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Dynamically strained ferroelastics: Statistical behavior in elastic and plastic regimes

X. Ding,1,2,* T. Lookman,2 Z. Zhao,1 A. Saxena,2 J. Sun,1 and E. K. H. Salje2,3,*

1State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China
2Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

3Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, United Kingdom
(Received 22 October 2012; published 20 March 2013)

The dynamic evolution in ferroelastic crystals under external shear is explored by computer simulation of a two-
dimensional model. The characteristic geometrical patterns obtained during shear deformation include dynamic
tweed in the elastic regime as well as interpenetrating needle domains in the plastic regime. As a result, the statistics
of jerk energy differ in the elastic and plastic regimes. In the elastic regime the distributions of jerk energy are
sensitive to temperature and initial configurations. However, in the plastic regime the jerk distributions are rather
robust and do not depend much on the details of the configurations, although the geometrical pattern formed after
yield is strongly influenced by the elastic constants of the materials and the configurations we used. Specifically,
for all geometrical configurations we studied, the energy distribution of jerks shows a power-law noise pattern
P (E) ∼ E−(γ−1)(γ − 1 = 1.3 − 2) at low temperatures and a Vogel-Fulcher distribution P (E) ∼ exp-(E/E0)
at high temperatures. More complex behavior occurs at the crossover between these two regimes where our
simulated jerk distributions are very well described by a generalized Poisson distributions P (E) ∼ E−(γ−1)

exp-(E/E0)n with n = 0.4–0.5 and γ − 1 ≈ 0 (Kohlrausch law). The geometrical mechanisms for the evolution
of the ferroelastic microstructure under strain deformation remain similar in all thermal regimes, whereas their
thermodynamic behavior differs dramatically: on heating, from power-law statistics via the Kohlrausch law to
a Vogel-Fulcher law. There is hence no simple way to predict the local evolution of the twin microstructure
from just the observed statistical behavior of a ferroelastic crystal. It is shown that the Poisson distribution is
a convenient way to describe the crossover behavior contained in all the experimental data without recourse to
specific scaling functions or temperature-dependent cutoff lengths.
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I. INTRODUCTION

The study of criticality in externally driven inhomogeneous
systems without order parameter conservation (model A in the
Hohenberg-Halperin taxonomy1) has advanced in two direc-
tions. First, theoretical considerations have led to the idea of
flickering noise and distribution functions for the expectation
values of avalanche sizes, their energies, and the power spectra
of the excitations.2,3 Second, such distribution functions have
been measured by acoustic emission experiments and direct
optical observations of avalanches.4–7 In this paper we use the
term “jerk” to describe any discontinuity in energy leading to
so-called avalanches, pinning and depinning events of needle
domains, independent of their geometrical origin. Jerks in our
computer simulations appear as sudden changes of the energy
content of the sample exactly as measured previously in fer-
roelastic and martensitic materials.5,6,8 Computer simulations
have helped to identify the dynamics of domain movements in
ferroelastic and martensitic materials, and we have previously
identified the two main regimes.8,9 At low temperatures, we
found power-law distributions of the energy of avalanches.
At high temperatures, when the sample is still ferroelas-
tic but approaches the melting point, we found thermally
excited Vogel-Fulcher distributions. This result showed that
the well-known power-law statistics associated with athermal
martensitic behavior is not universal but restricted to low-
temperature dynamics, i.e., to temperatures below the Vogel-
Fulcher temperature (TVF).8 The crossover between these two
regimes is unknown, and it is the purpose of this study to
investigate the distribution function of jerks and analyze how
this distribution depends on intrinsic sample properties.

In this paper, we use a two-dimensional model previously
studied8 to explore the driven dynamic behavior of thin
ferroelastic films with different elastic constants (K1) and
different initial configurations. Our model is constructed to
be generic for all ferroelastic phase transitions by choosing as
order parameter the shear angle, which leads to ferroelastic
twinning. This twinning and the mobility of the twin walls
defines ferroelasticity.10 Comparing this configuration with
the ferroelastic transition between cubic and tetragonal phases
in SrTiO3 at 105 K, we focus on the modeling of a plane
perpendicular to the twin plane (i.e., our axes are [101] and
[1̄01] of the Pm3̄m setting). Equivalent planes can be found
in all ferroelastic systems.10

We find that the application of shear in thin ferroelastic
films generates complex microstructures, including dynamic
tweed in the elastic regime as well as interpenetrating needle
domains in the plastic regime. As a result, the statistics of
jerk energy in the elastic regime differ from that in the
plastic regime, e.g., power-law distributions of jerk energy
are observed in the elastic regime, whereas noise in the
plastic regime follows stretched exponential distributions.
Interestingly, we find that the statistics of jerk energy with
its stages of power laws, stretched exponentials, and simple
Vogel-Fulcher behavior are rather robust in the plastic regime
and do not depend much on the details of the configurations,
i.e., for the dynamical distribution function of jerks in the
plastic regime, we find that the crossover regime between
power law and Vogel-Fulcher region can be best described
by a stretched exponential (Kohlrausch) distribution4 with
surprisingly universal stretching exponents.
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We suggest experiments to validate our predictions. Previ-
ous experimental studies have shown that ferroelastic crystals
and martensites do indeed display avalanche properties, which
can be seen as jerks or acoustic emission when the samples are
subjected to external strain.5 These experiments are conducted
on time scales that are compatible with the time scale of the
waiting time between jerks. Our finding is that the observed
waiting time statistics in the plastic regime, which may be seen
in experiments, follow a generalized Poisson distribution6,7

P (t) ∼ t−(γ−1) exp-(t/τ )n so that some systems will obey a
simple exponential distribution with γ − 1 ≈ 0 and n = 1, and
others will follow the stretched exponential with γ − 1 ≈ 0
and n = 0.4.

This paper is organized as follows: in Sec. II, we briefly
introduce the model and methods for our MD simulations.
Section III focuses on the results of the MD simulations. We
first check the evolution of microstructure under applied shear,
and then calculate the statistics of jerk energy in the plastic and
elastic regimes. In Sec. IV we compare our results to theoretical
predictions and experimental results.

II. THE SIMULATION

Our model is based on interatomic interactions11 rather
than coarse-grained simulations12 because the elementary step
leading to advancing twin boundaries is known to be related
to the sideways movement of kinks inside these boundaries.13

Such atomic scale kinks are well reproduced by atomic scale
simulations, whereas coarse-grained methods average over
such fine structural details.14 The interatomic potentials were
chosen to reproduce most closely the mesoscopic Landau
potentials of the relevant materials.15–17 As the shear angle
of ferroelastic materials18 is typically below 4◦ compared
with many martensitic materials that often have larger shear
angles, we constructed the model so that the shear angle
was fixed to 4◦, a good compromise for metallic as well as
oxide materials. The simulations were conducted with three
interactions in a monoatomic, two-dimensional lattice.8 The
three interactions are (1) harmonic nearest-neighbor inter-
actions (elastic springs), U (r) = K1(r − 1)2, black springs
in Fig. 1; (2) double-well potentials between next-nearest

FIG. 1. (Color online) The model with nearest-neighbor (black
springs), next-nearest-neighbor (red springs), and third-nearest-
neighbor (dashed green lines) interactions.

neighbors, U (r) = −10(r − √
2)2 + 2000(r − √

2)4; diago-
nals in the square lattice, red springs online in Fig. 1; (3)
fourth-order interactions (springs) between the third nearest
neighbors that are parallel to the nearest-neighbor interactions
with U (r) = −(r − 2)4 and long dashed green lines in Fig. 1.
The elastic constant K1 is for the nearest-neighbor interac-
tions, and r is the distance vector. The resulting potential is a
sum of the three interactions. The springs (1) and (3) define
the elastic background and define the thickness of interfaces.
The Landau springs (2) define the double-well potential of the
ferroelastic phase transition. They define a second-order phase
transition inspired by the transition of SrTiO3.19 Extensions
to other materials are straightforward and would rescale the
temperature and the twin angle, while all other parameters
remain generic. An extension to first-order phase transitions is
easy to implement but does not add anything new because all
studies are performed deep in the ferroelastic phase far below
the transition temperature.

Our simulations follow the tradition of large-scale simula-
tions with open- (free-) boundary conditions and interatomic
potentials.18,20–23 Periodic boundary conditions are not used
because domain boundaries have been observed to nucleate
as needle domains from the crystal surface,10,21 which obvi-
ously cannot be seen in simulations using periodic boundary
conditions. In our simulations, we observed this nucleation
process and also the disappearance of needle domains and
kinks in domain walls into the crystal surface so that the lack
of periodic boundary conditions is justified. The computer
code LAMMPS was used with an NVT ensemble.

The calculated cell has one million particles and contains
two buffer layers at the top and bottom of the two-dimensional
sheet. These buffer layers were sheared by the external
boundary conditions (fixed external strain, hard boundary
conditions). Limited computer power restricts us to simula-
tions in two dimensions. From the mean-field approximation,
we believe that this choice is reasonable because it was
shown previously that the addition of further layers did not
change the microstructures significantly.18 We have not tested
the results for bulk materials with thicknesses of the same
order of magnitude as the lateral dimensions. A study of
three-dimensional materials would be highly desirable but also
extremely costly in computer time.

The initial condition contained a simple twin configuration
for the hard material [K1 = 20, Fig. 2(a)] and a sandwich
configuration for both, a hard material [K1 = 20, Fig. 2(b)] as
well as a soft material [K1 = 10, Fig. 2(c)]. The parameters
in the potential were chosen to give an initial shear angle of
2.86◦. The system was then relaxed using a conjugate gradient
refinement procedure to find the optimal position for each
lattice point and a modified shear angle. Molecular dynamics
was then performed to anneal each configuration at a given
temperature for 106 time steps. In all cases, the only relaxations
that occurred during this procedure were surface relaxations;
no further microstructures developed. After this relaxation,
external strain was applied via a global shear of the two
boundary layers. The shear was performed slowly over 2 × 108

time steps, while the temperature of the sample was held
constant by the Nosé-Hoover thermostat.24 For comparison,
the time scale of phonon excitation (one vibration) was about
1000 time steps.
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FIG. 2. (Color online) The initial configurations used in our calculation. (a) Hard material with simple twin configuration, (b) hard material
with sandwich twin configuration, and (c) soft material with sandwich twin configuration.

III. RESULTS

For all the three configurations shown in Fig. 2, the response
of the potential energy for the different systems to the applied
strain is similar. Specifically, considering the hard material
with the initial sandwich configuration [Fig. 2(b)] as an
example, increasing applied strain is initially compensated by
an elastic deformation until a threshold is reached (point A in
Fig. 3), after which the potential energy drops dramatically.
This is followed by a plateau in which detwinning occurs.
With further loading, the potential energy increases again,
which indicates that most of the detwinning process has been
completed (after point C in Fig. 3), and the deformation is
mainly from the elastic deformation of the obtained domain.

In the elastic regime, for strains below point A in Fig. 3,
we find a remarkable structural instability. In sandwich
configurations [Fig. 2(b) and Fig. 2(c)], we observe the
formation of dynamic tweed, a flickering (i.e., dynamic change
of the pattern over short time scales) cross-hatched pattern, as
shown in Fig. 4(a). In contrast to static- or disorder-induced
tweed due to compositional variations in which the tweed
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FIG. 3. (Color online) Potential energy (Pe) versus applied strain
(ε) curve for the hard material with sandwich twin configuration under
applied shear strain at high temperature 1.25 TVF (here and elsewhere,
TVF refers to the Vogel-Fulcher temperature for the hard material with
a simple twin configuration).

direction is the same as the elastically soft direction for the
transformation, the orientation of the tweed pattern here is
not in the direction of the twin boundaries. In the simple
twin configuration [Fig. 2(a)], we find no dynamic tweed
but simply the advance of the stable domain wall via kink
propagation at the interface [Fig. 4(b)]. Further calculations
show that the evolution of microstructure in the elastic regime
is almost the same at different temperatures. The difference in
the evolution of microstructure between the simple twin and
sandwich configuration arises from the distribution of stress
for twinning in the configuration under a given external shear.
Once the external strain was applied via a global shear of
the two boundary layers, as shown in Fig. 2, the distribution
of stress for twinning in the simple twin configuration is not
homogeneous, and the maximum stress lies at the corner of
the simple twin model. Thus, needle domains nucleate at the
corner at very early stage and propagate to the free surface at
the other end. In contrast, the sandwich configuration deforms
more uniformly under global shear (Fig. 2); thus, dynamic
tweed is nucleated for the detwinning process, which is similar
to the dynamic tweed prior to temperature-induced martensitic
transformation.17,22

In the plastic regime after yield, for strains between point
A and point C in Fig. 3 and for all the three configurations in
Fig. 2 at high temperature (1.25 TVF, here and elsewhere, TVF

refers to the Vogel-Fulcher temperature for the hard material
with simple twin configuration, which is determined by the
statistics in the plastic region), we find that the unstable domain
in the elastic regime collapses into a multitude of twinned
nanodomains over a very small strain regime (from point A to
B). The domain patterns formed at point B (Fig. 3) are shown
in Figs. 5(a), 5(c), and 5(e). These twin patterns do not change
unless we shear further, and they are stable due to a balance
between external and internal forces. The patterns will decay
due to the nucleation of kinks formed in the twin boundary.
Similar to that in Ref. 8, the kinks will propagate to the surface
through a stick-and-slip mechanism, where the intersections
of the horizontal and vertical twins leads to pinning that can
be overcome by increasing a control parameter such as the
macroscopic shear. As a result, the twin boundary will move
down the sample and lead to the occurrence of detwinning. It
is this process that leads to the elimination of twin patterns
formed in the sample. However, the formed twin patterns
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FIG. 4. (Color online) The microstructural evolution in the elastic regime (before point A in Fig. 3). (a) The dynamic tweed formed in the
hard and soft materials with sandwich twin configuration [see Figs. 2(b) and 2(c)]. (b) Nucleation and propagation of needle twins in the hard
material with simple twin configuration. The behavior in the elastic regime is independent of the temperature of the system. The color scheme
represents the local shear angle from the underlying bulk structure (|�vertical| − 4◦ + �horizontal); for details, see Ref. 8.

FIG. 5. (Color online) Twin patterns at low yield point (e.g., point B in Fig. 3). The twin density decreases with temperature for the hard
material but not significantly for the soft material. Shown are domains formed at high temperature (a), (c), and (e) and low temperature (b), (d),
and (f). Here, (a) and (b) are for hard materials with simple twin configuration; (c) and (d) show those for a hard material with the sandwich
twin configuration, and (e) and (f) are for a soft material with the sandwich configuration. The color scheme represents the local shear angle
from the underlying bulk structure (|�vertical| − 4◦ + �horizontal); for details, see Ref. 8.
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FIG. 6. (Color online) Microstructure at and after point C in Fig. 3. At point C, most of the region has been switched to the new orientation
(a); further loading will lead to a perfect single domain at point D. The above behavior is independent of the configurations we used (in Fig. 2).
The color scheme represents the local shear angle from the underlying bulk structure (|�vertical| − 4◦ + �horizontal); for details, see Ref. 8.

are very sensitive to the change in temperature. As shown in
Figs. 5(b), 5(d), and 5(f), when the system is cooled to a lower
temperature (0.125 TVF), the twin pattern in hard materials for
both simple twin and sandwich twin configurations changes,
and the density of twin boundaries decreases dramatically;
whereas the twin density in soft materials with sandwich twin
configuration does not change much.

When the applied strain reaches point C in Fig. 3, we
find the detwinning process is almost complete, except for
a small region to the left [Fig. 6(a)]. Further loading leads to
a detwinning process in the remaining region, and finally the
system changes to a perfect single domain crystal [as shown
by point D in Fig. 3 and Fig. 6(b)].

We now analyze the energy distribution of the jerks in the
plastic regime between point B and C in Fig. 3. The obtained
potential energy (Pe) versus applied strain (ε) curves for the
three configurations in Fig. 2 are further analyzed in terms of
jerk energy. We resort to measurements of the squared first
derivative of Pe as a function of the applied strain ε and then
calculate the probability P(E) to find jerks at a given energy E.
The details on the statistics of jerks are described in Ref. 8. We
find three major regimes of jerk distribution (Figs. 7 and 8) with
change of temperature. The first regime is at high temperatures,
where thermal excitations lead to the Vogel-Fulcher behavior
of the energy distribution of jerks. The left panels of Figs. 7(a),
7(c), and 7(e) show a simple exponential distribution of P (E)
for hard and soft materials with simple twin and sandwich twin
configurations. The thermal behavior does not differentiate be-
tween the configurations. At lower temperatures (0.125 TVF),
the distribution functions for the above three configurations,
as shown in the right panels of Figs. 7(b), 7(d), and 7(f),
change to a generalized Poisson distribution P (E) ∼ E−(γ−1)

exp-(E/E0)n, where the stretching exponent n is surprisingly
robust in our simulations. The stretching exponent n is 0.4, and
γ − 1 is close to 0. At very low temperatures, we can even see
that the energy distributions of the jerks P (E) in the plastic
regime show power-law behavior P (E) ∼ E−(γ−1), where the
exponent γ − 1 = 1.81 for the hard material with simple
twin configuration at 8.75 × 10−2 TVF [Fig. 8(a)]; γ − 1 =
2.07 for the hard material with sandwich twin configuration
at 1.25 × 10−2 TVF [Fig. 8(b)], and γ − 1 = 1.77 for the soft
material with sandwich twin configuration at 1.25 × 10−2 TVF

[Fig. 8(c)].

The waiting time between jerks was characterized by the
strain intervals that also indicate the time intervals, as the
applied shear speed is constant. The threshold for the jerks
was set by the maximum strain interval between adjacent
jerks corresponding to the largest P (E) in Figs. 7(a), 7(c), and
7(e). We find that the waiting time distribution depends on the
initial conditions. For example, Fig. 9 shows the waiting time
of jerks at high temperature (1.25 TVF). We find the waiting
time of jerks in sandwich configurations (with hard and soft
materials) follows simple exponential distributions [P (τ ) ∼
exp-(τ/τ0)], which indicates no correlations between the jerks
at high temperatures [Figs. 9(b) and 9(c)]. In the case of the
hard material with simple twin configuration, the distribution is
described well by a stretched exponential [P (τ ) ∼ exp-(τ/τ0)n]
with a stretching exponent n = 0.43 [Fig. 9(a)]. In general, we
can conclude that the observed waiting times statistics obey
a generalized Poisson distribution6 P (t) ∼ t−(γ−1) exp-(t /τ )n

with some systems following simple exponential distributions7

with γ − 1 ≈ 0 and n = 1 and others following the stretched
exponential with γ − 1 ≈ 0 and n = 0.4.

We also analyzed the probability function for the jerks in
the elastic regime. It is the energy fluctuations rather than
the structural features that lead to the energy jerks. We found
that the probability functions are sensitive to the temperature
and the configurations we used. At high temperatures (1.25
TVF), the energy distribution of jerks for the hard material with
a simple twin model follows power law [Fig. 10(a)], whereas
the energy distribution of jerks for the sandwich configurations
(with hard and soft materials) follows Poisson distributions
P (E) ∼ E−(γ−1)exp-(E/E0)n [Figs. 10(c) and 10(e)]. At low
temperatures (0.125 TVF), the energy distribution of jerks for
the hard material with simple twin model is erratic [Fig. 10(b)],
whereas it follows a power-law behavior (P (E) ∼ E−(γ−1))
[Figs. 10(d) and 10(f)] for the sandwich configurations with
exponents γ − 1 = 1.77 for the hard material [Fig. 10(d)] and
1.53 for the soft material [Fig. 10(f)], respectively.

Our findings show that the statistics of jerk energy in the
elastic regime can be quite different from the plastic regime
for a given temperature. For the sandwich twin configurations
at low temperature (0.125 TVF), both hard and soft materials
show a distribution of jerk energy following the power law
in the elastic regime, whereas noise in the plastic regime
follows a stretched exponential distribution. In particular, the
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        T= 1.25TVF, plastic regime                T= 0.125TVF, plastic regime 
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FIG. 7. (Color online) Energy distributions of jerks P (E) in the plastic regime at high (1.25 TVF) and low temperatures (0.125 TVF) that
show that the energy distributions of the jerks depend on temperature, whereas they are not sensitive to the configurations we used. The energy
distributions of the jerks at high temperature (1.25 TVF) for the three configurations (a), (c), and (e) follow simple exponential distributions,
whereas those (b), (d), and (f) at lower temperatures (0.125 TVF) show Poisson distributions P (E) ∼ E−(γ−1)exp-(E/E0)n with stretching
exponent n = 0.4.

characteristic geometrical patterns change from being dynamic
in the elastic regime [Fig. 4(a)], to the interpenetrating needle

domains (Fig. 5) in the plastic regime that are subsequently
eliminated under increasing strain.
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FIG. 8. (Color online) At very low temperature, the energy
distributions of the jerks P (E) in the plastic regime show power-law
behavior P (E) ∼ E−(γ−1), where (a) the exponent γ − 1 = 1.81 for
the hard material with simple twin configuration for 8.75 × 10−2 TVF;
(b) γ − 1 = 2.07 for the hard material with the sandwich twin
configuration for 1.25 × 10−2 TVF and (c) γ − 1 = 1.77 for soft
material with the sandwich twin configuration for 1.25 × 10−2 TVF.

IV. DISCUSSION

We first compare our results with theoretical predictions.
As in most pattern formation processes, scaling emerges as
an interplay between quenched disorder (quenched at the
yield point), fast dynamics of the propagating twin walls, and
the slow driving by the prescribed strain on the macroscopic
sample. Two different regimes are theoretically expected. In
models of disorder, such as the random-field Ising model,
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FIG. 9. (Color online) At high temperature (1.25 TVF), the waiting
time in the plastic regime for all considered different materials follows
the stretched exponential P (τ ) ∼ exp-(τ/τ0)n, where (a) n = 0.43 for
a hard material with double-twin configuration, (b) n = 1 for the hard
material with a sandwich configuration, and (c) n = 1 for the soft
material with sandwich configuration.

the strength of disorder determines the dynamic response,
which besides singular points, is not scale invariant.25 The
pattern evolution is dominated by nucleation and destruction
of the patterns by the advancing stable domain. The second
scenario links criticality to the pinning-unpinning process,
which is observed experimentally for advancing single-needle
domains. This scenario is also referred to as the stick-and-slip
mechanism of twin boundary movement, where each defect
leads to pinning that can be overcome by increasing a control
parameter such as the macroscopic shear. In this case, the
jerks are exclusively related to the propagation of walls.
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         T= 1.25TVF, elastic regime              T= 0.125TVF, elastic regime 
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which show the energy distributions of jerks in the elastic regime is very sensitive to both the temperature and the configurations we used.
The left column shows results at high temperature (1.25 TVF), The energy distribution of the jerks for (a) the hard material with the simple
twin configuration shows power-law distribution P (E) ∼ E−(γ−1) with an exponent γ − 1 of 2.1, whereas (c) hard and (e) soft materials with
sandwich configuration only show Poisson distributions P (E) ∼ E−(γ−1)exp-(E/E0)n, in which (γ − 1) = − 0.07, n = 0.39 and (γ − 1) = 0.13,
n = 0.53, respectively. The right column shows results at low temperature (0.125 TVF). The energy distributions of jerks for (b) a hard material
with simple twin configuration is erratic (local front propagation), whereas (d) hard and (f) soft materials with sandwich twin configuration
show power-law distributions P (E) ∼ E−(γ−1) with the exponent γ − 1 of 1.77 and 1.53, respectively.

A clear distinction between these scenarios was highlighted
in Ref. 25, and the relevant cases were discussed there.

Our simulations confirm this result: elastic systems below
the yield point at low temperatures show dynamic patterns
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with power-law distributions of jerks, whereas at the yield
point, and in the plastic regime, a disordered twin pattern
follows a Kohlrausch law. The thermal region between the
low-temperature regime (power law) and the high-temperature
regime (Vogel-Fulcher regime) is traditionally described by
power laws with decreasing cutoff lengths26 (our increasing
temperature). The scaling function is undefined in the approach
of Ref. 26 and, as it turns out by numerical fits, is often
exponential. In our analysis, we follow a different route: we
describe the entire probability distribution for avalanches by
one functional form (the generalized Poisson distribution).
The advantage of this approach is that all three regions
(power law, stretched exponential, and Vogel-Fulcher) can
be cast in the same functional form. We showed that the
tendency is similar to the previous analysis using cutoff
lengths: the power law dominates the low-temperature regime
and the exponential part increases with increasing temperature.
The intermediate regime is surprisingly well described by
a stretched exponential (Kohlrausch law). We note that the
energy fluctuations are larger in the elastic regime, which
shows either the formation of dynamic tweed or the nucleation
of needle domains from the surface (Fig. 3). The fluctuations
become smaller in the plastic regime. This behavior was
anticipated in Ref. 25.

We note that the present statistical analysis is limited
to specific regions of the strain-stress curves.2–4 Spatial
correlations cannot be analyzed in the collapse region (between
points A and B in Fig. 3) because this interval is too narrow
and only few events occur so that no statistical analysis is
meaningful. In the elastic regime (from the start to point A in
Fig. 3), the flickering tweed is highly dynamic and correlation
functions need to include frequency constraints. Only the static
average is known for such microstructures, the evaluation of
the dynamical correlations in this regime is extremely difficult
and has not been attempted. The obvious regime for a detailed
analysis is the plastic regime (between points B and C in
Fig. 3). Here, all correlations are known and jerks are related
to the pinning and depinning events. The (de)pinning relates
to not only the needle domains in the main but also to kinks
in twin boundaries. The statistical analysis hence has these
events as physical background.

We now comment on the existence of the stretched expo-
nential regime (Kohlrausch law), which we introduced in this
paper for the first time for the description of avalanche statistics
at intermediate temperatures. The Kohlrausch law is ubiqui-
tously encountered in disordered systems.27 Examples include
glassy and polymeric materials,28 electric polarization29 and
electric birefringence,30 supercooled liquids,4 molecular and
electronic glasses,31 and Lennard-Jones systems.32 They have
been discussed in detail in Ref. 31. The stretching exponent
of about 0.5 occurs frequently and Huse and Fisher33 de-
rived the correlation functions for a defect-free Ising model
with no conservation laws constraining its dynamics. They
found a “stretched exponential” C(t) ∼ exp [ − (t/τ )0.5] in
a two-dimensional system related to droplet formation. A
more general analysis by Nemeth34 showed a competition
between power law and stretched exponential distributions
for Ising models, the equivalent stretching exponent remains
0.5. In addition, Stauffer35 found stretched exponentials in
two dimensions but not in three dimensions. Alternatively,

stretched exponentials with n near 0.5 can be derived from even
more general arguments36 when exponential relaxations are
averaged over a susceptibility function related to independent
excitations in a Maxwell distribution of weakly interacting
states. Similar stretched exponentials were also observed in
random-field Ising models by Young,37 who argued that the
typical on-site time-dependent correlation function decays
with a stretched exponential behavior with a stretching
exponent 1/2.2 = 0.45. Dynamic stretching exponents in the
Sherrington-Kirkpatrick Ising spin glass were found to be
0.33.38

In a comprehensive review, Phillips4 showed that in many
scenarios the stretching exponent is β = d/(d + 2), where
d is the dimension of the system (in our case d = 2,
β = 0.5). The two major contexts are within the scope of the
hydrodynamic model39 and the trapping model.40–42 Whereas
the hydrodynamic model cannot derive β, it can nevertheless
link β to the dynamic excitations in glasses and can provide
a general framework for the understanding of the existence
of stretching exponents in “glass-like” materials. The trapping
model is more predictive. Starting from a diffusion process
in the presence of randomly distributed “traps” and a cutoff
length scale for the trapping distance, one finds the probability
that a particle at a distance R from the traps has survived until
time t . The survival probability follows the Kohlrausch law
in time with a stretching exponent β = d/(d + 2).42 Much
discussion has followed to restrict this conclusion to specific
(small) trap densities. In our simulations, the diffusing species
are kinks in twin walls and sideways movements of walls. The
trap density is then given by the number of junctions between
walls, which is a small percentage of the particle number.
While the trap model was not designed specifically for the
annealing of microstructures, it seems that its predictions are
relevant and shed some light on the trapping statistics of twin
walls in a complex pattern generated at the yield point. In this
model, the junctions act as trapping centers and the moving
defects are the twin walls. The statistical behavior of the twin
wall avalanches follows then, at intermediate temperatures, the
predictions of the trapping model.

In a review, Kleemann43 showed that it is relatively easy
to analyze domain-wall dynamics under electric fields and put
much emphasis on the crossover between the creep regime
and the depinning regime of a domain wall. Only very few
experimental studies of the equivalent mechanical forcing
of the wall movements have been undertaken,44 which is
partly due to the experimental difficulties in measuring the
inelastic response and to observe the twinning pattern in
the sample.45 In cases in which the depinning behavior has
been observed, one finds very similar depinning exponents
(∼0.5) as in magnetic materials but not in ferroelectrics,
where the exponents are closer to one.46 Similarly, the slow
creep regime is well established in magnetic and ferroelec-
tric materials but much less in ferroelastic and martensitic
materials. Our results confirm a similar picture: the smooth
ballistic movement of twin walls does, in principle, exist and
gives rise to creep and depinning dynamics.17 The overall
dynamics under hard boundary conditions (fixed external
strain) is dominated by rapid nucleation of intricate twin
patterns near the yield point and, under subsequent shear,
by avalanches during the destruction of the unstable twin
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orientation. In virtually no case do we observe ballistic
movement of individual walls beside short-time movements of
kinks inside domain walls, however. The dynamics is mostly
related to the nucleation and destruction of collective twin
assemblies.

Dynamics of ferroelectric walls have also been investigated
in some detail.46 The nucleation and growth of domain
patterns is then described by stretched exponentials similar
to our results. The most direct comparison is possible in
PbZr0.2Ti0.8O3,47 where the dominant contribution to the
lateral piezoelectric signal is due to domain walls. These walls
are ferroelastic, and our analysis could provide a means to
produce samples with much higher domain boundary densities.
These may be generated in the way described, namely, by
shear under hard boundary conditions. The dynamics of dense
walls was observed in BaTiO3 where a stretched exponential
behavior with β approaching 0.5 for small driving electric
fields was found.48

An interesting comparison is also with Barkhausen
jumps in CrO2, which is a useful material for ferromag-
netic applications,49 where the dynamics is dominated by

avalanches rather than ballistic wall movements. Unfortu-
nately, the noise exponents were not determined so that we
cannot compare these data with ours.

In summary, stretched exponential Kohlrausch laws have
been observed in a multitude of scenarios. The same analysis
works equally well for avalanches in ferroelastic materials at
intermediate temperatures and provides a natural interpolation
between the power law and Vogel-Fulcher law at low and
high temperatures.
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