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If bilayer graphene is placed in a strong perpendicular magnetic field, several quantum Hall plateaux are
observed at low enough temperatures. Of these, the o,, = 4ne?/h sequence (n # 0) is explained by standard
Landau quantization, while the other integer plateaux arise due to interactions. The low-energy excitations in both
cases are magnetoexcitons, whose dispersion relation depends on single- and many-body effects in a complicated
manner. Analyzing the magnetoexciton modes in bilayer graphene, we find that the mixing of different Landau
level transitions not only renormalizes them, but essentially changes their spectra and orbital character at finite
wavelength. These predictions can be probed in inelastic light scattering experiments.
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I. INTRODUCTION

Bilayer graphene,! two coupled hexagonal lattices of

carbon atoms in the Bernal stacking? of graphite, is a
two-dimensional zero-gap semiconductor with chiral charge
carriers with Berry’s phase 27, having a roughly parabolic
dispersion at low energies about the corners of the hexagonal
first Brillouin zone.? These facts are testified by its unusual
integer quantum Hall effect®* (IQHE), featuring a double step
in the ladder of the Hall conductance in a strong perpendicular
magnetic field B, , observed by Novoselov et al.' This double
step, 8¢?/ h instead of the common 4e?/ h for spin and valley
degenerate Landau levels, is due to the degeneracy of the
n = 0,1 Landau orbitals.>”” The gap at the integer quantum
Hall effect at filling factor v = phc/eB; = £4,48 has been
recently measured with great accuracy,® and the excitations of
the IQHE states in the long wavelength limit have also been
observed by infrared absorption’ and Raman spectroscopy.'’
Further broken symmetry states have been observed''™' in
the central Landau band at v = 0,£1,4+2 and %3, and by
careful tilted-field measurements it has been shown that
they arise predominantly from many-body effects, i.e., from
quantum Hall ferromagnetism (QHF).'® Quantum Hall states
with broken symmetry have also been found in the n = —2
Landau level,!” and there is also some evidence for a fractional
quantum Hall plateau.

The eightfold degeneracy of the central group of Landau
levels (LL) is at best approximate, because the Zeeman energy
is unavoidably present. While the latter is rather small on the
characteristic scale of the interaction energy, a perpendicular
electric field can be applied to bias the two layers,”!3!8-2
which causes an energy difference between the two valleys.
The competition of the onsite energy difference between
the layers and interactions may result in interesting physics,
especially at v = 0,13:29-33

If the chemical potential is in the gap between Landau
bands, the low-energy excitations are bound particle-hole
pairs,*37 called magnetoexcitons. As the net charge of such
an excitation is zero, taking appropriate linear combinations
one obtains eigenstates of the total momentum. In such states
the hole and the particle are bound by the attractive Coulomb
interaction, forming a dipole with a separation of qZ% at
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center-of-mass wave vector q, where {p = /i/eB is the
magnetic length. These modes determine the transport gap
in the ¢ — oo limit. Some of these modes couple to circularly
polarized light,3® while others may be observable in inelastic
light scattering experiments.'%-34

For monolayer graphene, Yang et al.* studied the intra-
Landau level excitations of quantum Hall ferromagnetic states,
and lyengar et al.* Bychkov and Martinez,*® Roldén et al.,*
and Lozovik and Sokolik® discussed the inter-Landau level
excitations in detail both for the IQHE and QHF states. In
particular, the linear dispersion of electrons and holes in
graphene makes Kohn’s theorem®! inapplicable.*” Many-body
corrections to cyclotron resonance due to the interaction
with the Dirac sea were calculated by Shizuya.”” Infrared
absorption data by Jiang et al.>* and Henriksen et al.>* indicate
a contribution from many-body effects to the inter-Landau
level transitions in these states.

In bilayer graphene, Henriksen et al.” have found that fitting
the single-body parameters does not fully explain the observed
cyclotron resonance; Deacon et al.» and Zou et al.*® have
found a significant particle-hole asymmetry, whose origin is
still debated.>?> The wave-vector dependence of the excitations
has not been observed so far. Theoretically, the intra-Landau
level excitations in bilayer graphene are well understood. At
odd integers in the central Landau band (v = £1,43) the
degeneracy of the n = 0,1 Landau orbitals causes fluctuations
with an in-plane electric dipole character, which gives rise
to unusual collective modes.'®7>% At even integers in the
central Landau band (v = £2,0) orbital degeneracy does not
play a similar role, and the intra-level excitations are still
magnetoexcitons.*>° For inter-LL excitations, the many-body
corrections to cyclotron resonance have been calculated by
renormalization®> including the possible particle-hole
symmetry-breaking terms but using the unscreened Coulomb
interaction, with partial agreement with experiments.’ To com-
plement these studies, here we address the issue of the inter-
Landau level excitations of bilayer graphene in the quantum
Hall regime. We incorporate the screening of the interaction
by Landau level mixing, i.e., the interaction-induced mixing
of excitons between different Landau level pairs. We study
the finite wave-vector behavior of excitations.
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FIG. 1. (Color online) Bilayer graphene in Bernal stacking.
The hopping parameters of the Slonczewski-Weiss-McClure model
(Ref. 60), conventionally denoted yy, 1, ¥3, and 4, are also indicated.

Our paper is organized as follows. In Sec. II we review
the tight-binding model of bilayer graphene, and the basic
facts concerning its Landau levels and orbitals. Our goal is to
systematically explore the range of applicability of subsequent
simplified models, which neglect several parameters of the
Slonczewski-Weiss-McClure® (SWM) model, or account for
them on the level of perturbation theory. We intend to add
a few observations to the excellent studies available in the
literature.”’ In Sec. III we briefly comment on the reasons
why Kohn’s theorem®! does not apply for bilayer graphene. In
Sec. IV we review the adaptation of the mean-field theory of
magnetoexcitons to the case of bilayer graphene. In Sec. V we
study the excitations of the IQHE states, and in Sec. VI those
of the QHF states. We conclude in Sec. VII, with an outlook
on experimental connections.

II. LANDAU LEVELS AND ORBITALS

Each layer of bilayer graphene consists of two sublattices,
denoted A and B in the top layer and A and B in the bottom
layer. In Bernal statcking2 two sublattices, A and B in our
notation, are exactly above/below one another, while the A
sites are above the center of the hexagons in the bottom layer,
and B sites are below the centers of hexagons in the top layer
(see Fig. 1).

The low-energy physics of bilayer graphene can be ade-
quately described by the tight-binding effective theories that
specialize the SWM model® of graphite to the case of just two
layers. In the vicinity of the valley centers corresponding to
the K (§ = 1) and K’ (§ = —1) first Brillouin zone corners,
this amounts to using the Hamiltonian®

”’ZA V3T —uut  urt
+A
A vyl —uEA v —UuTT .
Hg :S 2Jf U—A — Azo’z, (1)
—U4TT v -5 én
O L R

where 7 = p, +ipyandp = —ihV —eA,v = VBayy/2h ~
10° m/s is the intralayer velocity, vs = ~/3ays/2% is the
trigonal warping parameter, y; is the interlayer hopping
amplitude, and v4 = v/3ay, /2% is a velocity parameter related
to interlayer next-nearest-neighbor hopping. Az = gugB, is
the Zeeman energy (with g being the gyromagnetic factor
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and wp the Bohr magneton). This Hamiltonian acts in the
basis of sublattice Bloch states [Vr4,¥5, %5, ¥p] in valley
K and [V 5,¥a,¥5, Y] in valley K'. Here yo = yap = Vi5
is the intralayer hopping amplitude, and y; = y;p is the
interlayer hopping amplitude between sites above each other
in the two layers. Further, y3 = y,5 and ys = Y47 = V55
are next-nearest-neighbor interlayer hopping amplitudes, as
shown in Fig. 1. A’ is the onsite energy difference between
the dimer sites (A, B) and the nondimer sites (B, A). Finally,
u is the potential energy difference between the layers, which
may arise, e.g., because of an applied perpendicular electric
field E; .

The Hamiltonian in Eq. (1) is block diagonal in the valley
index, which is conveniently described as a pseudospin. In the
special case u = 0 the system has SU(2) pseudospin rotation
symmetry. In the theoretical limit Az — O this is raised to
SU(4) symmetry. In this paper we will treat Az and u as small
perturbations in comparison to the interaction energy, i.e., we
will work in the Az, u < €2 /(4mepe.L ) limit, where €, is the
relative dielectric constant of the environment. We set/ = 1.

For small momenta p < y;/4v, the two low-energy bands
of the Hamiltonian ﬁg that touch each other at K and K’ in the
case of vanishing magnetic field can be attributed to a 2 x 2
effective Hamiltonian'®

A L /0 (nf)? 0 =
/ —_— e —
Hg = Tom <n2 0 +&v3 0

1/1 0 v (ntx 0
+$u|:5(0 —1>_y_12<0 —axt )| )
where m = y, /2v2, and I-AIS’ acts on [Yr4,% 5] in valley K and

[Y5.¥alin valley K'. The Landau levels an(} Landau orbitals,
respectively, of the two-band Hamiltonian Hé are
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u ulnlho, (5)
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Heren # —1isaninteger, C é") is an appropriate normalization

factor, and 7, are the single-particle states in the conventional
two-dimensional electron gas (2DEG) with quadratic disper-
sion in the Landau gauge A = yBx,

eiqy—(x/ﬁg-ﬁ-q@B)z/Z
Nng (r) = n (

x
———H,| — +q€3), (6)
2w /m2'nlp

L

and H), is a Hermite polynomial.

The n = 0,1 orbitals are degenerate in the u — O limit,
and they have a layer polarization for £ = +1. At realistic
values of Az and u, the n = 0,1, § = £1, 0 = 4,] states
form a quasidegenerate band we will call the central Landau
level octet. Notice that Ag’) — 1/+/2 and |B§"> | — 1/+/2 for
u— 0.
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FIG. 2. (Color online) The overlap of the Landau orbitals with the
“ideal” limit, y; = y4 = A’ = 0, as the SWM parameters y3,y4, A’ are
gradually tuned from zero to their literary values [Egs. (7) to (8)] for
the lowest-energy Landau levels. For the effect of y; in the two-band
model, see Ref. 66.

We would like to determine how neglecting y3, y4, and A’
changes the single-body orbitals of the four-band Hamiltonian
I-AIE in Eq. (1), and how much these differ from the simplified
two-band model I:Ié in Eq. (2). The values of the SWM param-
eters for bilayer graphene were estimated by a combination of
infrared response analysis and theoretical techniques by Zhang
et al %' They found

o133, Yoo 2 — o000 7
Yo Yo Yo
These ratios are based on yy = 3.0 eV. While somewhat greater
values of y, are also available in the literature,®? we use
these values for a robustness analysis. For the particle-hole
symmetry-breaking term we use

0,063 8)
Yo
from the recent electron and hole mass measurement by Zou
et al.,’® which is slightly greater than the value in Ref. 61.

With = = %a, [a,a'] = 1, the Hamiltonian can be ex-
pressed in terms of these Landau level ladder operators. Then
the eigenstates of I:Ig can be calculated numerically. Figure 2
shows the overlap of the Landau orbitals with the “ideal” limit
ys = y4 = A’ = 0 as the SWM parameters ys, y4, A’ are tuned

from zero to their literary values [Eqgs. (7) to (8)] for the central
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(n = 0,1) and the two pairs of nearby (n = £2,43) Landau
levels. At small magnetic field B = 0.1 T, trigonal warping
alone significantly changes the orbitals from their ideal limit.
Switching on y4 hardly affects the central levels, but forn > 2
it changes the electron and hole states (+n,—n) differently,
as expected from this electron-hole symmetry-breaking term.
Finally, the inclusion of A" hardly affects the orbitals. These
changes, however, are already small at modest fields (B =
1 T), and are further suppressed as the experimentally relevant
range (B ~ 10T)is approached. Thus, neglecting the y3,y4, A’
SWM parameters is justified in the high magnetic field range
where quantum Hall experiments are typically performed.

As the two-band model in Eq. (2) applies for small
momenta, and the low-index Landau orbitals have a small
amplitude at high momenta, the two-band model is expected
to be valid for the lowest few Landau levels. The Landau
orbitals of the two-band model have a large overlap with those
of the four-band model in the “ideal” limit 3 = y, = A’ = 0:
1, 0.9995, 0.9992, 0.9987 for n = 0,1,£2,43, respectively.
We conclude that using the Landau states of the two-band
model in Eq. (2) instead of those of the four-band model I:Ig
in the lowest-energy Landau bands does not introduce further
inaccuracy beyond the neglect of y3, y4, and A’. Therefore,
we take I:Ié as our starting point.

III. A NOTE ON KOHN’S THEOREM

Kohn’s theorem®' states that interactions do not shift the
cyclotron resonance in a parabolic band. It applies equally to
two- and three-dimensional systems. It is not applicable to
linear bands in monolayer graphene.*’ We will see that it also
fails for bilayer graphene, even though the bands of ﬁg in
Eq. (1) start quadratically at low energies, and those of I:Ig in
Eq. (2) are exactly parabolic for v = u = 0.

For the conventional 2DEG, Kohn’s theorem follows
because the interaction with a radiation field

A i - SA(r;)
Hegm = EZPT’

where p; is the canonical momentum that includes vector
potential of the homogeneous magnetic field, is proportional to
P=P,+iP,,where P, =) .p,and P, =) . p; . P, and
P, are generators of global translations, hence they commute
with any translation-invariant interaction; moreover, P, PT act
as ladder operators among the eigenstates of the total kinetic
energy Hy = 3. p?/2m. Therefore, Hgyp connects eigenstates
of the total Hamiltonian and conserves the interparticle
interaction. A may be described classically or quantum
mechanically; [Agm, V1 = 0 can also be checked directly.

In the two-band model of bilayer graphene the interaction
with the radiation field §A is3%%

Vo e 0 SAT(r)m)
Hem = 00 2. (3A(r,-)m 0 )

i

withd§A = §A, +idA,. Itis straightforward to show that Hpm
maps a state W, to a linear combination of W, ,, ¥,_1 4,
W_,_14,and W_, .. If three out of these transitions are
Pauli blocked, we may end up in an eigenstate of the kinetic
part of the many-body Hamiltonian, but Hgy is no longer
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proportional to a linear combination of Py and P,. In fact, it
no longer commutes with them. Thus, the interaction energy
may differ in the electromagnetically excited many-body state
and the initial state.

IV. MAGNETOEXCITONS

When the Fermi energy is in a Landau gap (e.g., at filling
factor v =...,—12,—8,—4,4,8,12, ... in bilayer graphene),
the integer quantum Hall effect* occurs in samples with
moderate disorder.! Quantum Hall states also occur at other
integer filling factors because the exchange interaction fa-
vors symmetry-breaking ground states called quantum Hall
ferromagnets; single-body terms such as the Zeeman energy
play a secondary role. QHF’s emerge at odd integer fillings in
two-component systems even if the Zeeman energy is tuned to
zero. This observation straightforwardly generalizes for SU(n)
systems.*®

Because of the clear separation of the filled and empty
Landau bands in the (mean-field) ground state, the excitations
of both classes of quantum Hall systems are described
in the same way. The relevant low-energy excitations are
magnetoexcitons,®> which are obtained by promoting an
electron from a filled Landau band to an empty band.’*’
These neutral excitations have a well-defined center-of-mass
momentum Q. They approach widely separated particle-hole
pairs in the Q — oo limit. The latter limit determines the
transport gap unless skyrmions form.®* Magnetoexcitons are
created from the ground-state by operators®’

271E

Bl (Q = Ze"’Q Gal,avp-0, )

where N = (n,£,0) [N' = (',&',6")] specifies the Landau
band where the particle (hole) is created and A is the area
of the sample.

Magnetoexcitons carry spin and pseudospin (valley) quan-
tum numbers, as derived from the particle and hole Landau
bands involved. While the projections S, P, of the spin and
the pseudospin are always good quantum numbers, their
magnitudes S and P are well defined only for ground states
that are spin or pseudospin singlets, respectively.

It is common practice’**” to define the quantity

I, = |n| = |n'|, (10

and consider it the “angular momentum quantum number” of
the exciton. We emphasize that [, is exactly conserved by the
electron-electron interaction only in the Q — 0 limit, where
it is related to angular momentum. The emergence of this
quantity is best seen in the two-body problem of the negatively
charged electron and the positively charged hole, as discussed
in the Appendix. At any finite wave vector, transitions with
different /, may mix.

In the low magnetoexciton density limit the interac-
tion between magnetoexcitons is neglected. The mean-field
(Hartree-Fock) Hamiltonian of magnetoexcitons is well known
from the literature,’37 and so is its adaptation to spinorial
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orbitals:324748

HYANQ) = (01W55.(Q VW] (Q)I0) — Sy8x (01 V10)
= SnNON [ Enato — o+ Aln,n)]

+ EqNa(Q) + RANI(Q), (11)
where N = (n,§,0), etc., and Syy = 86/0z£/8,. The first
term of the right-hand side is the single-body energy difference
of the N and N’ states, which includes the wave-vector-
independent exchange self-energy difference of the two states.

While the exchange self-energy itself is infinite for any orbital,
its difference between two states

En’o/S’

/ Gy 12
ANNNY= Y Xy — Xym) (13)
M filled
is finite. [We will define " NN, (p) soon.] This is a peculiarity

of bilayer graphene. A s1rnple regularization procedure works
for the four-band model.®> For monolayer graphene, a proper
renormalization procedure is required.*’? The shift A(N,N’)
is analogous to the Lamb shift in quantum electrodynamics.%

The next term is the direct dynamical interaction between
the electron and the hole:

dq v

(NN') i2-(qx

B @=- [ gL oni@. a4
This term is diagonal both in spin and pseudospin,
o<8(~,(,85§8(~,rar8§,§/, but not in Landau orbital indices. Finally,
the last term in Eq. (11) is the exchange interaction between
the electron and the hole,

o 62 Rel¥N(Q), (15)

RNNIQ) =

which is Xd548z'855/0¢7 » thus couples transitions that con-
serve the spin o and the valley & of the electron and the
hole individually. Sometimes we will call it the random
phase approximation (RPA) contribution, as it is related to
particle-hole annihilation and recreation processes (It is also

called® the depolarization term.) Notice RW (NN’ )(Q) vanishes
in the Q@ — 0 limit.
We have used the notation

NzN
Ly v (P)

(nh) (n) n}) 1 (n2)

=V3(p )[A : Ag ] A Ag ’ F|>;\72HN?\(p)FIN1HNH(p)
+B<n7)B(nl)B(n )B(nZ)Fﬁm 2ing—2, P Fiv -2, vy —2(p)]
(Yl ) n (’1 n *
+VP(PI[ALY B B ALY i vy () Finv -2, v -2(P)

(n}) (n) (1) p(n2) -
+B : A : A ! B : F‘N2| —2,INj|— 2,(p)F|N1\|NI’\(P)],
Fnn(q)

_ s s | (Cartiadts T (46
7N ) 2 n 2

x e th/4 ifn' > Fn(—q).

Here N — 2 = (n - 2,*5;:,0'), |N| = (|n|aé§,0), and FN’N(‘]) iS
related to the Fourier transform of 7,,(r) in Eq. (6), and

n,else Fyy/(q) =
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L7 (z) is an associated Laguerre polynomial. The differ-
ence between the intralayer Coulomb interaction V5(q) =
27T€2/(47T6()€rq) and the interlayer one VP(q) = e’quS(q)
where d ~ 0.335 nm is the distance between the layers,
is neglected as a first approximation. The Aé") and Bg")
numbers correspond to the spinorial structure of the single-
body states in Eq. (5): A(l) A(O) =1, B(]) B(O) =0, and

A(n) sgn(n)B(") = 1/\/_ for n > 2. Notice that
Eqai@Q = EQN(Q = EN V(. (16)
RNN(Q) = RYN Q@ = (=1 RETQ),  (17)
which follow from the similar properties of " NN, ( ).
The g — 0 limit of the magnetoexciton d1sper510n deter-
mines the many-body contribution to the cyclotron resonance,

which may be nonvanishing in graphene systems (cf. Sec. III
and Refs. 49 and 52).

The mean-field Hamiltonian matrix H((N N (Q) in general
mixes transitions among different electron-hole pairs, re-
stricted only by conservation laws. Landau level mixing effec-
tively screens the interaction. Sometimes the magnetoexciton
spectra are obtained using a screened model interaction instead
of the bare Coulomb, not letting LL transitions mix.’>% We
believe such an approach is suitable in the g = 0 limit, where
an additional quantum number [, also restricts LL. mixing,
and for intra-LL. modes. At finite wave vector the mean-field
theory with LL mixing removes spurious level crossings in the
excitation spectra and provides insight into the orbital structure

of the excitations. Technically, however, the infinite H( N N ) Q)
martrix needs to be truncated.

V. INTEGER QUANTUM HALL STATES

We first consider the states where the chemical potential
is between two orbital Landau bands. This occurs at filling
factor v =...,—12,—8,—4,4,8,12, ... in bilayer graphene.
Together with S, and P, the magnitude of the spin S and of the
pseudospin P are quantum numbers. [In the Az — O,u — 0
limit an SU(4) classification is also possible.]

With the hole () and the electron (n) Landau orbitals fixed,
the 16 possible transitions belong to 4 classes: (i) a spin singlet,
pseudospin singlet state:

$%Q) =

Z Z ‘i[:[mf,n’ag(Q) (18)
£ o

(i1) A spin singlet, pseudospin triplet multiplet. The P, =0
member of this multiplet is

N 1 N
U Q =3 3D 5@ 0e (@ (19)
& o

(iii) A spin triplet, pseudospin singlet, which contains follow-
ing the S, = 0 state:

Q= Zngn(o)wm,gm(Q) 20)
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FIG. 3. Magnetoexciton modes at the v = —4 integer quantum

Hall effect in bilayer graphene. Only the optically relevant spin- and
pseudospin-conserving modes are shown. In the ¢ — 0 limit, which
is probed by purely optical experiments, the transitions in the infinite
sequence at fixed /, = |n| — |n’| may mix; at ¢ > 0, the excitations
result from the mixing of all /, sequences. The modes at v = +4 are
obtained by particle-hole conjugation.

(iv) A nine-member multiplet that is triplet is both spin and
valley. Its S, = 0 = P, member is

Q== ZZsgn(o)sgn@)\ifias,n,ag(Q>. 1)
3 o

Figure 3 depicts these modes for v = —4.
The exchange interaction between the electron and the

hole contributes only to states generated by {W;go}nn In
all other excitation modes the RPA term cancels (cf. the
sign alternation®” in modes W%, $1'% and ¥y or is
prohibited by quantum numbers. Thus, in the absence of
accidental degeneracies, we expect a collection of nondegen-
erate excitations and one of 15-fold degenerate excitations;
the latter is decomposed as 4,7,4 if Az > 0,u =0 and as
1,2,1,2,3,2,1,2,1 if Az,u > 0.

The extent interactions may mix transitions involving
different Landau level pairs depends on the interaction-to-
kinetic energy ratio, parametrized by

</ ! (22)
= We X .
4meoe lp &V B

Notice that 8 — 0 in the B — oo limit just like for the con-
ventional two-dimensional electron gas. Realistically (10 T <
B <40T,1 <€ <4),1 < < 8§;thisis by no means a small
perturbation.
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FIG. 4. (Color online) The excitations of the integer quantum Hall state at [v| = 4 and B = 10 T. The mixing of Landau levels is truncated
at L =1 and M = 7. Solid lines show the 15-fold degenerate excitations, which include three optically relevant S, = P, = 0 modes. Dashed
lines show the spin and pseudospin singlets. Inset: spectra if Landau level mixing is neglected. Side panels: the weight of the definite /,
projections in each curve in bottom-up order. The top row shows the spin and pseudospin singlets.

In the conventional 2DEG, LL mixing is suppressed at high
fields because of the B~!/? scaling of the relative strength of
interactions, while in monolayer graphene both the interaction
and the kinetic energy scale with B'/2, thus LL mixing is
never suppressed. In bilayer graphene, the kinetic term of the
Hamiltonian interpolates between quadratic at small momenta
and linear at high momenta; thus, LL mixing gets suppressed
only for the LL’s with a small index, whose orbitals are built
up from low-momentum plane waves. For high-index LL’s
the ratio of interaction to kinetic energy is only weakly B
dependent. At fixed magnetic field and filling factor, LL mixing
in bilayer graphene is more significant than in a conventional
2DEG, implemented, e.g., in GaAs quantum quantum wells,
because of the smaller dielectric constant and effective mass
in bilayer graphene.

One can also compare the Coulomb energy scale
e’ /(4mepe, L) to the energy difference between adjacent
Landau levels, iw.(v/n(n — 1) — \/(n — 1)(n — 2)). This may
give the impression that LL mixing is more important at
higher filling factors, but the amplitude of the undulations
of the unmixed magnetoexciton dipersions also gets reduced
in higher levels, leaving the issue of the generic progress of
LL mixing with increasing filling factor open.

For g = 0, the mean-field Hamiltonian mixes magnetoexci-
tons with different electron and hole Landau levels at fixed [,
and for g > 0 it also mixes different /, subspaces (cf. Fig. 3).
Restricting LL mixing to a fixed I, subspace might give the
impression that LL mixing is just a quantitative correction
to the long wavelength part of the lowest excitation curves,
resulting in increased electron-hole binding energies. "
However, already the lowest excitations in the different I,
sectors mix strongly at finite wave vector. As the side panels
of Fig. 4 show, the excitations have a large projection on the /,
subspaces different from their own /, in the ¢ — 0 limit, and
may eventually be contained in one of the other subspaces for
large g; this is an unavoidable consequence of the elimination
of crossings by LL mixing. The mixing of Landau levels
is especially strong in the nondegenerate excitations, which

are strongly affected by the exchange interaction between the
electron and the hole (the RPA term) in the g¢p ~ 1 region.
Thus, in the rest of this paper we allow the mixing of transitions
restricted by |/;| < L and a maximum number M at each fixed
I.. Figure 4 shows transitionsatv =4 with L = land M =7,
while Fig. 5 shows |v| = 8 and 12. We will use this truncation
in the spectra shown in the rest of this paper.®” Figures 4 and 5
also show the kinetic energy difference between the electron
and the hole for comparison. Our mean-field theory predicts
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FIG. 5. (Color online) The excitations of the integer quantum
Hall state at [v| = 8 and |v]| = 12,at B=10T.
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an interaction shift comparable to this energy. This prediction
will be revisited with methods beyond mean field.”®

The g — O limit of the magnetoexcitons is commonly
probed by optical absorption and electronic Raman scattering.
The selection rules*®*’ ensure that only the @229 mode and the

@22} , \f-’i}l?, and ‘ifj"ll,l modes of the 15-fold degenerate curve are
active, [, = %1 is absorption, and [, = 0 in Raman. Particle-
hole conjugation relates v = 4n to v = —4n (n integer) with

the sign of [, reversed.

VI. QUANTUM HALL FERROMAGNETIC STATES

With an integer filling factor different from v =
+4,48,£12, ..., a Landau band quartet (|v| > 4) or octet
(Jv] < 4) is partially filled in the single electron picture. The
minimization of the interaction energy results in gapped states
which break either spin rotation or pseudospin (valley) rotation
symmetry, or both.6:30:32:46:57.38.71 If either the Zeeman energy
Az or the interlayer energy difference u is present, they affect
the order how the Landau levels are filled, but exchange energy
considerations are more crucial in most cases.'®% The most
convenient basis in pseudospin space may differ; we may
introduce

R . T
Ansop = COS =y g=1,5p + SiN Ee"”an,gz_l,gl,, (23)

2

¢ (24)

6 .
N . v i A
Qpacp = SIN Ean,gzl,a,, — cos Ee Qng=—1,0p-

With a proper choice of 6 and ¢, Eqs. (23) and (24)
include states of definite valley, bonding and antibonding
states, or intervalley phase coherent states. Corresponding
magnetoexciton operators are defined in an obvious manner.

In particular, if Az > u, the v =0 QHF state is ferro-
magnetic and the choice of the pseudospin basis is irrelevant
(Fig. 6). For v = %2, both the n = 0 and 1 orbital Landau
levels of identical spin and pseudospin are filled, where ¢
and 6 are determined by electrostatics (Fig. 9). For odd v,
an interlayer phase coherent (0 < 6 < m/2) state exists for
sufficiently small «, which yields®’ to a layer polarized state
(0 =0) at v=-3 and 1, and to a sequence of states with
partial or full orbital coherence® at v = —1 and 3. Notice that
v = —3 and 3 are not related by particle-hole symmetry. This
is best understood from Hund’s rules:'® at v = —3 only one
n = 0 orbital band is occupied, while at v = 3 only one n = 1
orbital band is empty. At v =3, Coté et al>® showed that
orbitally coherent states dominate the phase diagram, whose
inter-LL excitations are beyond the scope of this study. The
case of v = —3 is depicted in Fig. 11.

Beyond S, and P, the magnitudes P or S are quantum
numbers at half-filling v = 0. All excitons include transitions
between the noncentral levels |n| > 2; the possibility of
transitions from, to, or within the central Landau level octet
depends on the ground state, which also resolves the transitions
through the exchange self-energy differences; see Figs. 6, 9
and 11.

The excitations are grouped by their optical signature.
Due to the small momenta of optical photons, valley flipping
modes are optically inactive. In the ¢ — 0 limit, [, becomes
a quantum number, and /, = 1 applies for single-photon
absorption,®® and I, = 0,42 in electronic Raman processes,*’
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FIG. 6. Magnetoexciton modes at the v = 0 quantum Hall fer-
romagnetic state in bilayer graphene. Only the optically relevant
spin- and pseudospin-conserving modes are shown. In the ¢ — 0
limit, which is probed by photon absorption or electronic Raman, the
transitions in the infinite sequence at fixed [, = |n| — |n’| may mix;
at ¢ > 0, the excitations result from the mixing of all /, sequences.

with the [, =0 transitions being dominant. The angular
momentum due to the helicity of the photons is transferred3®+
entirely to the orbital degree of freedom. Optically inactive
modes include Goldstone modes associated with the broken
symmetry (outside the scope of our study) and generic dark
modes.

A.v=0

It is known that two QHF ground states exist: a spin-
polarized one and a valley (layer) polarized one,'316:29,30,32.33,72
Their respective range of validity is determined by the ratio of
the Zeeman energy Az to the energy difference between the
valleys, which in turn is related to the potential difference u. (In
fact, layer and pseudospin can be identified within the central
Landau level octet.) For concreteness, we are discussing the
ferromagnetic state. Here the magnitude of the pseudospin P
is a good quantum number of the excitations. See Fig. 6 for
the transitions that span the Hilbert space of the mean-field
Hamiltonian.

With the electron (n) and hole (n’) Landau levels
fixed, the S, = —1 transitions consist of a pseudospin
triplet®’ ‘I’Lw,nfsm ‘I’Iu,n/AT’ %(Wzs¢.n's¢ = Wy war) and
a singlet®’ \/Lg(q"isysr + WIIALA?)' This group contains the
intralevel transitions among the n = 0,1 Landau bands; the
Goldstone modes associated with the spin rotational symmetry
breaking should be in this subspace. However, our approach is
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not appropriate for the description of Goldstone modes even
at even filling factors, as we will discuss below.

The S, =1 pseudospin triplet \IJIATAV,[,SL, \I/,IST’,VM,

JLE(\DZST,n’S¢ - lIJtJerT,n’A¢) and  pseudospin  singlet

%(wismn' s+ "IJ:LT,n’ 4))» respectively, contains inter-LL
transitions only.
The S, = 0 sector consists of (i) two triplets, \IJ,E At St

T
\IjnST,n’AT ’

1 T T T
ﬁ("ynm,n/m —Vospwsy) and W,
\IJ;IS¢,11’A¢’ \%(WJLSM,“ — W, 4,.wa,)» the RPA terms does not

contribute to, and (ii) two singlets \/li(\lfjl stst T \I/,TL At Ar)

and \/LE(‘IJZS¢,n/S¢+lIJ;IA¢,n/AL)’ which are mixed by
the RPA term. Careful inspection reveals, however,
that the two pseudospin singlets (ii) always appear in
the mean-field Hamiltonian on equal footing, e.g., the
%(\U;SMM +W§A¢,1AT) transition is indistinguishable on

the mean-field level from the \/%(‘I’fs¢.—2,s¢ + ‘I’IAL.—Z,Ai)
transition. This follows by
Q.1 (1,-2)
Eqny = Eq-y» 25
@1 (1,-2) (1,-2) @,
Rony = Ry = —Rah)™ = =R (26)
and the following easily provable identity of the exchange
self-energy cost:

A(l’l,l’l/) + Xn’O + Xn’l - Xn,O - Xn,l = A(—n’, - n) (27)

(For n =1 or n’ = 1, no sign change is necessary.) Equa-
tion (27) simply expresses particle-hole symmetry, i.e., that
the exchange self-energy cost of transitions related by particle-
hole conjugation in a fixed component must be identical. See
Fig. 7 for the transitions whose comparison yields Eq. (27).
The RPA terms are the same in each diagonal and off-
diagonal position among equivalent transitions, thus they

select the even and the odd linear combinations in group (ii).

The even combination @229@) defined in Eq. (18) gets an

RPA enhancement, while the RPA cancels from the alternating
sign combinations, making it energetically equivalent to the
P, = 0 element of the triplets (i). Thus, eventually, the S, =
0, P, = 0 sector contains a threefold degenerate curve and a
nondegenerate mode.

Each of the four multiplets in the S, = 0 sector contains a
P, = 0 mode, which is active in electronic Raman or infrared
absorption. Here the mixing of Landau levels results in more
widely separated modes. The optically active excitations are
shown in Fig. 8 with LL mixing taken into account. Notice
that the [, = 1 and —1 transitions have an equal weight in all
modes, consistent with the particle-hole symmetry at v = 0.

In the S; = —1 sector we find spin waves. Neglecting
Landau level mixing, they give rise to a gapless and a
gapped intra-LL mode,*? and a sequence of higher inter-LL
modes; each of these is raised by the Zeeman energy and
split by the valley energy difference in turn. The interaction,
however, mixes these excitations, thus a clear-cut classification
into intra-LL. and inter-LL. is no longer possible. Level
repulsion unavoidably lowers the formerly gapless modes.
This effect yields apparently negative excitation energies at
small wavelength. Goldstone’s theorem, however, ensures that
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FIG. 7. Imagine two transitions: (I) a particle in level n’ is
promoted to level n of a valley-spin component (left) of which the
n = 1 Landau band is filled, and (I) —n — —n’ of a component
(right) of which the n = 1 band is empty. Particle-hole conjugation
of (I) is the promotion of a hole from Landau level —n’ to —n, i.e.,
(II); the excitation energies must be the same. The consequence is
Eq. (27); the formal proof is straightforward.

a gapless spin-wave mode is associated with the breaking of the
spin rotation symmetry. Consequently, the seemingly negative
energy of the lowermost excitation with a large intra-LL
component is an artifact of the combination of Hartree-Fock
mean-field theory and LL mixing. The same anomaly occurs
for monolayer graphene,*’->* but it is less apparent when the
particle-hole binding energy is plotted.

B. v=%2

The v = £2 state breaks the spin and pseudospin rotational
symmetries as the ground state fills the n = 0 and 1 orbitals
of the most favorable spin-pseudospin component S 1. We
restrict the discussion to spin- and pseudospin-preserving
excitations. See Fig. 9 for the possible transitions.

It is easy to check that the mean-field Hamiltonian matrix
is identical to the one at v = 0. For the —n — n transitions
(n > 2 integer) this holds because the occupancy of the central
Landau level octet is irrelevant as

X—n,() + X—n,l - Xn,() - Xn,l =0. (28)

The octet of —(n +1) — n and —n — (n + 1) transitions
gives rise to two quartets of equivalent transitions by Egs. (25)—
(27). While at v = O the S 1 and A 1 transitions of the former
group bundle with the S | and A | transitions of the second
group, now the S 1 transition of the first group bundles with
the A1, S |, and A | transitions of the second group. The
spectrum is still the one in Fig. 8(a). The orbital projection of
the modes differs (cf. Fig. 10 for v = —2). At v = +2 the sign
of [, changes in all projections, which determines the helicity
of the absorbed and inelastically scattered photons.

C.v=-3

Based on exchange energy considerations within the central
Landau level octet, Hund’s rule'® implies that the only
occupied band is (0,S 1) at v = —3. The states in Eq. (23)
progress from the layer balanced limit 6 = 7 at u = 0 to the
layer polarized state & = 0; this limit is achieved about u =
U R 0.00162/(47re()6,53), which is only 0.082 meV at B =
20 T. For 0 < u < u,, there is interlayer phase coherence.’’
Thus, magnetoexcitons exist on both sides of u.; the amount
electrostatics raises energy of the pseudospin-flipping modes
w.r.t. the pseudospin-conserving modes saturates at u = u..
Both the spin and the pseudospin symmetries are broken,
resulting in three Goldstone modes.’” Further, Barlas et al.”’
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FIG. 8. (Color online) (a) Excitation spectra of the quantum Hall ferromagnet at v = 0,42 at B = 10 T. Only the optically relevant
S, = P, = 0 modes are included. (b) The weight of the shown excitations on the definite /, subspaces for v = 0 in bottom-up order. For
degenerate curves, the weight is summed. The quantum numbers of the ¢ — 0 limit are indicated.

showed that at finite u there is an instability to a stripe ordered
phase with a rather small critical temperature. Our analysis
below applies only below this temperature. See Fig. 11 for
the transitions that span the Hilbert space of the mean-field
Hamiltonian.

We have become aware of Ref. 65, which derives a modified
version of Hund’s rule considering the exchange field due
to all filled levels, not just those in the central Landau level
octet. While this makes no difference at even filling factors,
at v = —3 the predicted mean-field ground state fills a band
of states which are equal linear combinations of n = 1 and
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FIG. 9. The spin- and pseudospin-conserving magnetoexciton
modes at the v = —2 quantum Hall ferromagnetic state in bilayer
graphene. The modes at v = 42 are obtained by particle-hole
conjugation.

0 Landau orbitals. The calculation of the excitations of such
ground states is delegated to future work.

Because of the degeneracy of n = 0,1 orbitals, states in
central Landau level octet at odd integer fillings involve
fluctuations with in-plane electric dipole character.'® The
consequent collective modes have been studied in detail
by Barlas et al.>’ and Co6té et al>® As we do not handle
such dipolar interactions, we have omitted the predominantly
intra-LL lowest curve from the spectra, and we have checked
that the inter-LL excitation modes we keep contain the 0 — 1
magnetoexcitons with a negligible weight. Reassuringly, we
always got a weight less than 0.1%.

As the n = 0 orbital is filled with S 1 electrons in the
mean-field ground state, for fixed electron (n) and hole
(n") Landau levels the exchange self-energy cost of the S 1
transition is higher than those of the other components. Also,
inthe § 1 componentan intralevel 0 — 1 transition is possible,
which mixes with higher S 4 transitions; see Fig. 11 for the
restrictions on the possible transitions at this filling. The other
three components, on the other hand, occur symmetrically in
the mean-field Hamiltonian (cf. Fig. 11). One can change basis
from the excitons of type S |, A ,and A | to

3, 1d1 T T
W = E(WMT,"’AT - lIJnA¢,n’A¢)’ 29
“ 1
Td2 T T T
\Ilnn/ = %(\I’nAT.n’AT + \IInAL,ll’A¢ - ijnSLn’Si)’ (30)

gt = L

nn \/g

i i t
(\IjrleT,n’AT + ‘Ijrle¢,n'A¢ + \ynS¢,n’SL)‘ €19}

The RPA contribution cancels from \il;[i/l(q) and \ilii/z (q),
which give rise to doubly degenerate excitations. \ifj”rl,(q)

has a RPA contribution. Its mixture with the distinguished
S 4 excitations produces nondegenerate curves. In higher
energy excitations, on the other hand, the weight of the
0 — 1 transition of the S 1 component becomes extremely
small, thus the equivalence of the four components will be
approximately restored, yielding threefold quasidegenerate
and nondegenerate curves.
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See Fig. 12 for the dispersion of the active excitations.
The small graphs show that the projection to definite [,
subspaces changes abruptly at nonzero wave vector. Notice
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FIG. 11. The optically spin- and pseudospin-conserving magne-
toexciton modes at the v = —3 quantum Hall ferromagnetic state
in bilayer graphene. Notice that the S |, A 1, and A | transitions
occur symmetrically, i.e., the same electron and hole Landau levels
are allowed and the same self-energy cost is picked up from the
exchange with the filled levels.

that at higher energies > 1¢? /(41 €€, £ 3 ) the double degenerate
curves occur in the vicinity of a nondegenerate one, indicating
the approximate restoration of the equivalence of components
in this limit.

D.v=1

Just like at [v| = 3, the state at v = —1 is not the particle-
hole conjugate of the state v = 1. We do not study v = —1
because of the relevance of orbitally coherent states.”?

At v = 1 the interlayer coherent and layer polarized QHF
states both have magnetoexcitons. The possible transitions in
the mean-field Hamiltonian are obtained trivially by raising
the Fermi energy by four levels in Fig. 11. Now the S |
electrons are distinguished by the possibility of an intralevel
0 — 1 transition, and their higher self-energy. The other
three components occur symmetrically in the mean-field
Hamiltonian. The argument is similar to the case of v = —3;
for the two 1 — 2 transitions of spin-1 electrons and the
—2 — 1 transitions of the spin-|, electrons, one uses Rglz(l); =

—R((i‘(;f) and Eq. (27). When subsequent [, = =1 transitions

are included, the —n — (n + 1) transition of A |, is equivalent
to the —(n 4+ 1) — n transition of S 1 and A 1, while the
—n — (n 4+ 1) transition of A 1 and S 7 is equivalent to the
—(n + 1) — n transition of A |. The convenient basis change
is similar to Eqgs. (29) to (31), with S 1 replaced by A |.

There is only a slight difference between the inter-Landau
level excitation spectra at v = —3 and 1: the exchange self-
energy cost of the distinguished transition (§ 1 atv = —3 and
S | at v = 1) relative to the three equivalent ones is X, —
X0 atv=—-3and X,,; — X,; at v = 1. As this difference
is already small for the lowest transitions and then decreases,
we omit the v = 1 spectrum; its difference from Fig. 12(a) is
comparable to the line width.
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VII. CONCLUSION

We have calculated the inter-Landau level magnetoexcitons
in the integer quantum Hall states as well as the quantum
Hall ferromagnets at filling factor v = —3,42,0,1 of bi-
layer graphene. We have found that the spinorial structure
of the orbitals together with the enhanced electron-hole
exchange interaction effects in this multicomponent system
give rise to rather complex dispersions; these are related both
to the shape of the Fourier transform of Landau orbitals and to
the elimination of crossings by the mixing of Landau levels,
which is significant because the scale of the Coulomb energy
is comparable to the cyclotron energies.

The g — 0 limit of the excitation can be probed by optical
absorption®® and electronic Raman experiments.'®* Unlike
for the conventional two-dimensional electron gas with a
quadratic dispersion,’! the excitations in a quantizing magnetic
field do acquire an interaction shift; the magnitude of such a
shift is one of our experimental predictions.

The wave-vector dependence of the magnetoexcitons can
be probed in resonant inelastic light scattering experiments,*
where momentum conservation breaks down mainly because
of ineffectively screened charged impurities. In semiconduct-
ing samples this technique has been successfully applied, e.g.,
to the study of spin-conserving and spin-flipping excitations
at integer filling factors,* of the long wavelength behavior of
the low-lying®® and higher*! excitations of fractional quantum
Hall states, and of magnetoroton minima at v = 2 (Ref. 42)
and at fractions.** In graphene, the magnetophonon resonance
was observed by this method.**

The mixing of transitions that involve different Landau
levels is strong in the experimentally accessible range. This
mixing smoothens the dispersion relations via level repulsion,
and at finite wavelength causes a strong mixing of the modes
that have different angular momenta in the zero wave-vector
limit. In particular, we have found that the anticrossings due
to Landau level mixing result in a number of undulations in
the magnetoexciton dispersions, whose van Hove singularities
must give a strong signal.*

On the theory side, we have found that the classification
of magnetoexciton modes at finite wave vectors by the
“angular momentum quantum number” is problematic, that
the screening effects (which we have handled via Landau
level mixing) are significant, and that this framework is not
quite suitable for studying the Goldstone modes such as spin
waves in the symmetry-breaking quantum Hall ferromagnetic
states.
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APPENDIX: THE TWO-BODY PROBLEM
IN BILAYER GRAPHENE

Let us consider the Hamiltonian

. 1 {0 (7)) 1 {0 (m))?
Hy = —— - — — 1),
: 2m <rr12 0 2m\ 73 0 u(ry —r2)

(AD)

where m; = p; » +ipiy, P1 = —ihV| — eA(r;) belongs to the
electron and p, = —ihV; 4+ eA(r;) belongs to the hole, and
u(r) = e*/4mwepe,r. (We have fixed the valley of both the
electron and the hole. A valley-independent interaction is
assumed because any deviation from this is small in the ratio of
the lattice constant to the magnetic length.) Introducing center-
of-mass and relative coordinates (X,Y)= "3 (x,y) =
r; —ry, and momenta (Py,Py) =r| + 13, (py,py) = "‘Zﬂ,
and separating the center-of-mass motion by the canonical
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transformation U = ¢'X¥, we obtain

0 c: o« o
T2 T2
. 1|« 0o 0 (C
Hy=—— (€ (€ —u(r—2xP),
m| C2 0 0 (o
0 c: (o
(A2)

where the independent harmonic oscillators C. are defined as

c. = (pe—iz) ilpy —i3)
+*= = .
2V2

In complete analogy to the case of the monolayer,*’ the
eigenstates of the kinetic part of H, are

S n_1—2
Bin.lin_|
ny,n_ X ’
S )SM )P, 1—2,1n_1—2
S)Pin,1—2,1n|

in terms of two-dimensional harmonic oscillator eigenstates

(A3)

(A4)

ch «cty 1
V! m! \/EEB

Above S(n) =0is if n =0 or 1, else it is sgn(n). Thus, the
kinetic energy operator clearly commutes with the operator

oG

Gum (1) = (AS5)

2.0 0 0
i=clc,-clc_+ 8 8 8 8 :
0 0 0 2

which returns /, as an eigenvalue. This operator, however, com-
mutes with the complete H only in the P — 0 limit. Thus, we
can regard the electron-hole bound state as a two-dimensional
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harmonic oscillator with clockwise (C) and anticlockwise
(C-) excitations placed in an external confinement poten-
tial. A nonzero center-of-mass motion breaks the rotational
symmetry of this confinement and starts to couple the W,,, ,_
states.

Here we closely follow Iyengar et al.*’ The two-body
Hamiltonian in Eq. (A1) can be written is terms of center-
of-mass and relative coordinates and momenta as

N mt (P_x2 : 2_(Py—)c)z
2

_ _ 2
= 4 2p2 2(py — X) )

m-
- ﬁ[szpx - 2(Py - X)(Py —x)]

+

m7

+ ﬁ[Px(Py —x)+ 2px(py - X)]
my

+ %[Px(py - X) + (py - X)Px

+ px(Py — x) + (Py — x)px] — u(r), (A6)

where m¥ = (0, ® 1 £1®o0y), and m{ = —3(0, ® 1 +
1 ® o). With the application of the canonical transformation
U = XY, we obtain

A m} y2 » x? 2
H=—"2(=+2p " ——=—-2p,
2 m (2 + Py 2 py)

mX_ / / m;}_ ! !
. Qyp, —2pyx) — %(yx —4p.py)

m_ ,
= 5oy, = Py + pix 4 xp)
—ur—2xP). (A7)
Equation (A2) follows by substituting Eq. (A3) into Eq. (A7).
Notice that H, in Eq. (A2) is independent of the transformed

center-of-mass coordinates. Thus, P’ is conserved; in original
variables this corresponds to P — er x B.
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are possible, especially at low energies. We have checked that using interactions, two more phases are possible: a canted antifer-
M = 15 does not fundamentally change the spectra. romagnet and a partially layer polarized state (cf. Ref. 33).
703, Séri and C. Téke (unpublished). These recently proposed states are beyond the scope of our
7'V, E. Bisti and N. N. Kirova, Phys. Rev. B 84, 155434 (2011). study.
2At certain values of the in-plane pseudospin anisotropy, 3Y. Barlas, W.-Ch. Lee, K. Nomura, and A. H. MacDonald, Int. J.
which may arise due to electron-electron and electron-phonon Mod. Phys. B 23, 2634 (2009).
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