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Indications of surface-dominated transport in single crystalline nanoflake devices of topological
insulator Bi1'5Sb0,5Tel,3S61,2
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We report experimental evidence of surface-dominated transport in single crystalline nanoflake devices
of topological insulator Bi; 5SbgysTe;sSe;, (BSTS). The resistivity measurements show dramatic differences
between the nanoflake devices and bulk single crystal. Based on a two-channel model, the analysis on the
resistivity and Hall resistance indicates that ~99% surface transport contribution can be realized in 200 nm-thick
BSTS nanoflake devices. Using a standard back gate with SiO, as a dielectric layer, a pronounced ambipolar
electric field effect was observed in devices fabricated with 100-200 nm thick flakes. Moreover, angle-dependent
magnetoresistances of a nanoflake device with a thickness of 596 nanometers are fitted to a universal curve for
the perpendicular component of the applied magnetic field. The value of phase coherence length obtained from
two-dimensional weak antilocalization fitting further confirmed the surface dominated transport. Our results open
a path for realization of electric and spintronic devices based on the topological helical surface states.
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I. INTRODUCTION

Topological insulators (TIs) are gapped bulk insulators with
gapless Dirac surface states.!™ The surface states of these
topological insulators are spin polarized and protected by
time-reversal symmetry. A number of surface spectroscopy
measurements, such as spin and angle-resolved photoe-
mission spectroscopy (ARPES)>!* and scanning tunneling
microscopy,'*!> have been used to detect the topologically
nontrivial surface state in three-dimensional (3D) topological
insulator Bi;_4Sby, BirSes, Bi,Tes, etc. The exotic surface
states of topological insulators are expected to form a play-
ground of various topological quantum effects and show great
potential in spintronics and quantum computation.'¢"'® To
fulfill the expectations, realizing topological insulator systems
with significant surface transport is essential. However, due to
the defects or impurities in the samples, it is extremely difficult
to eliminate the bulk contribution to electron transport.'®-*
Realizing surface-dominated transport in current topological
insulator systems is still a challenge despite extensive efforts
involving chemical doping,?>3*=3? thin film or nanostructure
fabricating,>>*? and electrical gating, 2!-26-3243

In this paper, we present strong evidence for surface-
dominated transport in nanoflake devices fabricated with
topological insulator Bij sSbgsTe; gSe;» (BSTS) flakes with
a thickness of several hundred nanometers. We performed
electron transport measurements of both bulk single crystals
and nanoflake devices of high-quality single crystalline BSTS.
Nanoflake devices show a transition from semiconductor to
metal near 100-150 K with decreasing temperature, while
bulk crystals shows semiconductor behavior in the measured
temperature range from 300 K to 10 K and only present
resistance saturation at very low temperature (<40 K). At
10 K, the resistivity of the nanoflake devices decreases with
the sample thickness and can get to hundreds of times smaller
than that of the bulk single crystal. Back-gated devices
fabricated with 150-200 nm thick BSTS nanoflakes show
pronounced ambipolar electric field effect, which demon-
strates significant topological surface transport. It was also
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found that the angle-dependent magnetoresistances of a 596-
nanometer thick nanoflake devices are fitted to a universal
curve for the perpendicular component of an applied magnetic
field. The phase coherence length obtained from a two-
dimensional weak antilocalization fitting is much smaller than
the sample thickness (596 nm), which clearly proves the 2D
surface transport in the device. All the experimental results
suggest that surface dominated transport has been realized
in BSTS devices with a thickness of several hundreds of
nanometers.

II. EXPERIMENT

High-quality BSTS single crystals were grown using
modified Bridgeman methods. High-purity (99.9999%) Bi,
Sb, Te, and Se with a molar ratio of 1.5:0.5:1.8:1.2 were first
thoroughly mixed and then reacted at 950°C for one week in
an evacuated quartz tube in a box furnace. We then located
the quartz tube vertically in a specially designed furnace with
large temperature gradient. The temperature is then decreased
to room temperature over three weeks, with different cooling
speed in different temperature regions. The obtained crystals
are easily cleaved and revealed a flat and big shiny surface as
shown in the inset of Fig. 1(a). An as grown single crystal is
a cylinder with ~0.7 cm? (the cross section area) x 2 cm
(height). Large cleaved crystals can be cut from different
positions of the crystal.

The x-ray diffraction pattern indicates the high quality
of our samples. Figure 1(a) shows the wide angle x-ray
diffraction from a bulk crystal oriented with the scattering
vector perpendicular to the (001) family of planes. No peaks
from other plane families can be observed. It should be noted
that the count of the (006) peak is larger than 300 k. Only high-
quality single crystals can get to this value in XRD facility. The
inset of Fig. 1(a) shows the large and shining (001) surface of
the single crystal. Energy dispersive x-ray spectroscopy (EDS)
was employed to probe the homogeneity of the samples. The
small area EDS mapping as shown in Fig. 1(b) indicates that
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FIG. 1. (Color online) Summary of structural characterization.
(a) Shows the wide angle x-ray diffraction from a bulk crystal
oriented with the scattering vector perpendicular to the (100) family
of planes. Inset is a photograph of a typical crystal. (b) The EDS
mapping of a small area in a BSTS single crystal. (c) Molar
ratio of Bi, Sb, Te, and Se at ten random positions in a big
crystal like the one shown in the inset of (a). (d) A typical EDS
spectroscopy. The inset is a schematic diagram of an as-grown single
crystal.

the element distribution in a small area is homogeneous. We
also performed the EDS measurements at various points of the
bulk single crystal used in our measurements. As shown in
Fig. 1(c), the molar ratio of the four elements at various points
of the big crystal only shows small fluctuations in the ~8 mm
x 8 mm single crystal, which means a large crystal cut from
one position [the meaning of position is shown in the inset
of Fig. 1(d)] is quite homogeneous. Small crystals cut from
this 8 mm x 8 mm big crystal show very similar transport
behaviors.

The molar ratio of (Bi+ Sb)/(Se + Te) and Bi/Sb in crys-
tals cut from different positions of the crystal cylinder shows
near-constant molar ratios of 2/3 and 3/1, respectively, while
the Te/Se ratio changes from ~1.7/1.3 to ~1.9/1.1 for crystals
obtained from different positions. Transport measurements
show that, although the molar ratio of Te/Se varies with
position as shown in the inset of Fig. 1(d), all the crystals show
similar semiconducting p (T) curve at high temperature and
saturation behavior at low temperature and large resistivity
(>1 € cm) at 10 K. The value of p(10 K)/p(300 K) can
vary from 30 to 250. This characteristic of BSTS is very
different from the condition of grown Bi,Tes single crystals.
Bi,Tes single crystals obtained from different part of the
cylinder usually show different transport behaviors, from
metallic to semiconducting. We choose BSTS crystals with
p(10 K)/p(300 K) > 100 and p(10 K) > 3 Q cm for our
experiments.

For the transport measurements on bulk samples, the
contact were made with silver paste and cured at room
temperature. Photolithography was used to pattern electrodes
on the nanoflake devices. Cr/Au (5 nm/120 nm) contacts
were deposited in a magnetron sputtering system with a
base pressure of 1 x 10~% torr. The typical devices are
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FIG. 2. (Color online) Temperature dependence of resistivity in
zero field of (a) bulk single crystal with a thickness of 102 um and
(b) nanoflake devices with various thicknesses. (c) The resistivity
values of nanoflake devices and bulk crystals with various thicknesses.
The red line is the fitting curve based on the two-channel model.
(d) The zoom in of Fig. 2(c). It shows the thickness of the resistivity
of nanoflake devices. (e) The Hall measurement results of the 102-pm
thick BSTS single crystal and the fitting (the red curve) based on a
two-channel model. (f) The Hall resistance of a BSTS nanoflake
device with a thickness of 134 nm. The red line is a drawn straight
for comparison. (g) and (h) The image of two typical devices for
transport measurements.

shown in Figs. 2(g) and 2(h). Standard lock-in technique
was employed to perform four-terminal magnetoresistance
and Hall measurements in a 9 Tesla Quantum Design PPMS
system. All the transport measurements were performed with
the applied current in the (001) plane.
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III. RESISTIVITY, HALL RESISTANCE, AND AMBIPOLAR
ELECTRIC GATING EFFECT

The temperature dependence of the resistivity of the bulk
single crystal and three nanoflake devices measured in zero
field are shown in Figs. 2(a) and 2(b), respectively. The
102-pm thick bulk crystal shows semiconductor behavior in
the measured temperature regime and reaches a saturation be-
havior when T' < 40 K, which is due to the increasing transport
contribution from surface.’”-*® The resistivity at 10 K is more
than 200 times larger than that at room temperature. Although
the nanoflake devices also show the semiconductor behavior
in the high-temperature range, the transport characteristics
transfer to a metallic type when T < 150 K. It should be noted
from Figs. 2(a) and 2(b) that the resistivity of nanoflakes are
hundreds of times smaller than that of the bulk single crystal
although the nanoflake is exfoliated from the bulk crystal used
in the transport measurement [Fig. 2(a)]. As shown in the
inset of Fig. 2(b), the resistivity of eight nanoflake devices
with varying thickness smaller than 600 nm and the nine bulk
single crystals with thickness between 1 um to 157 pum at
10 K decreases with decreasing sample thickness. The eight
nanoflake devices and 102-pm thick bulk sample are obtained
from the same piece of single crystal, while the other eight
bulk samples are obtained from another piece of single crystal.
From the systematic decrease of resistivity with decreasing
sample thickness and the energy-dispersive x-ray spectroscopy
(EDS) as shown in Fig. 1, we can conclude that the dramatic
decrease of resistivity with decreasing sample thickness is
not due to chemical inhomogeneity. As the material system
has already been proved to be a topological insulator,>®3
the dramatic decrease of resistivity with decreasing sample
thickness indicates that the contribution from the surface states
plays a more and more important role as the thickness reduces.
As shown in Fig. 3, supposing that the total thickness of the
two surface states is 5 nm, we use a simple model to fit the
resistivity of the surface states and bulk. The formulas are
shown below,

1 1 Ps - pp -l

k= FtE eI ety p) W o
_ pups(ty +15)
B ts Pp + 1pPs '
where p, pp, ps, tp, tg, are the resistivity of the sample, the
resistivity of the bulk part, the resistivity of a 5 nm thick surface
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FIG. 3. (Color online) Schematic diagram of a two-channel
model for resistivity of BSTS nanoflake device.
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state, the thickness of the bulk, and the thickness of the surface
state (5 nm), respectively. The fitting curve is shown as the red
line in the inset of Fig. 2(c), which yields p, = 8.036 Q2 cm
and p, = 2.19 x 1073 € cm. For a device with a thickness of
200 nanometers, the conductance contribution of the surface
states is 98.9% at 10 K. Figure 2(d) is the zoom in of Fig. 2(c),
which shows the resistivity of the eight nanoflake devices more
clearly. As shown in Fig. 2(e), the Hall measurement of the
single crystal (102 pm) is also fitted using a standard two-band
model >3 (details in Appendix),

B (nppj +ngi3/ 1) + BAugpd(ng + ny/t)
e (nppp +ngpug/1)? + B2ugpl(ng, +ng/1)2’
3)

where p., B, np, ng, Wy, iy, and t are the Hall resistivity, mag-
netic field, bulk charge density, surface charge density, bulk
mobility, surface mobility, and sample thickness, respectively.
The fitting yields n, = 1.1x10'7 cm?, ny, = 2.5x10'2 cm?,
wy =25 cm?/V's, uy = 1767 cm?/V s. Based on the fitting
results, the surface conductance contribution of a 200-nm
thickness sample is 98.7%, which agrees well with the results
obtained from resistance measurements. It should be noted
that the results obtained from the fitting of Hall resistivity
has certain arbitrariness due to the multiple free parameters.
To relieve the arbitrariness and further prove the surface
dominated transport in nanoflakes with a thickness of hundred
nanometers, we measured the Hall resistance of a nanoflake
device (134-nm thick) from 9 T to —9 T. As shown in
Fig. 2(f), the shape of Hall resistance vs magnetic field curve
is very different from that of the bulk sample in Fig. 2(e). The
Hall resistance of the nanoflake is always linear over the entire
range of magnetic field, indicating all channels contributing to
the transport have similar mobility and the same carrier sign.
The transport channels of nanoflake devices include the top
and bottom surfaces, the side surfaces, and the bulk channel.
As it is known that the mobility of the bulk channel of BSTS is
much smaller than that of the surface transport channels, from
the perfect linear behavior of the Hall resistance, it can be
concluded that the bulk transport is negligible in the nanoflake
device at 2 K. Otherwise, the Hall resistance vs magnetic field
curve will show clear curvature due to the transport channels
with very different mobility. The linear Hall resistance also
shows that the mobility of electrons on the top, side, and bottom
surface are similar, which indicates that the device fabrication
process does not significantly change the mobility of the top
and side surfaces of BSTS samples. The Hall resistance of the
nanoflake device is 207 /T, which corresponds to a Hall
carrier density of 3.01 x 10'> cm™2. The sheet resistance of
the device at 2 K is 1260 €2, therefore the mobility of the
surface transport can be calculated as 1647 cm?/V s. Both the
charge density and mobility of the surface state obtained from
the direct measurements agrees well with the value obtained
by the fitting on the bulk Hall measurements [Fig. 2(e)], which
further support the ~99% surface transport in a BSTS device
with a thickness of 200 nm.

If the electron transport is mainly due to the topological
surface transport, we should be able to observe the ambipolar
electric effect even in devices fabricated with BSTS nanoflakes
with a thickness of several hundred nanometers, which is

pxy(B) = -
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FIG. 4. (Color online) (a) The gate voltage dependence of
resistance (R,,) and Hall resistance (R,,) at 1 Tesla field of a BSTS
nanoflake device at 2 K. (b) The temperature evolution of the R, (V,)
curve.

indeed the case in our experiments. Figure 4 shows the gate-
voltage dependence of longitudinal resistance (R,,) without
applied magnetic field and Hall resistance (R,,) at 1 Tesla
magnetic field of a 172-nm thick device. To eliminate any
possible nonsymmetry effect of the sample and electrode
contacts, all the Hall resistances were obtained from low
field Hall measurement with magnetic field scanning from
— 1 Tesla to 1 Tesla. As the sample is 172-nm thick, the
electrostatic gating can only shift the Fermi level of the bottom
surface. The key finding is the resistance maxima appears
near V, =— 10 V. The resistance change near 35% with
460V applied gate voltage. The quite sharp charge neutrality
point at 2 K and the gradual decrease of resistance with
V, deviating from the charge neutrality point indicate that
the ambipolar behavior should be due to the Dirac cone of
the topological surface state, which has been observed by
ARPES.* If it were due to the normal band banding, there
would be a wide constant resistance region when the Fermi
levelis in the band gap and a much dramatic resistance decrease
when the Fermi level enters into conduction or valence band.
The Hall resistance can also be changed from n type to p
type with applied gate voltage as shown in Fig. 4(a), which
further confirms the ambipolar electric gating effect in this
device. From the measured Hall resistance Ry (150 /T at
2 K), if we neglect the Hall contribution from the bulk, the
charge density can be estimated to be about 4.2 x 102 cm™>
(bottom + top), which approximately agrees with the bulk
Hall fitting results as aforementioned. For a 300-nm SiO,
dielectric layer, a gate voltage of 60 volts can induces n =
4.4 x10'2 cm~2, therefore the 300 nm SiO, dielectric layer
should be able to generate ~50% resistance change because we
can only tune the bottom surface state. However, considering
the 176-nm thick side surface of the devices, which can
contribute ~5-10% surface conductance contribution, and the
small amount of charge from the bulk, it is very reasonable that
we only get 30-40% resistance change. It should be pointed
out that we have observed similar ambipolar behavior in many
devices fabricated with BSTS flakes with a thickness of several
hundred nm. Figure 4(b) shows the gate voltage dependence
of resistance at various temperatures. It is observed that the
shape of the R(V,) curves become more broad with increasing
temperature, which is a standard ambipolar behavior as shown
in graphene.* It also agrees well with the deceasing surface
conductance contribution with increasing temperature. The
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FIG. 5. (Color online) (a) The R..(V,) curves of a BSTS
nanoflake devices at various temperatures. The devices had been
stored in vacuum for two months. The peak shifts to — 80 volts.
(b) The low field Hall resistance of the device.

shift of resistance peaks with increasing temperature indicates
the shift of chemical potential of the bottom surface with
increasing temperature. The ambipolar gating effect of a
device stored in vacuum for two months is shown in Fig. 5,
which indicates that the charge neutrality point shifts to near
—-80 V.

IV. WEAK ANTILOCALIZATION

To further confirm the surface-dominated electron transport
in the nanoflake device, we have performed the angle-
dependent magnetoresistance measurements using a very
thick (596 nm) nanoflake device. To eliminate any effect
from Hall resistance, all the magnetoresistance measurements
were performed from —2 Tesla to 2 Tesla and carried
out corresponding calculation process to obtain intrinsic
magnetoresistance. The magnetoresistance was measured by
tilting the bulk crystal and nanoflake device with respect to
the applied magnetic field from 0° to 90°. 8 =0° means
the magnetic field parallel to the (001) surface while the
6 =90° means the magnetic field perpendicular to the (001)
surface. Figures 6(a)-6(d) show the field dependence of
magnetoconductances AG = G(B) — G(0) with various 6 for
the bulk single crystal at 2 K and nanoflake device at 2 K,
10 K, and 30 K, respectively. Both the bulk crystal and
nanodevice show weak antilocalization behavior in the low
magnetic field region. Such a weak antilocalization at low
temperature has been attributed to both strong spin-orbital
coupling and topological & Berry phase of two-dimensional
surface states.*'*® It is very obvious that AG decreases
with decreasing 9 for both bulk single crystal and nanoflake
device and it is more pronounced for the nanoflake device.
The variation of magnetoconductance as a function of the
perpendicular component of the magnetic field for the bulk
single crystal at 2 K and nanoflake device at 2 K, 10 K,
and 30 K are shown in Figs. 6(e)-6(h), respectively. The
G vs Bsin6 (the perpendicular component of the applied
field) curves of the nanoflake device are perfectly merged
into one universal curve at all temperatures. It should be
noticed that a misalignment between the sample and applied
magnetic field has a large effect when 6 is near 0 while
it has a negligible effect when 6 is a large value, which
can be inferred from the small difference between the 6 =
80° and & = 90° curves and the large difference between
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FIG. 6. (Color online) Angle-dependent conductance of a bulk BSTS single crystal and a nanodevice fabricated with a 596-nm thick BSTS
flake. 6 is the angle between the direction of the magnetic field and the (001) plane. (a), (b), (c), and (d) show the magnetoconductance of bulk
BSTS single crystal at 2 K, nanoflake device at 2 K, 10 K, and 30 K, respectively. (e), (), (g), and (h) show the curves of magnetoconductance
vs the perpendicular component of the magnetic field of bulk BSTS single crystal at 2 K, nanoflake device at 2 K, 10 K, and 30 K,

respectively.

0 = 0° and 6 = 5° curves. Based on this, we speculate that the
very small magnetoconductance at 6 = 0° may be due to the
small unavoidable misalignment between the sample and the
applied magnetic field in experiment. Therefore, the perfect
fitting into a universal curve for all 8 value (except & = 0°) as
shown in Figs. 6(f)—6(h) is a support of the conclusion obtained
from the resistivity and Hall measurements, surface-dominated
transport (96.9% in a 596-nm thick device). For the bulk single
crystal, it is not a surprise that the weak antilocalization is
observed for all the angles and G vs B sin curve cannot be
fitted to one universal curve because of the coexistence of both
the bulk spin-orbit coupling effects and helical surface state
contribution.

Magnetoconductances AGat different temperatures (2 K,
4K,7K, 10K, 15K, 30 K, and 45 K) have been obtained in
a magnetic field perpendicular to the (001) plane (6 = 90°),
as shown in Figs. 7(a) and 7(b) for bulk single crystal and
nanoflake device, respectively. The Hikami-Larkin-Nagaoka
(HLN) formula

A a [ (1 oLy 7
o = | — n — — [
2 217 4¢L2B 2" 4eL2B

is used to fit the magnetoconductance observed in both bulk
and nanoflake devices, where Ao,p is the two-dimensional
conductivity (Aoyp = %, L and W are the length and
width of transport channel, respectively), W is the digamma
function, L, is the phase coherence length, and « is a prefactor,
which contains information about the nature of the electrons

in topological insulators.*># The fitted curves are plotted in
Figs. 7(a) and 7(b) in solid lines. Due to the three-dimensional
bulk contribution, the fitting curves do not agree well with
experimental data for bulk single crystal samples. For the
nanoflake device, the two-dimensional fitting curves agree
very well with the experimental data for both fitting range from
0to 2 Tesla and from 0 to 0.5 Tesla at all temperatures from 2 K
to 45 K. The fitting results of « and L, of nanoflake devices are
shown in Figs. 7(c) and 7(d), respectively. It is clear that similar
results are obtained from different fitting ranges. The power-
law fit gives L, oc T~%%and L, o« T~ (for the fitting of
0-0.5 Tesla field range) in the temperature regime 10 K—45 K
and 2 K-7 K, respectively, which indicates the effect of phonon
scattering at high temperatures and paramagnetic impurities at
low temperatures.*** It should be noted that the fitted L, at all
temperatures are much smaller than the thickness of the sample
(596 nm), which strongly indicates that the two-dimensional
electron transport characteristics are due to the surface states.
From this point of view, our experiment is very different from
previous measurements on ultrathin Bi,Ses and Bi,Tes films.
The two-dimensional transport behavior in ultrathin BiSes
and Bi, Te; films cannot be completely attributed to the surface
states, because the L, is larger than the thickness of the film and
therefore the film itself, including the bulk and surface states,
forms a two-dimensional transport system. Since the thickness
(596 nm) of our nanoflake BSTS device is much larger than
Ly(~180nmat2 K, ~110 nm at 10 K, and ~60 nm at 30 K), it
is a three-dimensional transport system. The two-dimensional
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FIG. 7. (Color online) Temperature-dependent magnetoconduc-
tance of the BSTS single crystal and 596-nm thick nanoflake device
with 6 = 90°. (a) Magnetoconductance of the bulk single crystal
at different temperatures. The HNL fitting curves are plotted in
solid lines. (b) Magnetoconductance of the nanoflake device at
different temperatures. The HNL fitting curves are plotted in solid
lines. (c) The fitted values of « at different temperatures for the
nanoflake device in the fitting range of 0-2 Tesla and 0-0.5 Tesla,
respectively. (d) The power-law fit gives L, ox T %%and L, o
T7%1% (0.5 Tesla) in the temperature regime 10-45 K and 2-7 K,
respectively,

transport behavior of weak antilocalization can only originate
from the helical surface states. The coefficient « takes a value
of —1/2 for a traditional 2D electron system with strong
spin-orbit coupling and one helical surface with a single Dirac
cone. Since carriers on both the top and bottom surface can
contribute the conduction in topological insulator samples, the
ideal value of o is — 1. As shown in Fig. 7(c), the perfect
fitting using HLN formula generates « values between — 0.7
to — 0.8 at various temperatures, which also agrees with the
2D surface transport.

V. TIME-DEPENDENT UNIVERSAL CONDUCTANCE
FLUCTUATION

We also observed a conductance fluctuation phenomenon
in the nanoflake device under both low and high magnetic
fields. The low magnetic field conductance fluctuation is very
clear as shown in Figs. 6(b) and 6(f). Figure 8(a) shows the
conductance fluctuations at different temperatures below 10
K and between 4 and 9 Tesla perpendicular fields. Different
from normal universal conductance fluctuations (UCF) dis-
covered in topological insulator Bi,Ses,?>?! the conductance
fluctuation in our nanoflake device evolves with time. Such a
time-dependent UCF can only be observed below 10 K and
the magnitude of those fluctuations increases with decreasing
temperature. The top three curves shown in Fig. 8(a) were
measured continuously with different field sweeping direction.
As shown in the circled region in the figure, the curves show
very similar fluctuation behaviors in the same magnetic field
region because the time interval between the measurements is
short. With the time evolution, the fluctuation patterns become
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FIG. 8. (Color online) (a) Magnetofingerprint (UCF) signal 6 R
vs magnetic field for the nanoflake device. At 2 K, we scan the
field for three times with alternative field sweeping direction (the
arrows). Seven UCF curves measured at temperatures between 2 K
to 10 K were shown in the figures. (b) Temperature dependence
of root mean square of the fluctuation of conductance. The solid
line is the fitting curve using power law and the fitted power is
—0.43.

different in the same magnetic field region. Time-dependent
UCF is due to the sensitivity of the conductance to the motion
of individual scatters and such phenomena have been reported.
The variation of the conductance pattern is due to the motion
of scattering sites, which changes the interference pattern of
all the intersecting electronic paths in the coherent volume
of the scattering sites. Since the motion of scattering sites is
related to the time, the observed fluctuations are also time
dependent, which allows the nonretraceable results. As the
electron transport in the nanoflake is almost fully surface
transport as discussed before, the motion of the scattering
site might be due to the time-dependent surface contamination
in the measurement chamber. Each magnetoresistance curve
from 4-9 Tesla takes about one hour. According to the
results, we can conclude that the scattering site pattern on
the topological surface changes after about 30 minutes.
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The amplitude of fluctuation detected is around 0.2e?/h.
The phase coherence length of electron L, observed at 2 K is
~0.18 um (Fig. 7) and the thermal length,L; = /hD/kpT
is around 1pum at 2 K. AsL, < Lt < L, the fluctuation of
G can be calculated as G = e/ h[L,/L]*"¢, where L is the
sample size. The calculated §G is 0.3e*/h, which is quite close
to our experiment data 0.2¢% /h at 2 K. Furthermore, the root-
mean-square (rms) of §G vs temperature curve is also plotted
as shown in Fig. 8(b). The rms of§G is usually following the
power law rms8G o T3 for a two-dimensional system. Our
fitting shows rms8G o« T~%43, which also indicates that the
time-dependent UCF observed in the BSTS device sample is
mainly from the surface states.

VI. CONCLUSION

In conclusion, we demonstrate surface-dominated transport
in single crystalline nanoflake devices of topological insulator
BSTS. The analysis on the resistivity and Hall resistance based
on a two-channel model indicates that ~99% of the surface
transport contribution can be realized in 200-nm thick BSTS
devices. The pronounced electric gated ambipolar behavior of
BSTS devices with a thickness of several hundred nanometers
proves the dominated topological surface transport. Moreover,
the angle-dependent weak antilocalization effect of bulk single
crystals and nanoflake devices strongly suggest the surface-
dominated transport in a nanoflake device, which is further
confirmed by the fact that the phase coherence length L,
obtained by 2D HNL fitting is much smaller than the thickness
of device.
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APPENDIX

Two-channel model for calculating Hall effect:
We use the Drude model

dv - .= muv
m— = —e(E +[v x B]) — —, (A1)
dt T
j = nev. (A2)
At steady state
— L= muv
el = —e[v x B]) — —, (A3)
T
- m
E = ——[nev x B]) — nev ——. (A4)
T
Define
Ry=—, and p= 5 (AS)
ne net
We obtain
E=p-j—Ru(jxB) (A6)
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When the magnetic field B points to the z direction, we obtain

E, p— RyH Jx
= ). A7
(5)=(ho ") (5)-
Then the conductivity
s_(P—RuH) " _ 1 pRyH
=\ RuHp T 2+ (RyHR \—RuHp )
(A8)
For more than one channel transport,
j=) 6E. (A9)
Using
1 Ry
— =nen and — = pu, (A10)
P o
we obtain
Z nej; Z ”eﬂ,-z
i 2p2 i 2p2
o= ‘*’;2'2 " “MB (A1)
Zi 1+u?B? Zi 1+u?B?
Using
p=6"", (A12)
for a two-channel system, we obtain
o (B) = B (mpf + nol) + B2 pipi(ni + na)
” e (nip1 + napn)? + B2udpud(ny + no)?’
(A13)

The formula is for two three-dimensional transport channels.
If channel 2 is a two-dimensional transport channel (thickness
= 0), the formula should be written as

o (B) — B (mppy + nspig/1) + B2 upui(ny + ng/1)
Y e (pip + nsps /O + B2l i (ng, +ny /)

(Al4)

which is Eq. (3) in the main text. Here, ¢ is the sample thickness.

Equation (A14) is clear for understanding physics concept.
However, n;, ng, up, and u, are very large numbers. It is
difficult to use Eq. (A14) for curve fitting. By using Eq. (A10)
or derive from Eq. (A8) directly, we transfer Eq. (A14) to
another equation,

(Rpp? + Ryp?) + B2 RIR*(R), + Ry)
(o» + ps)* + B2(Ry + Ry)?

pxy(B) = -
(A15)

Here, R, and p, are the Hall coefficient and resistivity of the
bulk electrons. Ry = t/engand pg = Pgheet/ t, Where pgheer 1S the
surface sheet resistance.

It should be noted that the Hall fitting has some arbitrariness
due to the multiple fitting parameters and the symmetric form
of Eq. (A15). The fitting results can only be used as a kind of
support to the results obtained from the fitting-based Eq. (2)
[Figs. 2(c) and 2(d)].
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