
PHYSICAL REVIEW B 87, 094115 (2013)

Fast deterministic single-exposure coherent diffractive imaging at sub-Ångström resolution
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In coherent diffractive imaging (CDI), conventional image-forming optics are replaced by the solution of
an inverse scattering problem which obtains the exit surface wave from the diffraction pattern. To date CDI
implementations typically use nonlinear iterative solutions, often using more than one diffraction pattern, and have
been mainly implemented in the optical and x-ray regimes. Here we present single-exposure CDI reconstructions
of a region of a cerium dioxide nanocrystal, illuminated by a coherent electron probe, in which the positions of both
cerium and the lighter oxygen atoms are recovered simultaneously. We employ a fast deterministic algorithm
based on the iterative solution of a set of linear equations with input data obtained from the inverse Fourier
transform of the diffraction pattern. The solution of the linear equations proceeds using a conjugate gradient
least-squares method based on fast Fourier transforms. This allows regularization of the inversion problem by
iteration number, making it robust to experimental noise. This approach is successful where standard nonlinear
phase retrieval techniques for the same data set are not.
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I. INTRODUCTION

Coherent diffractive imaging (CDI) dispenses with the use
of lenses for imaging. CDI allows unaberrated representations
of the specimen, in terms of both the amplitude and phase
of the exit-surface wave, to be obtained, limited only by
the wavelength of the incident radiation. The phase of the
exit-surface wave is often the quantity of most interest from
a structural and physical point of view. In x-ray imaging zone
plates are often used as effective lenses1 and their limitations
have provided the impetus for the development of CDI by the
x-ray community.1,2 With advances in aberration correction for
the lenses in modern electron microscopes,3 the highest reso-
lution achieved to date for images is around 0.05 nm,4 about 25
times poorer than the diffraction limit for 300 keV electrons.
Further improvement in lens performance will require an ever
increasing effort for ever diminishing returns, an important
reason for implementing CDI using electrons. In addition to
resolution gains, electron CDI provides improved sensitivity to
thin samples or light atoms.5 The raison d’etre for electron CDI
has also been discussed in a recent paper by Humphry et al.6

Humphry et al.6 obtained the object transmission function
for several gold nanoparticles using electrons, resolving atomic
plane fringing with a spacing of 0.236 nm. Putkunz et al.7

also recently demonstrated ptychographic imaging using a
scanning transmission electron microscopy (STEM) probe to
identify structure in a boron nitride helical cone at a resolution
close to 0.1 nm. The success of ptychography derives from the
overdetermination of the reconstruction of the transmission
function by taking data at several (accurately determined
or fitted) overlapping positions of the imaging probe. This
overcomes the issues of sensitivity to noise and the ambiguities
present in the usual nonlinear phase retrieval methods,2,8

for which only a limited number of single-exposure results
using electrons have been reported.9–11 Ptychography also
necessarily provides the specimen’s transmission function over

an extended region. We demonstrate an approach to CDI which
is single-exposure (advantageous for radiation sensitive spec-
imens, dynamic surfaces and systems, small nanoparticles,
etc.), fast (allowing real-time imaging), deterministic, robust
to the presence of noise, and which allows sub-Ångström
resolution.

II. EXPERIMENT

Diffraction patterns of a cerium dioxide nanoparticle were
obtained using the experimental setup in STEM shown
schematically in Fig. 1(a). An atomic scale coherent electron
probe is incident on the specimen to form a shadow image, also
known as a Gabor hologram or Ronchigram. A JEOL R005
aberration corrected microscope with a cold field-emission gun
(FEG)12 operating at an accelerating voltage of 300 kV and
with a probe-forming convergence semiangle of 24 mrad was
used (implying an intrinsic resolution of 0.08 nm in real space).

The probe amplitude in the back focal plane was obtained
from a bright-field image of the probe (a diffraction pattern
taken without the presence of the sample which is effectively
an image of the probe forming aperture). The phase related
properties of the probe were obtained from the aberrations of
the electron optical probe forming corrector measured using
the microscope software. However, the nominal defocus of 91
nm was refined to 77 nm, as described in Sec. IV. Using this
defocus value and the measured aberrations we computed the
probe intensity at the specimen shown in Fig. 1(b).

Figure 1(c) shows a 1024 × 1024 pixel far-field diffraction
pattern obtained by illuminating the edge of a cerium dioxide
nanoparticle, cropped from the full field 2048 × 2048 pixel
detector array. The larger array was used to obtain the wave
in the exit surface plane of the nanoparticle. The image was
recorded using a Gatan Ultrascan 1000 CCD camera with a
nominal camera length of 12 cm and a pixel size at the detector
plane of 16 μm. It should be noted that in the limit of a large
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FIG. 1. (Color online) (a) Schematic representation of the STEM
“shadow imaging” mode. (b) Intensity of the probe at a defocus of
77 nm (the exit surface plane). (c) Central portion (1024 ×
1024 pixels) of the 2048 × 2048 pixel diffraction pattern.

probe forming aperture it can be shown that, in this imaging
geometry, the diffraction pattern is a scaled representation of
a defocussed image of the object.

III. THE EXIT SURFACE WAVE

A. Theoretical framework

We now discuss the recovery of the wave at the exit surface
of the specimen from a diffraction pattern such as that shown in
Fig. 1(c). One possible approach is to use one of the nonlinear
iterative algorithms that can, in principle, be used to recover
the exit surface wave.2,8 Such approaches are multidimensional
optimization procedures, very sensitive to measurement noise,
and can stagnate in local minima in solution space. There is
no formal method to ensure uniqueness of the solution.2,8 We
demonstrate a more robust deterministic approach which is
widely applicable, with its genesis in the work of Martin and
Allen and co-workers.13–17 The wave at the exit surface of the
specimen is written as a sum of the illumination ψillum(r) and
the modification thereof by the object ψobj(r):

ψexit(r) = ψillum(r) + ψobj(r), (1)

where r is a vector in the exit surface plane of the object.
For the reconstruction, the phase of the illumination incident
on the nanocrystal was constructed in the back focal plane
of the probe forming lens from the aberration coefficients, as
discussed in Sec. II. The intensity of the probe in real space is
shown in Fig. 1(b).

The inverse Fourier transform of the diffraction pattern,
denoted F−1[I (q)], is the autocorrelation of the exit surface
wave. Using Eq. (1) we can write

F−1[I (q)] = ψillum(r) ⊗ ψillum(r) + ψobj(r) ⊗ ψobj(r)

+ψillum(r) ⊗ ψobj(r) + ψobj(r) ⊗ ψillum(r), (2)

where ⊗ represents the correlation operation. For example,
ψillum(r) ⊗ ψobj(r) = ∫

ψ∗
illum(r′)ψobj(r + r′)dr′. We assume

FIG. 2. (Color online) (a) Modulus of the inverse Fourier trans-
form of the diffraction pattern in Fig. 1(c) after first subtracting the
autocorrelation of the illumination. The roughly diamond shaped
solid blue line is the area outside of which the autocorrelation of the
object is assumed to be zero. (b) Detail of the area indicated by the
dotted square outline in (a).

that the illumination is known so that the autocorrelation of the
illumination, the first term on the right-hand side of Eq. (2), is
also known and may be subtracted from the autocorrelation of
the exit wave.

The inverse Fourier transform of the diffraction pattern
shown in Fig. 1(c) minus the autocorrelation of the illumination
is shown in Fig. 2(a). In Fig. 2(b) we show the detail of the
area indicated by the dotted square outline in Fig. 2(a). The
autocorrelation of the object, given by the second term in
Eq. (2), is assumed to be zero outside the area indicated by
the roughly diamond shaped blue solid line. The region of the
illumination to which the object is confined, which determines
the region outside of which the autocorrelation of the object is
zero, is discussed later in the paper.

Note that in the two cross terms in the second line of
Eq. (2) the unknown object function occurs linearly. If certain
constraints on how the object is illuminated are fulfilled then
there are sufficient linear equations in the autocorrelation
(minus the autocorrelation of the illumination) inside the
region where ψobj(r) ⊗ ψobj(r) is assumed to be zero [Fig. 2(a)
in this case] to solve unambiguously for ψobj(r).13 In contrast
to previous work,13–17 we assume here that the perturbation
of the illumination by the object is small. In that case
ψobj(r) ⊗ ψobj(r) is a second order term and is neglected (at
least initially since we can make a correction as described in
the next subsection). This means that the cross terms over the
whole autocorrelation plane are amenable to analysis in a linear
fashion, not just those in the area where ψobj(r) ⊗ ψobj(r) is
strictly zero. This provides us with a vastly expanded data set
to determine the same number of unknown exit wave values
(defined by the area to which we believe that the object is
confined). The expanded data set includes the structurally
significant portion of the cross-correlation function [Fig. 2(b)].
This leads to a substantially more overdetermined inverse
problem which is more robust to noise, a factor crucial to
the results presented in this paper.

B. The linear equations

We briefly describe the setting up of the linear equations
we solve to obtain ψobj(r) in Eq. (1). We begin by writing the
correlations on the second line of Eq. (2) (the cross terms) in
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the form of discrete sums as

f cross
n =

∑
m

ψ illum
n+m ψ∗obj

m +
∑
m

ψobj
m ψ∗illum

m−n . (3)

The labels “illum” and “obj” in Eq. (2) have been moved to be
superscripts to facilitate the discrete notation.

Separating this into real and imaginary components, de-
noted by the superscripts (r) and (i) respectively, we obtain

f cross(r)
n + if cross(i)

n

=
∑
m

(
ψ

illum(r)
n+m + iψ

illum(i)
n+m

)(
ψobj(r)

m − iψobj(i)
m

)
+

∑
m

(
ψ

illum(r)
m−n − iψ

illum(i)
m−n

)(
ψobj(r)

m + iψobj(i)
m

)
. (4)

Writing this in matrix form we have[∑
m

(
ψ

illum(r)
n+m + ψ

illum(r)
m−n

) ∑
m

(
ψ

illum(i)
n+m + ψ

illum(i)
m−n

)
∑

m

(
ψ

illum(i)
n+m − ψ

illum(i)
m−n

) ∑
m

( − ψ
illum(r)
n+m + ψ

illum(r)
m−n

)
]

×
[

ψ
obj(r)
m

ψ
obj(i)
m

]
=

[
f cross(r)

n

f cross(i)
n

]
. (5)

This is the set of linear equations which we now solve.

C. Implementation of the linear inversion process

We use the conjugate gradient least squares (CGLS)
method to solve the system of linear equations17 and extend
our previous work by introducing regularization by iteration
number, a crucial new component in the success of the method.
Due to the particular structure of the coefficient matrix in this
particular problem, the CGLS method can be cast in the form
of a memory efficient algorithm based on Fourier transforms,
dubbed iterative linear retrieval using Fourier transforms
(ILRUFT).17 The CGLS method coupled with regularization
by iteration number is more robust to noise than solving the
linear system by singular value decomposition (SVD) and
then truncating the insignificant singular values. The CGLS
method operates in a Krylov subspace that is defined in terms
of both the coefficient matrix and the right-hand side of the
linear equations, while the SVD approach depends solely on
the coefficient matrix.18 The Krylov subspace is adapted in
an optimal way to the specific right-hand side, while the SVD
basis is only optimal if no information about the right-hand side
is utilized.18 Thus the CGLS approach picks up the physical
components of the solution first and spurious information,
mostly attributed to noise, is excluded by a judicious truncation
of the iterations. In a model problem, including simulations
of noise, the residual [a measure of how well the right-hand
side of Eq. (5) is reproduced] decreases monotonically with
iteration number. However, after a certain number of iterations
the fidelity of the solution (i.e., how far away the current
solution of the set of linear equations is from the true object
and which can be explicitly monitored in a model problem)
stops improving and begins to deteriorate. This is because basis
vectors in the Krylov subspace that are corrupted by noise start
contributing to the solution.

Using an approach based on CGLS makes a single-
exposure retrieval possible but considerably more problematic

if the standard nonlinear approaches to phase retrieval are
employed, where every step in the process is affected by
noise. Further improvement can be obtained by estimating
ψobj(r) ⊗ ψobj(r) from our solution, subtracting this from the
autocorrelation (already having subtracted the autocorrelation
of the illumination) and repeating the linear solution. Even
when the nonlinear term is significant numerical tests that we
have carried out have shown this approach to be successful.

The area to which the object is assumed to be confined, or
in other words the region for which we obtain a solution, was
defined by the overlap between the edge of the nanoparticle and
the spatial extent of the illumination in the sample plane. The
spatial extent of the probe was assumed to be limited to 0.05
of the maximum value of the probe amplitude. The edge of the
nanoparticle can be approximately identified by approximating
the phase in the diffraction plane as that of the illumination (the
amplitude being the square root of the measured diffraction
pattern) and propagating to the exit surface plane. We note
that a tight object support19 is not necessary for the success
of the retrieval, thus allowing some latitude with respect to a
knowledge of the probe position. Figure 3(a) shows how the
retrieval, treating the whole autocorrelation plane as being
linearly related to ψobj(r), proceeds by viewing the phase
of the transmission function of the object. The first iteration
already yields a good result. It is judged that the best result is
obtained after three iterations. Thereafter ill-determined basis
vectors start to pollute the solution, as can be seen by the
noisier result obtained after seven iterations. We note that more
noise is evident in all of the solutions at the bottom edge of
the object support where the illumination is weaker. After
100 iterations the result is so corrupted that it bears no
resemblance to the structure, which can be confirmed by
taking a high-angle annular dark-field (HAADF) image of
the specimen, as we will discuss in the next section and which
is shown in Fig. 4(a). Using the result at the third iteration
we estimate ψobj(r) ⊗ ψobj(r) and subtract this (and the
autocorrelation of the illumination) from the autocorrelation
in Eq. (2). Having made this correction we then repeat our
inversion. This gives the results shown in Fig. 3(b). Once again,
regularizing by iteration number was used and termination
occurred after three iterations and this result has a reduced
residual, indicating an improved solution.

D. Comparison with nonlinear iterative methods

We next compare the behavior of two nonlinear iterative
CDI algorithms to that of ILRUFT. We use the error reduction
algorithm (ERA) and the hybrid input-output (HIO) method
with a feedback parameter β = 1.2,8,20,21 In each case we
seed the nonlinear retrieval with the result obtained after
three ILRUFT iterations (post nonlinear correction), shown
in Fig. 3(b). In Fig. 3(c) we see that for increasing iteration
number the ERA method moves away from this result rapidly
as it is compromised by measurement noise in subsequent
iterations. The same happens in the case of HIO, as can be
seen in Fig. 3(d). Seeding either the ERA or HIO methods
with a large number of other random starting points did not
yield any solution approaching the quality of that obtained
using the linear inversion procedure.
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FIG. 3. (Color online) (a) Phase of the transmission function of the object obtained from the diffraction pattern shown in Fig. 1(c) after
1, 3, 7, and 100 iterations of ILRUFT. (b) Result obtained after correcting the autocorrelation for the nonlinear autocorrelation of the object
obtained in (a) after three iterations. (c) Result of using the ERA, seeded with the result in (b) after three iterations. (d) Similar results for the
HIO approach.

IV. VALIDATION OF THE APPROACH

The structure of the nanoparticle can also be explored by
taking a HAADF image. This is shown in Fig. 4(a). Atoms
contribute to the image contrast as the square of their atomic
number Z (hence this mode of imaging is also known as
Z-contrast imaging). Therefore columns of heavier cerium
atoms can be seen but not the lighter oxygen atoms. The
phase image shown in Fig. 3(b) (the exit surface wave divided
by the illumination function describing the probe, i.e. the
transmission function) after three ILRUFT iterations (post
nonlinear correction) is shown in position relative to the
HAADF image in Fig. 4(b), and a portion excised from it
is overlaid on the HAADF image in Fig. 4(d).

The nominal defocus value of 91 nm (underfocus) esti-
mated from the microscope software was refined during the
reconstruction procedure using the fact that the dominant
effect of defocus on the object reconstruction was to scale
the interatomic distances between the columns of atoms in
the retrieved phase images [such as that shown in Fig. 4(b)].
Defocus was adjusted until the interatomic distances were in
register with the HAADF image in Fig. 4(a), yielding a refined
defocus of 77 nm.

In Fig. 4(c) we show the phase image obtained indepen-
dently for a second probe position, as indicated, which slightly

overlaps the first probe position. This solution was obtained in
the same fashion as that in the first position [Fig. 4(b)]. This is
also overlaid, suitably cropped (and with no overlap with the
first phase image), on the HAADF image in Fig. 4(d). We note
that in the region of overlap the images are in fact consistent
with each other.

We note that atomic columns with a few atoms near the
edge of the specimen are resolved in the recovered phase,
but this is not the case for the HAADF image. We suggest
that observation of this unstable edge is facilitated by single-
exposure imaging. Even more remarkably, columns of oxygen
atoms between the cerium atoms are evident in the recovered
phase but are not visible in the HAADF images, as we will
now discuss.

From the structural information we have obtained from
the specimen, we surmise that the structure is as shown in
Fig. 5(a). In Fig. 5(b) we show a simulation of the diffraction
pattern in Fig. 1(c), which is repeated in Fig. 5(c) for ease of
comparison. The simulation takes into account the imaging
conditions [the same probe as shown in Fig. 1(b)], temporal
incoherence corresponding to an energy spread in the source
of 0.5 eV,12 an effective source size with FWHM 0.07 nm,12

and the assumption that the particle adopts the energetically
stable cubeoctahedral morphology.22 The CDI reconstruction
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FIG. 4. (Color online) (a) HAADF image of the nanoparticle.
(b) The phase image shown in Fig. 3(b) (the exit surface wave divided
by the illumination function describing the probe, i.e. the transmission
function) after three ILRUFT iterations post nonlinear correction
is shown in position relative to the HAADF image in Fig. 4(a).
(c) Phase image obtained independently for a second probe position,
as indicated, which slightly overlaps the first probe position. (d)
Suitably cropped portions of the phase images in (b) and (c) overlaid
on the HAADF image in (a).

obtained from the simulated diffraction pattern is shown in
Fig. 5(d) and once again, for comparison purposes, the overlay
in Fig. 4(d), for the probe position indicated in Fig. 4(b) is
repeated in Fig. 5(e). Line scans over oxygen and cerium atom
positions, as indicated in Figs. 5(d) and 5(e), are compared in
Fig. 5(f). It should be noted that between 0.1 and 0.2 nm, where
there is a column of oxygen atoms, both theory and experiment
indicate this and are in close agreement. The column of oxygen
atoms on the other side of the cerium column is not clearly
evident in either the result obtained from experiment or the
simulation, due to the morphology of the specimen and how
the beam interacts with it.

FIG. 5. (Color online) (a) Model structure of the edge of the CeO2

nanoparticle (the indicated rows are cerium atoms). Simulation of the
diffraction pattern in Fig. 1(c) [reproduced here in panel (c) for ease
of comparison] is shown in (b). The CDI reconstruction obtained
from the simulated result in (b) is shown inside the dashed outline
and overlayed on the experimental Z-contrast image in (d). This can
be compared with the experimental result shown in (e). Line scan
over oxygen and cerium atom positions, as indicated in (d) and (e),
and labeled Sim and Exp, respectively, are compared in (f).

V. SUMMARY AND CONCLUSION

We have demonstrated a fast deterministic approach to CDI,
based on the iterative solution of sets of linear equations.
By suitably truncating the number of iterations, the fitting
of ill-determined components can be avoided, a control not
afforded by the usual nonlinear CDI algorithms. This has
allowed single-exposure retrievals of the transmission function
of a cerium dioxide nanoparticle in which both cerium and
the lighter oxygen atoms were observed simultaneously. A
detailed simulation of the experiment, including the retrieval
step, yielded a phase change due to transmission through the
specimen in close agreement with that observed. In this method
there is no restriction on the size or position of the object,
provided it is illuminated by the beam. The extent in Fourier
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space of the illumination is the primary determiner of the
resolution.
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