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Analytic bond-order potential expansion of recursion-based methods
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We show that the analytic bond-order potentials (BOPs) may be used to reproduce the density of states and
energy of recursion-based methods for close-packed atomic configurations. In this way, we demonstrate that
the analytic BOPs can efficiently recast the numerical bond-order potentials in a polynomial approximation. By
introducing damping factors for the expansion coefficients in analogy to the kernel polynomial method, negative
regions of the density of states are removed such that the analytic BOPs may be applied also to open systems with
band gaps. By estimating higher moments from the termination of the Lanczos recursion chain, we, furthermore,
achieve a faster convergence than the usual kernel polynomial method at a negligible additional computational
cost.
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I. INTRODUCTION

A local evaluation of the energy in electronic structure
calculations that has inherently linear scaling may be achieved
by reconstructing the local density of states niα(E) of orbital
α on atom i from its moments. The moments of the local
density of states niα(E) may be evaluated from the positions
and types of atoms in the vicinity of atom i. In particular, for an
orthonormal basis, the nth moment of the local density of states
may be obtained by computing all self-returning hopping paths
that include n − 1 multiplications of the Hamiltonian matrix,1

μ
(n)
iα =

∫
En niα(E) dE = 〈iα|Ĥ n|iα〉

=
∑

i1α1,i2α2...in−1αn−1

〈iα|Ĥ |i1α1〉〈i1α1|Ĥ |i2α2〉

. . . 〈in−1αn−1|Ĥ |iα〉 , (1)

where the Hamiltonian matrix elements are given by Hiαjβ =
〈iα|Ĥ |jβ〉 for orbitals α and β on atoms i and j , respectively.
Therefore the calculation of the moments of the density of
states is reduced to a series of matrix multiplications.

In a practical calculation, the evaluation of the moments is
the computationally most expensive part. The reconstruction of
the density of states and the energy should therefore converge
as quickly as possible as a function of the number of moments.
It is well known that a minimum of four moments are sufficient
to recover structural trends from open to close-packed and to
discriminate fcc from bcc, while six moments are required to
resolve the energy difference between hcp and fcc.2–5 At nine
moments, one generally can obtain a good agreement with
tight-binding reference calculations, although some structures
require 12 or more moments for the resolution of the very
small structural energy differences,6 while elastic constants
may require up to 20 or 30 moments before they converge to
the tight-binding reference value.7

A number of different methods for approximating the den-
sity of states and the binding energy from moments, or equiva-
lently from recursion coefficients, have been developed.8–10

In the recursion-based methods, the density of states is
approximated by a continued fraction.11,12 The numerical
bond-order potentials extend the recursion method and provide

efficient forces that converge to the exact gradients of the
energy as a function of the number of moments.13–16 The
kernel-polynomial method (KPM) obtains an expansion of
the density of states from the moments in terms of Chebyshev
polynomials of the first kind;17,18 the Fermi operator expansion
(FOE)19,20 is based on the expansion of a step function in
terms of Chebyshev polynomials of the first kind and may
be related to the KPM.21 The analytic atom-based bond-order
potentials (BOPs) were derived as a systematic extension of the
Finnis-Sinclair potential22 from a moments-based perturbation
expansion of the continued fraction approximation in terms of
Chebyshev polynomials of the second kind and include exact
forces for a locally varying bandwidth.14,23,24

In Sec. II of this paper, we will briefly review the analytic
BOPs, discuss the expansion of the density of states in
terms of the Chebyshev polynomials of the second kind and
how this expansion may be written in terms of Chebyshev
polynomials of the first kind. We then cast the continued
fraction representation of the density of states of the recursion
method in the form of the analytic bond-order potentials in
Sec. III. In contrast to the numerical bond-order potentials, the
expressions for the forces remain the exact negative gradients
of the energy at any level of approximation. In Sec. IV, we
summarize how the KPM avoids spurious negative densities
of states, show how this may be adapted to the analytic BOPs,
and illustrate the performance of the resulting analytic BOPs
for silicon. After a short summary on the forces for the analytic
BOPs in Sec. V, we conclude in Sec. VI.

II. ANALYTIC BOND-ORDER POTENTIALS

The analytic BOPs provide an approximate representation
of the tight-binding energy including analytic Hellmann-
Feynman-type forces that correspond to exact gradients of the
energy.23,24 This representation of the tight-binding approxi-
mation is achieved by expanding the local density of states
niα(ε) as a linear combination of Chebyshev polynomials of
the second kind:

n
(nmax)
iα (ε) = 2

π

√
1 − ε2

[
1 +

nmax∑
n=1

σ
(n)
iα Un(ε)

]
, (2)

094105-11098-0121/2013/87(9)/094105(8) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.87.094105


BERNHARD SEISER, D. G. PETTIFOR, AND RALF DRAUTZ PHYSICAL REVIEW B 87, 094105 (2013)

where the energy E for the density of states of an atomic orbital
iα has been shifted to be centered on a

(∞)
iα and normalized by

half the bandwidth W = 4b
(∞)
iα ,

ε = E − a
(∞)
iα

2b
(∞)
iα

, (3)

such that the density of states is contained in −1 � ε � 1.
The values of a

(∞)
iα and b

(∞)
iα have to be estimated and must be

chosen in such a way that the true density of states is contained
in the interval −1 � ε � 1. Details on how we estimate
the bandwidth are given in Appendix B. The expansion
coefficients are given by σ

(n)
iα and Un(ε) are Chebyshev

polynomials of the second kind. The BOP expansion (2)
may be viewed as a perturbation expansion with respect to
the semi-infinite constant linear chain. At the lowest level
of approximation, niα(ε) ∝ √

1 − ε2, the DOS is given by a
simple square root function, which leads to the well-known√

μ
(2)
i behavior of the Finnis-Sinclair potential,22 which is

also closely related to the embedded-atom method.23 The
expansion coefficients are given by the Chebyshev moments:

σ
(n)
iα = 〈iα|Un(ĥ)|iα〉 =

∫ +1

−1
Un(ε)niα(ε)dε =

n∑
m=0

pnmμ̂
(m)
iα ,

(4)
with

ĥ = Ĥ − a
(∞)
iα

2b
(∞)
iα

, (5)

and where pnm are the coefficients of the Chebyshev polyno-
mials of the second kind, Un(ε) = ∑n

m=0 pnmεn, and μ̂
(m)
iα are

the normalized moments of the local density of states:

μ̂
(m)
iα = 〈iα|ĥm|iα〉 =

∫
εmniα(ε) dε

= 1

(2b
(∞)
iα )m

m∑
n=0

(
m

n

)
(−1)n(a(∞)

iα )nμ(m−n)
iα . (6)

The representation of the local density of states, Eq. (2),
may be integrated analytically such that explicit expres-
sions for the number of electrons and the energy may be
obtained.23,24 By making use of the identity

sin(n + 1)φ =
√

1 − ε2 Un(ε) , (7)

with cos φ = −ε, it is clear that the expansion of the density
of states in Eq. (2) represents a Fourier series on the interval
[0,π ]:

n
(nmax)
iα (ε) = 2

π

nmax∑
n=0

σ
(n)
iα sin(n + 1)φ , (8)

with σ
(0)
iα = 1.

The KPM17,21 or the FOE19 base their expansions on the
Chebyshev polynomials of the first kind, Tn(ε). The Chebyshev
polynomials of the first kind are given by

Tn(ε) = cos nφ , (9)

such that the expansion of the density of states, Eq. (2), may
be rewritten in terms of Chebyshev polynomials of the first

kind by using the identity

(1 − ε2) Un(ε) = 1
2 [Tn+2(ε) − Tn(ε)], (10)

and therefore

n
(nmax)
iα (ε) = 2

π

√
1 − ε2

nmax∑
n=0

σ
(n)
iα Un(ε) ,

= 1

π

1√
1 − ε2

[
τ

(0)
iα + 2

nmax+2∑
n=1

τ
(n)
iα Tn(ε)

]
, (11)

where the expansion coefficients τ
(n)
iα of the density of states in

terms of Chebyshev polynomials of the first kind are given by

τ
(0)
iα = 1 , (12)

τ
(n)
iα = 1

2

[
σ

(n)
iα − σ

(n−2)
iα

]
for n > 1 , (13)

and with σ
(−1)
iα = σ

(nmax+1)
iα = σ

(nmax+2)
iα = 0. This demonstrates

that for practical applications, we may therefore assume
that the expansions of the density of states in first kind
or second kind of Chebyshev polynomials are equivalent.
Because of the direct relation of the expansion (2) to the
Finnis-Sinclair second-moment model, we continue to work
with the expansion in terms of Chebyshev polynomials of the
second kind, although working with Chebyshev polynomials
of the first kind is sometimes more straightforward, which will
also become apparent in Sec. IV.

III. RELATION TO THE RECURSION EXPANSION

The recursion expansion for the density of states niα(E)
is computed within an O(N ) approach by using the Lanczos
algorithm.11,25 The algorithm transforms the original Hamil-
tonian matrix into the form of a semi-infinite one-dimensional
nearest-neighbor chain by applying the recurrence relation

bn+1|un+1〉 = (Ĥ − an)|un〉 − bn|un−1〉 , (14)

with b0 = 0 and |u0〉 = |iα〉, where the only nonvanishing
matrix elements are given by

〈um|Ĥ |un〉 =
⎧⎨
⎩

an if m = n,

bn if m = n − 1,

bn+1 if m = n + 1.

(15)

Since the resultant Hamiltonian matrix is tridiagonal with
respect to the Lanczos orbitals un, the diagonal matrix element
of the Green’s function corresponding to the starting state
G00 = 〈u0|Ĝ|u0〉 = 〈u0|(E − Ĥ )−1|u0〉 may be immediately
written as a continued fraction expansion:25

G00(E) = 1

E − a0 − b2
1

E − a1 − b2
2

E − a2 − b2
3

. . .

. (16)

If the starting Lanczos orbital |u0〉 is chosen as the atomic
orbital |iα〉, the local density of states is given by

niα(E) = − 1

π
ImG00(E) . (17)
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The recursion coefficients {an,bn} that enter the continued
fraction may be expressed in terms of the moments of the
density of states:

μ
(1)
iα = a0 , (18)

μ
(2)
iα = a2

0 + b2
1 , (19)

μ
(3)
iα = a3

0 + 2a0b
2
1 + a1b

2
1 , (20)

...

For higher moments, the relation between the moments and
the recursion coefficients is best calculated recursively, see
Appendix A. The inverse relation, namely, the expression of
the recursion coefficients in terms of the moments, may also
be obtained iteratively.11,26 The first few recursion coefficients
are obtained as

a0 = μ
(1)
iα , (21)

b1 =
√

μ
(2)
iα − [

μ
(1)
iα

]2
, (22)

a1 = μ
(3)
iα − [

μ
(1)
iα

]3

μ
(2)
iα − [

μ
(1)
iα

]2 − 2μ
(1)
iα , (23)

...

In a practical calculation, only the first nmax moments or equiv-
alently the first nrec = nmax/2 recursion coefficients {an,bn}
are calculated explicitly. One then terminates the recursion
chain by assuming values for the recursion coefficients for
n > nrec.27–29 The simplest terminator that is typically used in
the numerical bond-order potentials assumes an = a

(∞)
iα and

bn = b
(∞)
iα for n > nmax.

Here, we show that the analytic BOPs may be used to
approximate the density of states of the numerical BOPs. To
this end, the moments of the continued fraction representation
of the density of states are calculated from the tridiagonal rep-
resentation of the Hamiltonian (15). The direct evaluation of
the Chebyshev moments σ

(n)
iα = 〈iα|Un(ĥ)|iα〉 is numerically

much more robust than the calculation of the moments and
therefore is used in a practical implementation, the required
expressions are given in Appendix A. The representation of the
density of states then follows Eq. (2), but we separate the nmax

expansion coefficients, which were actually calculated directly
and, therefore, are exact, from the expansion coefficients up to
nexp, which were obtained from the terminator and, therefore,
are approximate, by writing

n
(nmax)
iα (ε) = 2

π

√
1 − ε2

×
⎡
⎣1 +

nmax∑
n=1

σ
(n)
iα Un(ε) +

nexp∑
n=nmax+1

σ
(n)
iα Un(ε)

⎤
⎦ .

(24)

The left-hand column of Fig. 1 shows the density of states
of the bcc, fcc, and hcp structures for the continued fraction
approximation for nmax = 9 and terminator with constant a

(∞)
iα

and b
(∞)
iα together with the BOP expansions using nexp = 30,

50, and 100 moments, respectively, and the tight-binding (TB)
reference DOS. The calculations were carried out using the
canonical d-band bond integrals ddσ : ddπ : ddδ = −6:4: −
1.30,31 Only first nearest neighbors were retained for the fcc
and ideal hcp structures; for bcc, second nearest neighbors
were also included assuming that the bond integrals fall off
with distance as the inverse fifth power.30 The values of a

(∞)
iα

and b
(∞)
iα were chosen as discussed in Appendix B.

At nexp = 100 moments, the analytic BOP expansion very
closely reproduces the continued fraction at an additional
computational expense that corresponds to less than 1%
of the CPU time required for the calculation of the nine
moments in the continued fraction expansion. In fact, the
agreement is so close that in the left-hand column of Fig. 1
the density of states of the continued fraction expansion and
the BOP expansion with nexp = 50 and 100, respectively,
cannot be discerned. Only the BOP expansion with nexp = 30
shows small differences compared to the continued fraction
expansion.

Because the moments of the continued fraction density of
states and its analytic approximation agree up to 30, 50, and
100 moments, respectively, from the moments theorem,2,3 the
analytic BOP expansion must oscillate around the continued
fraction density of states. This may immediately be understood
by considering that the Chebyshev expansion coefficients of
the two DOS are equivalent up to 30, 50, and 100 Chebyshev
moments, such that the difference between the two DOS is
given to leading order by a Chebyshev polynomial of order
31, 51, and 101, respectively. As illustrated in Fig. 1, for
a convergent expansion, the difference in the two densities
of states becomes smaller the more moments are taken into
account.

The close agreement between the continued fraction and
the BOP expansion density of states leads to a very close
agreement of the bond energy

Ubond,i =
∑

α

∫ EF

(E − Eiα)niα(E) dE, (25)

where for the purpose of Fig. 1, α sums over the five d

orbitals. In the right-hand column of Fig. 1, the bond energy
obtained from the numerical integration of the continued
fraction density of states and the analytic bond energy from the
BOP expansion agree so well that tiny differences are visible
only for nexp = 30, whereas for nexp = 50 or 100 the con-
tinued fraction and the analytic BOP expansion are virtually
identical.

Obtaining Chebyshev moments from the terminator of
the recursion chain may be viewed as a way of estimating
higher moments when only few moments are known exactly.
Alternatively, higher moments may be estimated, for example,
from a stochastic evaluation of the moments or the maxi-
mum entropy method.21,32–34 We think that computing higher
moments from the recursion chain is particularly attractive,
however, as the analytic BOP expansion converges smoothly
towards the recursion expansion while the resulting potential
is still fully analytic so that the exact forces may be obtained
by straightforward differentiation.
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FIG. 1. (Color online) (Left) Comparison of bcc, fcc, and ideal hcp d-band densities of states within the ninth-moment nmax = 9 expansion.
Shown are the tight-binding reference, the continued fraction approximation, and the analytic BOP expansions with nexp = 30, 50, 100. Below
the DOS, the difference between the continued fraction and the BOP expansion is shown. (Right) Normalized bond energy differences between
the tight-binding reference, the continued fraction approximation, and the analytic BOP expansion. Already for nexp = 30, the analytic BOPs
and continued fraction reference can hardly be differentiated in the plot, while for nexp = 100, the difference between continued fraction and
analytic BOPs is smaller than the linewidth used in the plot.

IV. EXPLICITLY POSITIVE DENSITY OF STATES

The representation of the density of states of the analytic
BOPs in the form of a Fourier series, Eq. (8), makes it apparent
that the expansion will, in general, suffer from Gibbs ringing,
which may potentially result in a poor and wildly oscillating
representation of the density of states. A number of methods
exist to remove the Gibbs ringing from a Fourier sum and in
the following we will summarize briefly the steps taken in
the KPM.17,18 One starts by rewriting the expansion (2) of the
density of states in the form of an integral equation,

n
(nmax)
iα (ε) =

∫
K (nmax)(ε,ε′)niα(ε′)dε′ , (26)

where niα(ε) is the true local density of states, and then finds
expressions for the kernel K(ε,ε

′
) that make the resultant

expansion for n
(nmax)
iα (ε) smooth. In KPM, the kernel is

expanded in Chebyshev polynomials of the first kind:

K (nmax)(ε,ε′) = 1

π

1√
1 − ε2

[
g

(0)
T + 2

nmax∑
n=1

g
(n)
T Tn(ε)Tn(ε′)

]
.

(27)

Inserting this representation of the kernel in Eq. (26) leads to
a representation of the density of states:

n
(nmax)
iα (ε) = 1

π

1√
1 − ε2

[
g

(0)
T τ

(0)
iα + 2

nmax∑
n=1

g
(n)
T τ

(n)
iα Tn(ε)

]
. (28)
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If the kernel in Eq. (26) is strictly positive, K (nmax)(ε,ε′) � 0,
then, because the density of states is positive too, niα(ε) � 0,
the resulting approximate density of states, in principle, also
fulfills n

(nmax)
iα (ε) � 0. A positive kernel may be obtained by

using the trigonometric form of the Chebyshev polynomials,
Eq. (9), such that the kernel is represented as

K (nmax)(ε,ε′) = 1

π

1

sin φ

{
g

(0)
T +

nmax∑
n=1

g
(n)
T [cos n(φ − φ′)

+ cos n(φ + φ′)]

}
, (29)

where we used 2 cos φ cos φ′ = cos(φ − φ′) + cos(φ + φ′).
Therefore, in order to establish the positivity of the kernel,
it suffices to show that

D(α) = g
(0)
T + 2

nmax∑
n=1

g
(n)
T cos nα � 0 , (30)

for arbitrary α. Examples of positive kernels are the Fejer
kernel,

g
(n)
T = 1 − n

nmax
, (31)

and the Jackson kernel that is used in the KPM,21

g
(n)
T = nmax − n + 1

nmax + 1

(
cos π

n

nmax + 1

+ sin π
n

nmax + 1
cot π

1

nmax + 1

)
. (32)

In practice, a positive kernel does not necessarily mean that the
representation of the density of states is positive everywhere, as
the band center and band width, a(∞)

iα and b
(∞)
iα , are parameters

that need to be chosen prior to the expansion. If, for example,
the bandwidth is chosen too narrow, then the kernel cuts out
only part of the true density of states. Therefore the expansion
coefficients τ

(n)
iα that one would obtain from carrying out the

integral over the kernel explicitly no longer agree with the
expansion coefficients that are calculated from the moments
theorem. Thus, if the expansion coefficients that are obtained
based on the moments theorem are entered into Eq. (28), the
density of states may become negative although the kernel is
positive. Therefore the choice of a

(∞)
iα and b

(∞)
iα is critical for

a sensible expansion of the density of states. Here, we use the
Gerschgorin circle theorem35 to guarantee that the band width
and band center are chosen in such a way that the complete
spectrum niα(E) is covered and therefore the expansion of the
density of states is strictly positive, see Appendix B.

We show how to achieve an explicitly positive representa-
tion of the density of states in the analytic bond-order potentials
by following the KPM and expanding the kernel in Chebyshev
polynomials of the second kind:

K (nmax)(ε,ε′) = 2

π

√
1 − ε2

[
g

(0)
U +

nmax∑
n=1

g
(n)
U Un(ε)Un(ε′)

]
,

(33)

such that the density of states may be written in the form of
Eq. (2) modified by the kernel expansion coefficients g

(n)
U ,

n
(nmax)
iα (ε) = 2

π

√
1 − ε2

[
g

(0)
U +

nmax∑
n=1

g
(n)
U σ

(n)
iα Un(ε)

]
. (34)

By using Un = sin(n + 1)φ/ sin φ, the representation of the
kernel is equivalent to

K (nmax)(ε,ε′) = 1

π

1

sin φ′

{
nmax+1∑
n=1

g
(n−1)
U [cos n(φ − φ′)

− cos n(φ + φ′)]

}
, (35)

where we used 2 sin φ sin φ′ = cos(φ − φ′) − cos(φ + φ′). By
comparing to Eq. (29), we may choose to identify

g
(n)
U = g

(n+1)
T

/
g

(1)
T , n = 1, . . . ,nmax, (36)

where the coefficients g
(n+1)
T are the coefficients of an expan-

sion in terms of Chebyshev polynomials of the first kind that
includes terms up to order nmax + 1. In Fig. 2, the kernel that
is obtained in this way is illustrated.

An explicitly positive kernel may be obtained as follows.
As φ and φ′ are limited to the interval [0,π ] and because of the
symmetry of the cosine function, we may rewrite the kernel
(33) as

K (nmax)(ε,ε′) = 1

2π

1

sin φ′

[
nmax+1∑
n=1

g
(n−1)
U (cos nα − cos nβ)

]
,

(37)

with α = |φ − φ′| and β = π − |φ + φ′ − π |, where 0 �
α � β � π . Therefore the kernel is positive if

nmax+1∑
n=1

g
(n−1)
U cos nα �

nmax+1∑
n=1

g
(n−1)
U cos nβ . (38)

FIG. 2. (Color online) Jackson kernel, Eq. (32), for Chebyshev
polynomials of the first kind for nmax = 50 (black squares), and
the corresponding kernels, Eqs. (36) (red circles) and (40) (blue
triangles), for Chebyshev polynomials of the second kind.
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As this inequality has to hold for arbitrary α � β, this implies
that the sum

∑nmax+1
n=1 g

(n−1)
U cos nα has to decrease when α is

increased and, therefore, Eq. (38) may be fulfilled by a first
derivative that is smaller than or equal to zero:

nmax+1∑
n=1

n g
(n−1)
U sin nα � 0 . (39)

A detailed discussion of positive sine polynomials may be
found in Ref. 36. The authors also show that a positive cosine
polynomial may be used to generate a positive sine polynomial.
Their Eq. (2.13) may be adopted to Eq. (39), from which
it follows that a positive kernel expansion using Chebyshev
polynomials of the second kind may be obtained directly from
a positive kernel expansion using Chebyshev polynomials of
the first kind from the simple relation

g
(n)
U = κ

g
(n)
T − g

(n+2)
T

n + 1
, n = 0, . . . ,nmax − 2 ,

g
(nmax−1)
U = κ

g
(nmax−1)
T

nmax
, (40)

g
(nmax)
U = κ

g
(nmax)
T

nmax + 1
,

with κ = 1/(g(0)
T − g

(2)
T ) to ensure g

(0)
U = 1. The resulting,

strictly positive kernel is slightly broader than the kernel
obtained from the simple adaption of the Jackson kernel in
Eq. (36) but has the advantage that because of Eq. (39), the
first derivative is smooth, in addition to the positivity of the
kernel, which removes the fast oscillations that are displayed
by Eq. (36). In Fig. 2, the two kernels are compared for
nmax = 50, and in Fig. 3, the convergence of the kernels is
illustrated.

Because of the significant damping and reduction of the
expansion coefficients σ

(n)
iα for n close to nmax, the kernel

polynomial method converges only slowly as a function of
the maximum number of moments used in the expansion.
For example, the analytic BOP nmax = 9-moments density of

FIG. 3. (Color online) Cut through the kernel D(φ,φ′) =
{∑nmax+1

n=1 g
(n−1)
U [cos n(φ − φ′) − cos n(φ + φ′)]} for nmax = 50 and

φ′ = π − φ. Equations (36) (red line) and (40) (blue dashed) derived
from the Jackson kernel.

states of an fcc crystal shows a reasonable agreement with
the tight-binding reference calculations if the damping factors
are neglected, gU = 1, as displayed in Fig. 1. If, however, the
kernel factors gU are taken into account, the important features
of the density of states are removed, making it unsuitable for
the prediction of structural stability. Therefore higher moments
need to be taken into account before the expansion will sensibly
converge to the tight-binding reference.

In order to avoid the loss of structure in the KPM for
low-moments expansion, we combine it with the analytic BOP
approximation of the continued fraction expansion discussed
in Sec. III. In this way, the important low moments up to
nmax, which have been explicitly calculated, are only slightly
damped such that the relevant structure of the density of
states is maintained. This leads to a significantly improved
convergence of the expansion as a function of nmax. We
illustrate our approach for an sp-valent TB model of Si.37

For systems with band gaps, the simple approximation of a
constant terminator, an = a

(∞)
iα and bn = b

(∞)
iα , is not suitable

because the recursion coefficients oscillate as n approaches
infinity. As a simple approximation, we assume for the present
paper that the period of the oscillations along the recursion
chain is two, which allows for one gap in the band,27 and
estimate the amplitude of the oscillation in the terminator
from the average of the highest and third-highest recursion
coefficients and from the average of the second-highest and
fourth-highest recursion coefficients, respectively.

Figure 4 shows the density of states of silicon as calculated
in TB and analytic BOP. The oscillation in the terminator leads

FIG. 4. (Color online) Comparison of the tight-binding density
of states for Si with analytic BOP expansions of nmax = 20 and 40
moments.
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FIG. 5. (Color online) Convergence of the bond energy with
respect to the TB reference bond energy for Si with nmax = 20 and
40 moments analytic BOP expansions. The energy differences have
been normalized by the TB bond energy at half-full band.

to a fair reproduction of the TB reference density of states
including the band gap for the 20-moments approximation. At
40 moments, the analytic BOP density of states agrees very
well with the tight-binding reference. The same holds for the
energy differences. In Fig. 5, small deviations are observed
for the 20-moments approximations, these differences have
essentially disappeared at 40 moments.

V. CALCULATION OF FORCES

The expressions derived in Sec. IVC of Ref. 24 may be
used to calculate the binding energy and to evaluate the forces
on the atoms. To this end, the expansion coefficients σ

(n)
iα with

n = 1, . . . ,nexp are obtained from the recursion coefficients
{âk,b̂k} following Eq. (A7), the recursion coefficients in turn
are obtained from the moments μ

(m)
iα with m = 0, . . . ,nmax.

The derivatives of the Chebyshev moments with respect to
a parameter � may then be related to the derivatives of the
moments using the chain rule:

∂σ
(n)
iα

∂�
=

nexp/2∑
k=0

nmax/2∑
l=0

nmax∑
m=0

{
∂σ

(n)
iα

∂âk

[
∂âk

∂al

∂al

∂μ
(m)
iα

+ ∂âk

∂bl

∂bl

∂μ
(m)
iα

]

+ ∂σ
(n)
iα

∂b̂k

[
∂b̂k

∂al

∂al

∂μ
(m)
iα

+ ∂b̂k

∂bl

∂bl

∂μ
(m)
iα

]}
∂μ

(m)
iα

∂�
. (41)

By inserting this derivative into the equations given in Ref. 24,
the forces are readily obtained. The calculation of the forces is
exact also for values of a

(∞)
iα and b

(∞)
iα that vary locally from one

atom and orbital to the other. This is an advantage over other
moments or recursion-based methods9,38 that assume identical
values of a

(∞)
iα and b

(∞)
iα for all atoms and orbitals in order to be

able to calculate the forces from straightforward derivatives of
the global moments μ(n) = ∑

iα μ
(n)
iα and therefore implicitly

require an expression for the energy that must be linear
with μ

(n)
iα .

VI. CONCLUSION

By approximating higher moments of the density of states
from straightforward terminations of the recursion chain,
the analytic bond-order potentials efficiently approximate the
continued fraction expansion. In contrast to the continued
fraction expansion, the analytic BOP density of states may be
integrated analytically and the exact forces for a locally varying
bandwidth may be obtained. For systems with band gaps, the
application of the kernel damping factors in the analytic BOPs,
in analogy to the KPM, efficiently removes oscillations in the
density of states. This enables the application of the analytic
BOPs to open systems and, together with the inclusion of
charge transfer and magnetism,24 this will allow the modeling
of phase transformations from close-packed to open phases
and vice versa.
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APPENDIX A: RECURSIVE CALCULATION OF MOMENTS

If one defines ξ
(n)
k as the interference path that starts on

orbital u0 and ends on orbital uk ,

ξ
(n)
k = 〈uk|Ĥ n|u0〉 , (A1)

then the moments are obtained from the self-returning hopping
paths as

μ
(n)
iα = ξ

(n)
0 = 〈u0|Ĥ n|u0〉 . (A2)

Because of the tridiagonal form of the recursion chain
Hamiltonian, the matrix elements with k > n all vanish,
ξ

(n)
k = 0 and the moment may also be obtained from products

of the interference paths:

μ
(n)
iα =

∑
k

ξ
(m)
k ξ

(n−m)
k , (A3)

where n � m � 0. From this expression, the derivative of
the moments with respect to the chain Hamiltonian may be
obtained simply by taking into account that all interference
paths that depend on ak or bk must also pass through the kth

state |uk〉 of the recursion chain,

∂μ
(n)
iα

∂ak

=
n−m−1∑
m=k

ξ
(m)
k ξ

(n−m−1)
k , (A4)

∂μ
(n)
iα

∂bk

= 2
n−m−1∑
m=k

ξ
(m)
k ξ

(n−m−1)
k+1 . (A5)

Similar relations exist for the evaluation of the Chebyshev
moments 〈u0|Un(ĥ)|u0〉. We define

ζ
(n)
k = 〈uk|Un(ĥ)|u0〉 , (A6)
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such that σ
(n)
iα = ζ

(n)
0 . Using the recursion relation of the

Chebyshev polynomials of the second kind, Un+1(ε) =
2εUn(ε) − Un−1(ε) (with U0 = 1 and U−1 = 0), a recursive
calculation of ζ

(n+1)
k may be achieved from

ζ
(n+1)
k = 2

[
âkζ

(n)
k + b̂kζ

(n)
k−1 + b̂k+1ζ

(n)
k+1

] − ζ
(n−1)
k , (A7)

with âk = ak−a
(∞)
iα

2b
(∞)
iα

and b̂k = bk

2b
(∞)
iα

. Starting from n = 0, for a

given value of n, this is iterated for k = 0 . . . n (or k = 0 . . . nrec

if n > nrec = nmax/2) and, subsequently, repeated for n up to
nmax.

APPENDIX B: CHOICE OF TERMINATOR COEFFICIENTS

We estimate the bottom and the top of the band for each
orbital using Gerschgorin’s circle theorem.35 The eigenvalues
of an n × n matrix with, in general, complex matrix elements

aij are contained in discs centered on the diagonal matrix
elements aii with diameter ri = ∑

j |aij |. For the tridiagonal
recursion matrix, this means that all the eigenvalues are
contained in the interval

Ebottom = Min{an − bn − bn+1} , (B1)

Etop = Max{an + bn + bn+1} , (B2)

where Min and Max refers to the minimum and maximum
values, respectively, for n = 0, . . . ,nrec − 1. By choosing

a
(∞)
iα = (Etop + Ebottom)/2 , (B3)

b
(∞)
iα = (Etop − Ebottom)/4 , (B4)

we ensure that the complete spectrum is contained in the
interval Ebottom to Etop and therefore the kernel (40) guarantees
a strictly positive density of states.
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