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Anomalous magnetotransport through reflection-symmetric artificial molecules
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We calculate magnetotransport oscillations in current through a triple-quantum-dot molecule, accounting for
higher harmonics (having flux period h/ne, with n an integer). For a reflection-symmetric triple quantum dot, we
find that harmonics with n odd can dominate over those with n even. This is opposite to the behavior theoretically
predicted due to “dark-state” localization, but has been observed in recent experiments [L. Gaudreau et al., Phys.
Rev. B 80, 075415 (2009)], albeit in a triple dot that may not exhibit reflection symmetry. This feature arises from
a more general result; in the weak-coupling limit, we find that the current is flux-independent for an arbitrary
reflection-symmetric Aharonov-Bohm network. We further show that these effects are observable in nanoscale
systems even in the presence of typical dephasing sources.
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I. INTRODUCTION

The Aharonov-Bohm effect has been the subject of sus-
tained experimental and theoretical investigation since it was
first predicted in the middle of the 20th century.1,2 This effect
is most commonly observed in transport through mesoscopic
rings threaded by a magnetic flux � in which the current
or conductance is periodically modulated as � is varied.3–7

For free electron waves propagating in both arms of a ring,
the periodicity of these oscillations is typically the Dirac
flux quantum, �0 = h/e. However, weak localization due to
disorder can also give rise to oscillations of period �0/28

known as Altshuler-Aronov-Spivak (AAS) oscillations. The
interplay of these two effects has been studied theoretically9

and controlled experimentally by embedding a quantum dot
in one arm of the interferometer.10,11 More recently, the
fabrication of smaller and cleaner rings has allowed for the
observation of higher harmonics—oscillations of period �0/n,
with n > 212,13—associated with electrons circling the ring n

times. Trajectories that circle the ring multiple times require
longer coherence lengths to demonstrate robust interference
and are therefore more susceptible to dephasing, typically
leading to a decay of the harmonics with increasing n.12 The
smallest and simplest ring in which one could expect to observe
these higher harmonics consists of a molecule of three sites in
a triangular arrangement (provided, e.g., by quantum dots,14

atoms, or implanted donor impurities15).
Recent coherent magnetotransport measurements per-

formed on a triple-quantum-dot device suggest, surprisingly,
that the harmonics do not decay monotonically with increasing
n.14 Theory has predicted the formation of a localized
dark state in the triple dot, leading to a dominant n = 2
harmonic16–21 as in AAS oscillations.22 In contrast, the results
of Ref. 14 indicate that the n = 3 harmonic can be dominant
over that with n = 2. To the best of our knowledge, a
detailed theory of the n > 2 harmonics in these systems
has not yet been given. Because of their greater sensitivity
to electric and magnetic field fluctuations, understanding
the large-n harmonics in small molecular rings may allow
for enhanced magnetic-field and noise sensing in future
nanoscale devices, similar to recent proposals for mesoscopic
systems.23 Moreover, in contrast with the case of mesoscopic
rings, we show that discrete symmetries associated with

finite-dimensional molecular systems can lead to nontrivial
features in magnetotransport.

For definiteness, we focus on the triple-dot arrangement
shown in Fig. 1, although several results extend naturally to a
larger number of sites and more general geometries. An accu-
rate description of the large-n harmonics necessarily requires
a theory that accounts for nonlinear response (large voltage
bias) that goes beyond the leading order in weak coupling to
leads, and that accounts for strong Coulomb interactions. A
coherent master equation similar to that employed in Ref. 16
can be rigorously justified in an experimentally accessible
regime and satisfies all the above criteria. We show that for
a reflection-symmetric configuration of the triple dot, the
symmetry of the eigenstates forbids localization that would
lead to n = 2 AAS-like oscillations. This effect arises from a
more fundamental result; in the weak-coupling limit (�/�ε →
0 with tunneling rate � and molecular level spacing �ε), we
find that the current through an arbitrary reflection-symmetric
Aharonov-Bohm network (inset of Fig. 1) is magnetic-field
independent.

II. TRANSPORT MODEL

In Fig. 1, we consider large single-dot level spacing, ω0 >

�μ,U,U ′, with �μ = μS − μD the bias for source(drain)
at chemical potential μS(D) and U,U ′ on-site and nearest-
neighbor charging energies, respectively (setting e = h̄ = 1).
For simplicity, we take all dots to be at the same potential,
vi = 0, and choose μS > 0, μD < 0. In this regime, only the
lowest-energy dot orbitals (i = 1,2,3) participate. Orbitals i

and j are connected via a tunnel coupling τij , and dots 1 and
3 are coupled to the source and drain, respectively.

We choose the gauge such that τ12 and τ23 are real, while
τ13 = |τ13|e−2πiφ , with φ = �/�0 the reduced flux. The full
Hamiltonian is

H = H3D + HL + H3DL, (1)

H3D =
∑
i �=j,σ

τij d
†
iσ djσ + εz

2

∑
i

(ni↑ − ni↓) + HC, (2)

HL =
∑
lkσ

εlkc
†
lkσ clkσ ;H3DL =

∑
ilkσ

tilkd
†
iσ clkσ + H.c. (3)
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FIG. 1. (Color online) Three quantum dots in a ring arrangement,
with dots 1 and 3 connected to the source S and drain D via tunneling
rates �S and �D , respectively. Dot i is subject to a local potential vi

(taken here to be vi = 0). The lowest single-particle orbitals of dots i

and j are connected via tunnel couplings τij . The ring is threaded by
a flux �. (Inset) A reflection-symmetric Aharonov-Bohm network.

Here, εz is the Zeeman splitting, the Coulomb interaction is
HC = U

∑
i ni↑ni↓ + U ′∑

i>j,σσ ′niσ njσ ′ , diσ annihilates an

electron on dot i with spin σ , and niσ = d
†
iσ diσ . The operator

clkσ annihilates an electron in state k of energy εlk and spin σ

in lead l = S,D. We neglect diamagnetic effects on |τij |, but
account for the Peierls phase.

We consider the Coulomb-blockade regime, μS < U,U ′,
in which energy-conserving transitions involve the vacuum
and one-electron subspace. Restricting to one electron, the
three localized orbitals hybridize into molecular orbitals
with eigenenergies εkσ for k = 1,2,3. We focus on the
experimentally relevant high-bias regime, μS − εkσ > kBT ,
εkσ − μD > kBT , where all one-electron states are accessible
via sequential-tunneling processes with leads at temperature
T . We further take the density of states, νkl , and dot-lead
tunnel couplings, tilk , to be spin- and energy-independent over
the bias �μ: νlk ≈ νl and tilk ≈ til , leading to tunneling rates
�S = 2πνS |t1S |2 and �D = 2πνD|t3D|2.

The dynamics giving rise to magnetotransport oscillations
in this system is highly sensitive to sources of dephasing, so
it is essential to establish an accurate regime of validity for
the associated equation of motion, particularly in the chosen
high-bias regime. To approach the problem systematically,
we start from the exact Nakajima-Zwanzig integrodifferential
equation24 for the full dot-lead density matrix (t).25 From
this, we find an equation for ρ, an effective reduced triple-dot
density matrix in terms of spinless fermions. The dynamics
of ρ is controlled by dot-lead correlation functions, which
we evaluate within a Born approximation (leading order in
H3DL). This approximation is valid even for strong coupling,
�l � |τij |, as long as higher-order cotunneling processes can
be neglected (see below). In the high-bias regime considered
here, the dot-lead correlation time, τc ∼ 1/|μl − εkσ |, is taken
to be much shorter than the characteristic evolution time of
ρ [� min(1/|τij |,1/�l)]. In this singular-coupling limit,26,27 a
Markov approximation is justified. We thus obtain a coherent
master equation:

ρ̇ = −i [H,ρ] + 2�SD[d†
1]ρ + �DD[d3]ρ. (4)

Here, H = ∑
i �=j τij d

†
i dj is the triple-dot Hamiltonian, where

d
†
i creates a spinless fermion on dot i, d

†
i |0〉 = |i〉. The

superoperator defined byD[O]ρ = OρO† − 1
2 {O†O,ρ} is the

Lindblad dissipator.24 The first term in Eq. (4) describes

free evolution on the triple dot, while the two following
terms describe tunneling into and out of the triple dot. The
factor 2 in the second term accounts for the two possible
spin states into which an electron can tunnel. Contributions
at higher order in H3DL can lead to dephasing and sup-
press the coherent effects described by Eq. (4), especially
in the considered high-bias regime. However, when �D �
min(|τij |,�S), we find that these cotunneling processes give
a small correction in the considered regime, provided �D >

max{(�S/�μ)2|τij |,[�S�D/(U ′)2]�μ}.
The current is I = Tr {Ī}, where ̄ = limτm→∞(1/τm)∫ τm

0 dt(t) is the full stationary dot-lead density matrix with
averaging (measurement) time τm. Here, the current operator
is I = ṄD = i [H,ND], where ND = ∑

kσ c
†
Dkσ cDkσ . When

cotunneling corrections are negligible, we find that I (φ) is
given directly from the stationary population ρ̄33 of dot 3,

I (φ) = �Dρ̄33(φ), În =
∫ 1

0
dφ I (φ)e2πinφ. (5)

III. MAGNETOCURRENT HARMONICS

The behavior of the harmonics, În, will generally depend
on the choice of τij . When all τij are equal, and for most
generic choices of τij , the n-even harmonics, Î2k , describing
AAS-like oscillations, typically dominate in the absence of
dephasing.16–22 This behavior contrasts with that suggested
by recent experiments.14 We have found, however, that the
n-even harmonics can be suppressed for a range of tunnel
couplings satisfying |τ12| � |τ23| �= |τ13|.28 As we will show,
this suppression of AAS-like oscillations is a feature unique to
low-symmetry molecular systems and distinguishes this case
from mesoscopic rings with a near-continuum of orbital states.
To see this more explicitly, from Eqs. (4) and (5), we find a
simple analytical expression for I when τ12 = τ23 = τ, |τ13| =
τ ′:

I (φ) = �D

{
3 + z + (1 + x2)[y sin(2πφ) + y2/2]

1 + x4 − 2x2 cos(4πφ)

}−1

,

x = τ/τ ′, y = �D/τ ′, z = �D/2�S. (6)

The harmonics În, resulting from Eq. (6), are shown in Fig. 2(e)
for typical experimentally realizable parameters, displaying a
nonmonotonic dependence on n (in particular, |Î3| > |Î2|), as
in the experimental findings of Ref. 14. Note that Eq. (6)
does not satisfy the Onsager relation, i.e., I (φ) �= I (−φ), but
the Onsager relation is generally not obeyed in the nonlinear
(high-bias) regime considered here.29

The harmonics În arise from paths that combine to encircle
the ring n times [see Figs. 2(a)–2(c)]. Trajectories circling
the ring multiple times become more significant when the
dwell time on the ring ∼1/�D is large compared to the
timescale for coherent evolution 1/�ε ∼ 1/τ ′, so it is useful
to consider an expansion in y = �D/τ ′. The leading term,
I � �D/(3 + z) ∝ y0, corresponds to the current from an
incoherent (Pauli) master equation. The first subleading term
(∝ y) describes harmonics with n odd and the next order
(∝ y2) harmonics with n even. When �D/τ ′ = y � 1, the
n-odd contributions dominate. The description of these higher
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FIG. 2. (Color online) (a)–(c) Trajectories leading to the n = 1,2,3 harmonics. For n even, the transit times for the two paths are always
different, suppressing the associated interference. (d) Eigenenergies ε of the triple dot as a function of the reduced flux φ for τ = τ12 = τ23 = |τ13|
(dashed) and for τ = τ12 = τ23 �= |τ13| = τ ′ (solid). A gap opens at values of φ = m/2 with m ∈ Z, protecting the state from localization. To
account for the positive effective mass of the electron in the conduction band, the couplings τij should be chosen negative; however, since
this does not affect the harmonics of Fig. 2(e), we chose them positive for convenience. Choosing τij < 0 would, however, shift the energy
spectrum relative to that shown in (d) by half a flux quantum (as in, e.g., Fig. 1 of Ref. 22). (e) Magnitude |În| for τ = 30 μeV, τ ′ = 20 μeV,
2�S = 20 μeV, and �D = 1 μeV. The n-even harmonics are strongly suppressed with respect to those with n odd.

harmonics requires that we go beyond the weak-coupling limit,
i.e., beyond O(y0).11

We note that for x = τ/τ ′ → 0 (resulting in 1D transport
through dots 1 and 3), the current, Eq. (6), still depends on
φ although there is only one path in this case, thus no flux
enclosed. This seemingly unphysical result is a consequence
of the non-commuting limits x → 0 and τm → ∞. We find
that for any finite measurement time τm, I is φ-independent
when x → 0. Similarly, for any vanishingly small but finite x,
the current I will have the φ-dependence indicated in Eq. (6)
in the limit τm → ∞.

In general, we find it convenient to describe magnetotrans-
port oscillations in terms of two distinct contributions. The
first, static contribution, gives rise to AAS-like oscillations
due to localization and delocalization of molecular eigenstates
as the magnetic field is varied. These static contributions
can be found accurately from an incoherent (Pauli) master
equation, which neglects off-diagonal elements of ρ in the
eigenbasis of H and gives magnetotransport oscillations at
leading order in a conventional weak-coupling expansion,
O(y0). The second, dynamical, contributions give rise to the
standard Aharonov-Bohm effect and its harmonics associated
with the coherent motion of electrons circling the ring. The
dynamical contributions arise only at subleading order in a
weak-coupling expansion [∼O(y) or higher].

We can understand the unusual behavior shown in Fig. 2(e)
by accounting for both the static and dynamical contri-
butions. The static contributions are best analyzed within
degenerate perturbation theory.22 When the couplings have

equal magnitude, |τij | = τ ∀i,j , the eigenstates are completely
delocalized molecular states, pairs of which are degenerate
for φ = m/2, m ∈ Z [see Fig. 2(d)].18 Introducing a small
real perturbation to the triple-dot Hamiltonian, taking it away
from |τij | = τ ∀i,j , leads to eigenstates that are symmetric and
antisymmetric linear combinations of the degenerate states at
leading order in degenerate perturbation theory. These combi-
nations are typically localized, strongly suppressing current at
near degeneracies, when φ = m/2, and hence inducing AAS-
like oscillations of period �0/2.16–20,22 However, when τ ≡
τ12 = τ23 and τ �= τ ′ ≡ |τ13|, i.e., when [H,�] = 0, � = �K

being an antiunitary operator composed of the parity operator
� = |1〉〈3| + |3〉〈1| + |2〉〈2| and of the complex-conjugation
operator K , we exploit this special discrete symmetry of the
triple dot30 to gain further insight. In this case, the eigenstates
|εp〉 = ∑

i c
i
p |i〉 of H are simultaneous eigenstates of �,

uniformly delocalized across dots 1 and 3 (|c1
p| = |c3

p| ∀p),
strongly suppressing the AAS-like oscillations. Indeed, a state
|εp〉 is loaded at a rate 2γ

p

S = 2|c1
p|2�S and unloaded at a rate

γ
p

D = |c3
p|2�D . Solving the steady-state Pauli master equation

2γ
p

S ρ00 − γ
p

Dρpp = 0 to obtain the “static” contribution and
using |c3

p|2 = |c1
p|2, we find that ρpp/ρ00 = 2�S/�D is the

same and independent of φ ∀p. Because
∑

p ρpp = 1, this
means that the current, I = �Dρ̄33, is also independent of φ.
We emphasize that this φ independence in the weak-coupling
limit, �D/�ε → 0, holds for any Aharonov-Bohm network
with a single dot connected to each lead whenever the dot
configuration has mirror symmetry (inset of Fig. 1). Thus,
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FIG. 3. (Color online) Magnitude |În| of the n = 1,2,3 harmonics
as a function of the dephasing rate �E for τ12 = τ23 = 30 μeV,
|τ13| = 20 μeV, 2�S = 20 μeV, and �D = 1 μeV. When �E �
|τij |, |În| decreases monotonically with n. The first vertical line
(at �E = 1 GHz), corresponds to the measured dephasing rate for a
nanoscale double quantum dot of size ∼250 nm.31 The second vertical
line (at �E = 16 GHz) corresponds to the estimated dephasing
time for a mesoscopic ring of size ∼1 μm12 and is obtained from
our theory by scaling according to the relative dipole moments
[16 GHz = (1 μm/250 nm)2 × 1 GHz].

when [H,�] = 0, any Aharonov-Bohm oscillations must
arise from coherent dynamics on the triple dot contained
in the first term on the right-hand side of Eq. (4) and not
from the localization/delocalization of eigenstates responsible
for AAS-like oscillations. If a perturbation V breaks parity
at φ = m/2 ([V,�] �= 0), lowest-order perturbation theory
shows that the eigenstates will remain delocalized as long
as | 〈ε+|V |ε−〉 |/� � 1, where |ε+〉 and |ε−〉 are the nearly
degenerate eigenstates of H and � at φ = m/2 and where � =
|3|τ ′| −

√
|τ ′|2 + 8τ 2|/2 is the gap opened at the degeneracy

point [see Fig. 2(d)]. Even when the AAS-like oscillations
are suppressed, we might still expect to find a significant
dynamical contribution to the n = 2 harmonics coming from
the interference of paths circling the ring twice [see Fig. 2(b)].
However, because backscattering is forbidden in the high-bias
regime, the remaining asymmetric paths result in different
transit times, reducing interference. In contrast, the n-odd
contributions can arise from paths that are symmetric in both
arms [see Figs. 2(a) and 2(c)].

IV. EFFECT OF DEPHASING

To account for dephasing, we add a term VE(t) =
−e

∑
iσ E(t) · riniσ to H, Eq. (1). This term describes

electric-dipole coupling of localized dot orbitals at positions
ri to a fluctuating electric field, E(t), taken to be uniform across
the triple dot. The effect of VE(t) is to introduce a dissipator to

Eq. (4):

ρ̇ = L0ρ +
∑
i>j

�E
ijD[d†

i di − d
†
j dj ]ρ, (7)

where L0 generates the right-hand side of Eq. (4). When VE(t)
dominates over H and when the noise is Gaussian and white,
we find �E

ij ∼ |ri − rj |2, implying that electric-field-induced
dephasing is more significant for larger systems. Note that
Eq. (7) is only strictly valid when �E

ij = 0 or �E
ij �

max(τij ,�l). When the dephasing term in Eq. (7) is nonzero, it
acts as a which-path measurement for both arms of the ring and
destroys the interference that would lead to higher harmonics.
Figure 3 shows |În| for the simple case where �E

ij ≡ �E for
all i,j . Increased dephasing re-establishes the monotonic
decrease of |În| with n when �E � |τij |, i.e., when the
characteristic evolution time |τij |−1 on the triple dot is longer
than the dephasing time �E

−1. Thus we do not expect the
nonmonotonic behavior of |În| displayed in Fig. 2(a) to be
observed in larger rings where the relative electric dipole
moment ∼ |ri − rj | between arms is much larger.

V. CONCLUSION

In summary, we have derived a nonlinear (high-bias) trans-
port theory for a triple quantum dot in the strongly interacting
Coulomb-blockade regime and have used it to describe �0/n

harmonics of Aharonov-Bohm oscillations beyond the limit
of weak coupling to the leads. We have shown that for a
reflection-symmetric Aharonov-Bohm network, the current
is flux-independent in the weak-coupling limit (�/�ε → 0).
In the simplest case of a reflection-symmetric triple dot,
this results in a strong suppression of the n-even harmonics
compared to those with n odd. This happens for two reasons:
first, the n-even AAS-like harmonics due to the localization of
triple-dot eigenstates are suppressed since symmetry requires
that the eigenstates be delocalized across the triple dot; second,
the dynamical paths leading to n-even harmonics have different
transit times, suppressing interference. These results may help
explain experiments such as those of Ref. 14. We have also
shown that strong dephasing restores a monotonic suppression
of harmonics with increasing n. Finally, we remark that these
results are important for the design of noise and magnetic-field
sensors using Aharonov-Bohm interference.23 The coherent
effects presented here are likely to be substantially stronger in
still smaller devices, such as those very recently constructed
from individual atoms or donor impurities.15
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