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Dynamic electron localization initiated by particle-bath coupling
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We consider the quantum evolution and relaxation of an electron or hole which is coupled to a set of bath modes.
In most applications the bath modes would be the vibronic coordinates but the model considered applies to any
type of dynamic boson environment. The method is developed specifically for the problem of dynamic polaron
formation in small nonperiodic systems. It can describe a broad group of experimental situations, including in
particular electron localization in organics and polymeric materials and devices. The immediate bath is allowed to
dissipate energy to a secondary bath. The bath obeys classical dynamics which puts some restriction on the range
of validity of this approach. Using the density matrix formalism on a tight binding model consisting of a linear
chain coupled to vibronic coordinates, we demonstrate in real time how the interaction with a dissipative bath
makes the initial quantum distribution reach a steady-state population. This calculation is based on the Ehrenfest
dynamics approximation. As an example we consider coupling at a single impurity site and find that for given
parameters (bath coupling, site energy, and relaxation rate), the particle becomes dynamically localized in space
on a particular time scale. This localized particle can be called a polaron. We define a population formation time
in the same way as done in the experimental measurement. This formation time is studied as a function of the
coupling strength, bandwidth, and energy dissipation rate. Energy dissipation plays a crucial role in the spatial
localization process. The formation time shortens as the electron-vibration coupling increases, and as the intersite
tunneling increases, but lengthens with impurity trap depth. Polaron formation is suppressed for sufficiently wide
electronic bands.

DOI: 10.1103/PhysRevB.87.094302 PACS number(s): 72.10.Di, 63.20.kd, 73.40.−c, 73.63.−b

I. INTRODUCTION

Understanding the quantum mechanical evolution and
subsequent relaxation of an electron or exciton in a system with
bath coupling remains a challenging problem.1–10 The transfer
of charge or energy along a molecular chain or polymeric ma-
terial exemplifies the relevant systems. To make the problem
straightforward and intuitive, we restrict ourselves to a linear
system of sites described by the tight binding Hamiltonian.
If at time t = 0 we inject an electron at a given site or into
a chosen electronic eigenstate in a closed electronic system
with electron-vibration and vibration-phonon (environmental)
coupling, the particle should eventually arrive in the ground
state of the coupled system provided there are finite tunneling
matrix elements to all the sites and a high enough local
dissipation rate. If the coupling to the bath is very weak,
this (final) state will be close to that of the uncoupled (no
bath) electronic system, because electron-vibration coupling
induced shifts being considered as small. If a set of sites has in
some region of the network lower energies than in the rest but
the system cannot dissipate the electronic energy to build up the
local populations (no electron-vibration coupling), the electron
may well self-trap into a configuration where the local energy
is higher compared to other sites in the network. Generally
the quantum wave function will localize along the lines
of Stark-Wannier11,12 behavior when the energy differences
between the sites in the downward cascade are larger than half
the bandwidth. But localization could also be due to disorder
(a finite-system type of Anderson localization).13 Switching
on the electron-vibration coupling then allows the electron to
relax its energy and to diffuse to arrive at the lowest level.

To ensure that the system does arrive in a given final
state, introducing irreversibility via secondary bath coupling
or (classically speaking) frictional dissipation and energy

relaxation is essential. If the electronic tight binding chain
is made very long, and the system is kept closed, it is possible
for the electron-vibration coupling to lead to localized polaron
formation in some parameter limits14 even if there is no energy
dissipation. Here a nearly stable final state is achieved because
it is entropically unlikely that once shared to all modes,
this shared energy would go back to reform the original
state. But slight changes in parameters give rise to periodic
breathing modes in which the polaron is periodically created
and destroyed.14 The physically realistic limit is to allow the
dissipation of energy to the outside world. Therefore we will
utilize the quantum relaxation methodology15 and the closely
related semiclassical16–18 one, both of which allow irreversible
energy relaxation to take place. The quantum method is applied
in a limit which is essentially equivalent to the semiclassical
Ehrenfest method.19

The methods developed here have a wide range of
applications to problems where there is a coupling to a
bosonic field which can localize or delocalize thermally
charge or excitations, or to problems where this coupling
induces dephasing of quantum trajectories. Topical examples
are transients provided by Raman experiments,20 femtosecond
photo-induced absorption,9,21,22 and electron (exciton) transfer
studies;23–29 this vigorously emerging field also includes quan-
tum and optical computing. The techniques developed here
may have application in photo-induced electron transfer,30–32

and photo-generation and transfer of charge in softer materials.
Femtosecond electron transfer and energy relaxation from
copper into a surface layer covered with ice (image potential
band) has been well studied experimentally.33

But we should point out that the classical treatment of the
bath can be a source of error. When phonon modes are slow
and/or the splittings are not well resolved—the motion of ions
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FIG. 1. (Color online) The scheme of a chain including five sites.
The electron-vibration (e-vib) interaction is added to the middle site 2.

is slow compared to the electronic degrees of freedom—the
self-consistent Ehrenfest treatment is known to be a good
approximation. The electrons are moving in a field of slower
moving ions which depend self-consistently on the temporal
distribution of the electronic charge. When phonon spectra
are resolved, and splittings are comparable to or larger than
the electron bandwidth, this method will tend to seriously
overestimate the polaron formation times, by up to an order
of magnitude.19 The reason is that, in reality, vibrations do
not only see the average evolving local charge but the actual
evolving local charge. Fortunately the main discrepancy affects
the formation times and not the steady-state distributions.
Since the full quantum solution is not tractable when more than
a few vibrational modes are involved, in practical situations,
it is a good starting point to use the semiclassical method,
remembering where errors might occur. In the present model,
the electron-phonon coupling and the impurity center are
described in the Hamiltonian. The motion of the lattice is
solved using a semiclassical method. Such a quasiclassical
description has been used to analyze multiphonon trapping
on an impurity center, in a semiconductor, and self-trapping
of carriers and excitons.34,35 This approach has also been
used in the past and proved to be effective in the limit of
strong electron-phonon coupling.36–38 It was shown that in the
Froehlich polaron model, the strong coupling expansion is well
suited to describe the optical conductivity.34 This is true both
in the limit of the applicability of the Franck-Condon principle
and beyond.

In Sec. II we introduce the theoretical model, and in
Sec. III we apply this model to polaron formation, and
discuss polaron formation for varying band coupling, electron-
vibration coupling, and vibration-phonon relaxation rate. The
total energy relaxation of the system is analyzed. Section IV
concludes, and discusses future applications.

II. THEORETICAL MODEL

The Hamiltonian of the five-site system in Fig. 1 is

H = HS + HB + HSB, (1)

HS =
4∑

l=0

εlc
†
l cl + V

3∑
l=0

(c†l cl+1 + c
†
l+1cl)

+ h̄ω0d
†
0d0 + αc

†
2c2(d†

0 + d0), (2)

HB =
∑

s

h̄ωsd
†
s ds, (3)

HSB =
∑

s

βs(d
†
0 + d0)(d†

s + ds), (4)

where HS is the Hamiltonian of the five-site linear chain,54

consisting of a system of sites with orbitals coupled by the tight
binding Hamiltonian with near-neighbor site coupling V and
diagonal site energies εl . One site is also coupled directly to a
primary vibronic mode with coordinate d

†
0 + d0 and frequency

ω0. The operators c
†
l (cl) create (annihilate) an electron in site

l. The last term in the right side of Eq. (2) is the electron-
vibration coupling. We permit this vibronic coupling only at
site 2. Besides the primary vibration, the secondary phonons
[expressed in Eq. (3)] with dimensionless coordinates d

†
s + ds

and frequencies ωs couple to the primary vibration [Eq. (4)].55

The electronic potential of the vibronic subspace is de-
scribed in the paper15 of Galperin et al. as

HPh = h̄ω0d
†
0d0 + αc

†
2c2(d†

0 + d0)

+
∑

s

[h̄ωsd
†
s ds + βs(d

†
0 + d0)(d†

s + ds)]. (5)

Further using the Langevin equation, a generalized quantum
dynamics of the primary vibration is15

d
†
0(t) + d0(t) = 1

h̄

∫ t

0
dτDr (t − τ )αc

†
2(τ )c2(τ ). (6)

Here Dr is the retarded Green’s function of the active vibration.
Based on the Born-Oppenheimer approximation, we treat

the bath in a classical approximation. This resembles Ehrenfest
dynamics39 and may result in substantial quantitative errors.
The dimensionless displacement q(t) of the primary vibration
can be expressed by a time-dependent configuration as

q(t) = 〈d†
0(t) + d0(t)〉

= 1

h̄

∫ t

0
dτDr (t − τ )α〈c†2(τ )c2(τ )〉, (7)

where 〈d†
0(t) + d0(t)〉 and 〈c†2(τ )c2(τ )〉 indicate the average

vibrational coordinate extension and the average population
on site 2, respectively.

Solving the equation for the displacement q(t) we note
that there are two sources of displacement: (i) the action of
the charge itself which displaces the q(t) in proportion to its
population and delayed by the relaxation process and (ii) the
displacement caused by thermal excitations. In this paper we
are concerned with zero temperature so we include only (i).

Using the wide-band approximation,15

Dr (ω) = 1

ω + ω0 + iγ0/2
− 1

ω − ω0 + iγ0/2
, (8)

and its Fourier transform,

Dr (t) = i[e(iω0−γ0/2)t − e(−iω0−γ0/2)t ] = −2sin(ω0t)e
−γ0t/2,

(9)

and substituting Eq. (9) into Eq. (7), we get

q(t) = −2α

h̄

∫ t

0
dτ sin[ω0(t − τ )]e−γ0(t−τ )/2〈c†2(τ )c2(τ )〉,

(10)

where γ0 is the phonon relaxation rate induced by the active
vibration-phonon coupling. It is obtained by taking only the
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imaginary part of the active phonon self-energy � as

γ0(ω)/2 = 1

h̄
Im{�phonon(ω)} = 1

h̄

∑
s

|βs|2δ(h̄ω − h̄ωs).

(11)

The effective electronic system Hamiltonian can then be
expressed as15–17

Heff =
4∑

l=0

εlc
†
l cl + V

3∑
l=0

(c†l cl+1 + c
†
l+1cl) + F (t)c†2c2, (12)

where F (t) can be taken as the electron-vibration coupling
energy and is expressed as

F (t) = αq(t)

= −λ0

∫ t

0
dτ sin[ω0(t − τ )]e−γ0(t−τ )/2〈c†2(τ )c2(τ )〉,

(13)

with

λ0 = 2α2/h̄. (14)

The system density matrix ρ can be solved using the Liouville
equation,

ih̄
dρ

dt
= [Heff,ρ], (15)

with the initial condition that there is one electron at site 0.
The on-site electronic population at any time t is

Pl(t) = 〈c†l (t)cl(t)〉, with
4∑

l=0

Pl(t) = 1. (16)

The total system energy is

ET = Ee + Ep + El, (17)

with

Ee =
4∑

l=0

εl〈c†l cl〉 + V

3∑
l=0

〈c†l cl+1 + c
†
l+1cl〉, (18)

Ep = F (t)〈c†2c2〉, (19)

El = 1

2λ0ω0

{
ω2

0F
2 + Ḟ 2

}
. (20)

The three terms in Eq. (17) are the electron energy, the electron-
vibration energy, and the lattice energy, respectively. Since
the vibronic modes are treated classically, the lattice energy
can be evaluated using the definition of the dimensionless
displacement q(t) in Eq. (7), to generate a mode displacement
x(t). So we use El = 1

2Mω2
0x

2 + 1
2Mẋ2 with x = 1√

2Mω0
q

to obtain Eq. (20) (details can be found in the supporting
information). M is the effective mass of the vibronic mode at
site 2.

It is important to note that as shown in Eq. (7), and in the
absence of thermal noise, the displacement coordinate “q(t)”
is itself a function of the occupation of site 2 with a time
delay. This makes the problem intrinsically nonlinear and the
population self-consistently controls the local displacement
coordinates. If the thermal noise is included, the “q(t)” will
depend both on the population and the random fluctuations

induced by the environment. This approach is therefore in line
with that of Lakhno16,17 and differs from the pure fluctuation
assisted transport methods used in Refs. 25,40, and 41.

It is possible to compute the trajectory of Fig. 1 by
(i) allowing the mobile electron and stationary hole to interact,
(ii) allowing the bath coupling to include more modes,
(iii) permitting the density to disappear into a sink, and
(iv) including lattice modulation of the overlap V [| �Rij|].14,42

We here focus on describing the trajectory with a given start
site at t = 0, neglect the Coulomb interaction, and allow a
single mode to couple at a single impurity site only.

III. APPLICATION TO POLARON FORMATION

For the calculation we use energy units as eV, the time unit
τ0 = h̄

eV ≈ 0.65 fs, the unit of λ0 is in eV × τ−1
0 . We take εl =

0 (l = 0,1,3,4), ε2 = −0.2 eV, h̄ω0 = 0.1 eV. The impurity
energy lowering is �E = |ε2 − ε0|. We vary the parameters
V, λ0, and γ0.

A. Polaron formation and the band coupling

In all cases where there is bath coupling, the electron that
starts at t = 0 on a definite site and then obeys Eq. (15),
invariably reaches a steady-state population, irrespective of
whether a localized polaron has formed or not. Switching
the bath coupling on and off has a drastic effect on the
time dynamics, as can be seen by comparing Fig. 2(a) with
Fig. 2(b). As suggested by Zurek,7 the environment forces
the quantum particle to behave classically, after a certain
relaxation-decoherence time. Now consider the situation in
which the particle actually localizes at the impurity site; we call
this the polaron formation process. The reason for localization
is a combination of two effects: (i) the impurity site can have
a lower energy and (ii) it is coupled to a local vibration which
is in turn coupled to a dissipative bath. Without the vibrations,
the lower energy will not on its own cause localization.

It is useful to look at the localization dynamics in Fig. 2(b).
In this figure the impurity population P2 (in the stationary
state) at long times is bigger than the population on other sites.
Arrival or formation time of the polaron can be defined as the
time point at which population P2 reaches a certain value. In
the same way as done in the experimental measurement by
Lewis et al.26 we define the “arrival time” as the time at which
the target population reaches ∼(1 − e−1 ≈ 0.76) of its final
value. Thus we use the criterion,

P̃2(τp) = P ∞
2 (1 − e−1), (21)

here P̃2(τp) is the “time-averaged” value of P2 at time τp,
obtained by averaging the points within the range τp ± 50 fs.
P ∞

2 is the time-averaged value of P2 in the long time limit (P ∞
2

is plotted in the supporting information for varying λ0, γ0, and
V). This τp is the arrival time, also defined as the population
formation time.56

We now ask (a) when does a polaron form (for given values
of the vibronic coupling, impurity energy, and relaxation
parameters), and (b) when does the electron localize at
the impurity site for a given tunneling matrix element V?
Figure 3(a) plots the steady-state population for different
band couplings V with a fixed impurity energy lowering �E.
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FIG. 2. (Color online) Population distribution on different sites
shown as a function of time. εl = 0 (l = 0,1,3,4), ε2 = −0.2 eV, V =
0.1 eV, λ0τ0 = 0.01 eV, h̄ω0 = 0.1 eV, h̄γ0 = 0.04 eV, τ0 = h̄

eV ≈
0.65 fs. In the left top of panel (b), the green and blue lines indicate
the average values of P0 and P2, respectively. In the other panels the
red line indicates the average value of the oscillation shown in black.
No electron-vibration coupling [α = 0 in Eq. (2)] was used for panel
(a) and the dashed line indicates P2.

The population on site 2 decreases with increasing V , as the
population tends to equalize on neighboring sites. This means
that for V much larger than the averaged electron-vibration
coupling energy F (t), no polaron is formed, and the population
is delocalized and tends to be a number ∼1/N at each site
(strictly 1/N applies only to periodic boundary conditions).
Note that for a symmetric chain with one site coupling in
the middle only, the population at that one coupled site never
exceeds 0.5.57 This is an artifact of the simple model. When
coupling is extended to other sites and/or symmetry is broken,
the population can indeed reach 1. For a long chain, the local
density tends to 0 as 1/N, and thus longer chains need stronger
vibronic coupling to localize the particle. The combination
of the local energy lowering �E and the electron-vibration
coupling energy must be large enough to compensate for the
localization energy cost.

In Fig. 3(b) P2(t) is plotted for different values of V,
showing how strong the polaron localization is. For a small
value of V = 0.04 eV, the localized population is larger than
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FIG. 3. (Color online) (a) Stationary population distribution on
different sites l with different band coupling V . (b) Population (P2)
shown as a function of time. εl = 0 (l = 0,1,3,4), ε2 = −0.2 eV,
λ0τ0 = 0.01 eV, h̄ω0 = 0.1 eV, h̄γ0 = 0.04 eV, τ0 = h̄

eV ≈ 0.65 fs.
In panel (b) the red line indicates the average value of the oscillation
shown in black.

1
5 as one would expect, and the population (localized state)
formation time [in Eq. (21)] is longer. At higher V, the
localized population becomes smaller and the formation time
shortens since carriers reach their destination more quickly
[see Fig. 3(b) with V = 0.1 eV].

For a large V = 0.4 eV, the local population is fairly uniform
and we can no longer talk of localization or polaron formation
as shown in the bottom-right panel of Fig. 3(b). The population
reaches steady state very slowly and its long time average value
is of the order of 1

5 (see Fig. S3 in the Supplemental Material).57

The crossover occurs roughly when the half bandwidth 2V
exceeds the localization energy.

Besides the bond coupling V , the different total site number
N influences the population distribution. As shown in Fig. 4,
the middle site always has the largest population because
that is where the polaron forms. The population on the other
sites will decrease with increasing N . By assuming that the
defect and the electron-vibration coupling always occur on the
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FIG. 4. (Color online) Population distribution on site l shown
with different total site number N . In the X axis, 0 indicates the
middle site (N/2 with N being an even number). εl = 0 but with
the middle site energy εN/2 = −0.2 eV, V = 0.1 eV, h̄ω0 = 0.1 eV,
h̄γ0 = 0.04 eV, τ0 = h̄

eV ≈ 0.65 fs.

middle site, and that the starting condition is that the electron
begins to transfer from site 0, after a certain access time the
middle site will always have the largest population. The long
time population on each of the other sites will decrease with
increasing N .

B. Electron-vibration coupling and vibration-phonon
coupling relaxation rate

We now examine the influence of the electron-vibration
coupling λ0 and the vibration-phonon dissipation rate γ0 on
the population formation time; results are shown in Fig. 5(a).
We see that the formation time decreases with increasing λ0

but then saturates. The dissipation rate is crucial in localizing
the particle. This rate also determines the strength of the
oscillations as can be seen from Fig. 6. In large closed systems
one can in some limits arrive at polaron formation.14 But
in a physical molecular environment, energy dissipation is
necessary. Figure 5(b) is a three-dimensional (3D) plot of
the formation time as a function of V and λ0 (3D plots of
the formation time as a function of V and γ0 can be found
in the supporting information). The apparent turnover with
increasing V [Fig. 5(b)] in the population formation time
beyond V ∼ 0.06 eV for small electron-vibration coupling
λ0 occurs because for large V, the excitation relaxes into
a population that is no longer strictly speaking a localized
polaron. The population distribution is roughly constant in
this limit as exhibited in Fig. 5(b). The “population formation
time” should now be simply a population relaxation time (time
to reach the steady state).

C. Energy relaxation

Let us now apply these techniques to describe the ex-
periments of the Wolf and Harris groups.33,43 This last
observation could be another crucial and interesting variable
in materials/interfaces with low work functions and with large
polaron energies. This type of experiment has been carried out
with various organic overlayers.43 An example of the energy
relaxation scenario that matches the range of experimental
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FIG. 5. (Color online) (a) Population formation time τp [Eq. (21)]
shown as a function of the electron-vibration coupling param-
eter λ0 and vibration-phonon coupling relaxation parameter γ0.
(b) Population formation time τp [Eq. (21)] shown as a function
of the nearest neighbor site coupling parameter V and λ0. εl = 0 (l =
0,1,3,4), ε2 = −0.2 eV, V = 0.1 eV, h̄ω0 = 0.1 eV, h̄γ0 = 0.04 eV,
τ0 = h̄

eV ≈ 0.65 fs.

parameters is shown in Fig. 7. The relaxation of energy is faster
with increasing λ0. Here ice is grown with different thicknesses
on various metals. Charges are injected by femtosecond pulses
from the metal electrode into the interfacial image potential
band. From here the charges relax into the conduction band
of the ice where they start digging in and building polarons.
Depending on the thickness of the ice layer, and its amorphous
or crystalline nature, the polaron will form on different time
scales. The energy of the particle is monitored on a picosecond
scale by an energy and angle resolved photoemission process.
The thickness of the ice affects the coupling strength, the
frequency of the phonon modes, and the relaxation rate of the
water dipoles. The metastable charge will eventually relax back
into the metal but it has to tunnel through a barrier. The tunnel
rate depends on the energy of the electron, and the returning
charge can only tunnel to empty states inside the metal (above
the Fermi energy). No attempt is made to fit the data, but we
give a proof of principle. For the electron solvation problem,
the local energy lowering �E will be due to the electronic
polarization of the medium, and the induced rotation of the
water dipoles will produce terms very similar to the dynamic
bath terms in our Hamiltonian. Here we use the limit γ0 	 ω0

and also a large λ0 to simulate the vibronic coupling.
Figure 7 illustrates the energy relaxation as a function

of time. Wolf et al.33 have shown that the thinner the ice
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FIG. 6. (Color online) (a) Population P2 shown as a function of
time with different electron-vibration coupling parameter λ0 and the
vibration-phonon coupling dissipation rate relaxation parameter γ0 =
0.04 eV. (b) Population P2 shown as a function of time with different
phonon bath relaxation parameter γ0 and λ0τ0 = 0.01 eV. εl = 0
(l = 0,1,3,4), ε2 = −0.2 eV, V = 0.1 eV, h̄ω0 = 0.1 eV, τ0 = h̄

eV ≈
0.65 fs. The red line indicates the average value of the oscillation
shown in black.

layer, the faster the electron loses its energy to the bath,
deforming the medium. Figure 7 illustrates how this effect
can be simulated within the present model, showing how the
energy relaxation can be varied by varying the dissipation
rate γ0. The fast dissipation rate means rapid relaxation of the
lattice coordinates to their final values. This implies that the
energy reaches its optimal “polaronic” value in a shorter time.
This agrees with the arguments given by Wolf et al.33: Water
dipoles in thin layers are more mobile than in thick layers. A
realistic simulation would need a detailed consideration of the
relevant modes and coupling strengths. Temperature can be
built in by adding a noise term in Eq. (7) and carrying out the
full stimulation of the displacement, not just the relaxation.

IV. CONCLUSION

We have developed a methodology and demonstrated
that by considering quantum motion with bath coupling,
local energy differences, and energy dissipation, one can
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FIG. 7. (Color online) Total system energy ET shown as a
function of time with different vibration-phonon coupling dissipation
rate γ0 and �E = 0.2 eV. εl = 0 (l = 0,1,3,4), ε2 = −0.2 eV,
V = 0.1 eV, λ0τ0 = 0.8 eV, h̄ω0 = 0.01 eV, τ0 = h̄

eV ≈ 0.65 fs.

achieve dynamic localization of carriers. More generally we
can understand how a particle which started on a quantum
trajectory, becomes dephased as a result of the bath interaction.
This removes the quantum oscillations and one ends up with
a well-defined steady-state population on each site. The ion
displacements are treated by semiclassical Ehrenfest dynamics
which may introduce errors. The method is applicable to elec-
trons or excitons, and the bath modes can be any boson modes,
provided the bath coordinates can in good approximation, be
described in terms of semiclassical dynamics. Subject to the
previous restrictions, we can determine (by simulation) how
fast the localized polaron forms.

At long time, the quantum trajectory relaxes into a classical
distribution.7 The general sketch shown in Fig. 1 gives an
idea of the range of problems where the present method can
be applied. The conclusion reached here agrees in spirit with
those reached by Emin and Kriman1,44,45 using the Holstein
diatomic polaron lattice model. These authors showed that the
polaron formation depends critically on the tunneling energy
V and the width of the phonon Bloch band, with the population
formation time τp [Eq. (21)] potentially varying from 10−13

to 1 s. The phonon bandwidth plays a similar role to the
dissipation rate in our finite size model since once emitted
into the extended lattice, the energy of the phonons will not
return. But as pointed out right at the start, the semiclassical
treatment of the bath has its problems. The vibrations do not
see the “actual” but the expectation value of the charge density.
In addition, the zero point motion of the lattice is neglected. In
parameter ranges where phonon modes are well resolved, and
splittings larger or comparable to electron bandwidths,19 the
semiclassical approach will tend to overestimate the relaxation
times but still work well to obtain steady-state values.

Finally, we note that in the classical bath description,
temperature can be introduced by allowing thermal modulation
of the bath modes. Thus a localized polaron formed by
the dynamical terms can be dislodged by the thermal force
term15 which has to be introduced in Eq. (15). The thermal
fluctuations self-consistently modulate the local population
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and tend to prevent localization. They will cause hopping
transport in our model. However, it has been shown that
thermal fluctuations can also (under certain circumstances)
increase disorder and cause localization.46,47 In these cases,
one cannot say that the transport proceeds simply by hopping.
Motion takes place by way of a more subtle interplay of
coherent and incoherent processes. Here thermal molecular
motions cause large fluctuations in the intermolecular transfer,
which destroys the translational symmetry of the electronic
Hamiltonian and in turn localizes the charge carrier. It has
been suggested46,47 that the transport involves the simultaneous
presence of band carriers and incoherent states, which can be
dynamically localized and delocalized by thermal fluctuations.
Particles which at temperature t = 0 would normally want to
form localized populations at selected localization sites will,
at temperature T 
= 0, move both by coherent tunneling and

by hopping transport using the thermal forces which act on
diagonal and tunneling terms V [| �Rij|].14,42 However, given the
limited vibrational space one can use in practice, and all the
related unknowns, there is no guarantee that thermodynamic
limits will be reached in systems with wide energy separations.
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