ (x,α) = (1 − α)V (x) + αV ∗(x). (8)

We now make a few observations regarding Eq. (5). It involves
2 parts. The first is limw→0〈 v1(x∈Sw)

w
e−β(V̂ (x,0)−V̂ (x,1))〉1. This is

nonzero only when x ∈ Sw, and whenever it is nonzero, the
difference V̂ (x,0) − V̂ (x,1) is very small [see Eqs. (1) and
(2)]. Since this average is calculated with the maximally biased
potential V̂ (x,1), the boundary x ∈ Sw is visited frequently,
and thus the first term in Eq. (5) can be evaluated very quickly.
The second part in Eq. (5) is R, where the average 〈 ∂V̂ (x,α)

∂α
〉α =

〈V ∗(x) − V (x)〉α does not contain any exponentials that could
cause a slow convergence. In the Supplemental Material,31 we
prove rigorously that for this switching scheme and for the
choice of biasing potential in Eq. (2) we can use a nonuniform
grid to evaluate R which can be made finer as α → 0 but kept
coarse for larger α, leading to further computational efficiency.

For solid-state systems where bond breaking is the domi-
nant mechanism of interest, we take χ to be the bond distortion
function (BDF), defined below for an N-particle system:

χ (x) = a0

⎛
⎝ ∑

∀i,j rij =|ri−rj |

∣∣∣∣∣ rij − r
eq

ij

r
eq

ij

∣∣∣∣∣
p
⎞
⎠

1/p

, (9)
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FIG. 2. (Color online) Top: Insensitivity of dynamics to choice of
χcut (relative to average χ at that temperature) for vacancy diffusion
in Ta across temperatures. �, ◦, �, and ∗ denote 500, 600, 700, and
800 K temperatures, respectively. Middle: Corresponding speed-ups
relative to physical time achieved in brute-force MD run in the same
wall-clock time. Bottom: Insensitivity of dynamics to choice of V0.
Error bars over 16 independent runs for each data point.

where p > 1 and a0 is the 0 K lattice parameter. For each bond,
r

eq

ij is the equilibrium bond length that can be obtained by a
few conjugate gradient steps each time a transition is detected.
In the limit that p → ∞, the BDF, which is a p norm over
fractional bond distortions, approaches the maximum norm,
i.e., the strain (times a0) in the maximally strained bond. For
p → ∞ we thus recover the so-called bond-boost function.21

We pick p around 8–12 for the systems studied in this paper.
Not taking p = ∞ allows us to treat on a similar footing cases
where (a) one bond is distorted by a large amount, or (b) several
bonds are collectively distorted by a significant amount which
is however less than the amount in (a). As soon as either (a)
or (b) happens, the BDF detects it through a spike and thus
we can then switch back to doing completely unbiased MD.
This way we can treat transition mechanisms involving small
but concerted and collective motion of several atoms [see
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(a)1 adatom (before) (b)1 adatom (after) (c)2 adatoms (before) (d)2 adatoms (after)

(e)Adatom & substrate
atom(before)

(f)Adatom & substrate
atom(after)

(g)3 adatoms (before) (h)3 adatoms (after)

FIG. 3. (Color online) Mechanisms seen by SISYPHUS for adatom movement on Al (001) surface. Atoms colored per z coordinate.
Blue/orange = substrate atom, green/red = adatom, red/orange = atom with maximum movement. Solid lines are periodic boundaries.

Figs. 3(g) and 3(h)]; for example in glasses, shear transfor-
mation zones22 involve several atoms displacing together by a
small amount.

We now describe applications of the algorithm that validate
it and demonstrate its insensitivity to choice of parameters.
The first example is vacancy-assisted lattice diffusion at
low temperatures in bcc tantalum. Lattice diffusion at low
temperatures is a problem important in a spectrum of sciences
from materials science to geology,23,24 but is beyond the time
scales one can access in current MD simulations, requiring
times longer than milliseconds.3,25 We describe the parameters
for the MD part26 of this simulation in the Supplemental
Material.31 In Fig. 1 we demonstrate how the diffusion
constants through brute-force MD and SISYPHUS (stochastic
iterations to strengthen yield of path hopping over upper states)
for vacancy-assisted diffusion lie on the same Arrhenius plot,
giving an Arrhenius-type activation energy of 0.9(±0.1) eV
[in rough agreement with the harmonic transition state theory
(HTST) calculation of 1.1 eV]. Figure 2 (top) demonstrates
the lack of sensitivity of the dynamics to which χcut and V0

values we pick. As expected the speed-up is higher for higher
χcut [Fig. 2 (middle)]. At higher temperature we find slightly
higher sensitivity to χcut (still within order of magnitude
accuracy). This is because for a low χcut, the tW values at
high temperatures become closer to time τc the system takes
to equilibrate in a well. Insensitivity to V0 values can be seen
from Fig. 2 (bottom). A smaller V0 leads to slower sampling in
Eq. (4), and MCa also takes longer to converge. With too high
a V0, however, the periphery of the well W can be too steep
and one might again face sampling issues since the system
can be trapped in some regions of the well boundary. In the
Supplemental Material,31 we provide a back-of-the-envelope
estimate of how to pick an optimum V0 for a given system.

For our second application, we studied the room-
temperature dynamics of Al adatoms on Al (001) thin film
(625 atoms, roughly 3 times larger than the Ta vacancy

diffusion example). We picked this problem because first, from
a technological perspective, it is of immense importance for
fabrication processes in nanoscale devices involving growth
of thin films from deposited adatoms.27,28 This problem is
very interesting from a theoretical perspective too, given that
it is an inherently nonequilibrium phenomenon dictated by the
interplay between kinetics and thermodynamics. Being able
to model and control the growth and properties of such films
is hugely desirable; the time scales needed are however far
beyond MD. Accurate 0 K saddle point search methods5,29

have shown the existence of a large number of transition
mechanisms with low and similar activation energies (smaller
than 0.4 eV). Such low lying barriers can be hard to deal with
in most accelerated MD methods.10 On-the-fly kinetic Monte
Carlo5 calculations have been used previously to get rough
estimates of the time scale for adatom island ripening that we
can compare SISYPHUS with. In the Supplemental Material31

we provide details of the simulation parameters for this system.
Figure 3 and the movies in the Supplemental Material31

illustrate the most common mechanisms seen through
SISYPHUS. We have the single-adatom hop [(a) and (b)],
the concerted two-adatom hop [(c) and (d)], and the concerted
event involving an adatom and a substrate atom as the latter
moves to the adatom layer [(e) and (f)]. Occasionally we
see more complicated mechanisms like the 3-atom hop [(g)
and (h)], and events with creation of a vacancy in the top
substrate layer (see Supplemental Material31). The first three
mechanisms are the most common and are in fact the lowest
energy transitions found using the dimer method for saddle
point search. In Fig. 4 and the movies in the Supplemental
Material31 we show the typical evolution of the island ripening
at room temperature over several milliseconds of physical time
(the exact time can vary from run to run well but still within
an order of magnitude). Shown along with are corresponding
energies obtained by quenching each structure to its local
minima, illustrating further the effectiveness of the algorithm
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(a)t=0 ns (0 eV) (b)t=1 µs (-1.6 eV) (c)t=2 ms (-1.8 eV)

(d)t=4 ms (-2.6 eV) (e)t=9 ms (-3.7 eV) (f)t=15 ms(-5.0 eV)

FIG. 4. (Color online) Room-temperature adatom ripening on Al (001) surface as a function of time. Each structure was quenched to
find its corresponding local minima, and the energies after quenching [relative to (a)] are provided. Panel (a) shows the starting geometry.
After 1 μs, we have two disconnected clusters [(b) and (c)]. Corresponding brute-force MD runs were found trapped in similar configuration
in the fraction of microsecond time they could achieve. At around 4 ms these two clusters join (d). At 9 ms (e) there is further joining and we
have effectively one long chain of adatoms. At 15 ms (f) the chain has coarsened into one entity across simulation cells. Color scheme same as
in Fig. 3.

in escaping and exploring various energy basins. The overall
time can be compared with the analogous on-the-fly KMC
work5 for the same system and interatomic potential30 where
20 adatoms (half as many as current work) formed one compact
cluster around 1 ms. As a verification that our proposed BDF
is effective at decomposing phase space into disconnected
wells, we show, in a movie accompanying the Supplemental
Material,31 a superposition of snapshots of the system during a
MCa run, illustrating that the system does not jump from one
well to another within one MCa run (since it rejects all moves
with χ � χcut).

In conclusion, we have shown SISYPHUS to be an
extremely parallelizable and robust set of algorithms that help
achieve a fraction of a second time scale for thousands of
atoms. The method works well irrespective of system size
and can be applied in the general setting of any collective

variable. We also introduced a CV appropriate for solid state
systems especially for transitions involving collective motions
of several atoms.
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