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Gate-induced Dirac cones in multilayer graphenes
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We study the electronic structures of ABA (Bernal) -stacked multilayer graphenes in a uniform perpendicular
electric field, and we show that the interplay of the trigonal warping and the potential asymmetry gives rise to
a number of emergent Dirac cones nearly touching at zero energy. The band velocity and the energy region
(typically a few tens of meV) of these gate-induced Dirac cones are tunable with the external electric field. In
ABA-trilayer graphene, in particular, applying an electric field induces a nontrivial valley Hall state, where the
energy gap at the Dirac point is filled by chiral edge modes which propagate in opposite directions between two
valleys. In four-layer graphene, in contrast, the valley Hall conductivity is zero and there are no edge modes
filling in the gap. A nontrivial valley Hall state generally occurs in asymmetric odd-layer graphenes, and this is
closely related to a hidden chiral symmetry which exists only in odd-layer graphenes.
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I. INTRODUCTION

Graphene is characterized with Dirac quasiparticles in
the low-energy region,1–4 which give rise to anomalous
physical properties due to the linear dispersion and nontrivial
Berry phase.5–11 There are growing interests in multilayer
variants of graphene such as bilayers12–15 and trilayers,16–20

which also support chiral quasiparticles. Bilayer graphene
has parabolic valence and conduction bands touching each
other at the Dirac point,21–23 while ABA (Bernal) -stacked
trilayer graphene comes with a superposition of effective
monolayer-like and bilayer-like bands.22,24–32In addition to
these, the trigonal-warping deformation of the energy band,
which is intrinsic to graphite-based systems,33–35 gives rise to
small Dirac cones near the Dirac point in these multilayers.
The Lifshitz transition, in which the Fermi circle breaks up
into separate parts, takes place at a small energy scale around
a few meV.21,23,28–30

On the other hand, it is possible to modify the band
structure of multilayer graphenes by applying an electric
field perpendicular to the layer, using external gate electrodes
attached to the graphene sample. In bilayer graphene, a
perpendicular electric field opens a band gap at the Dirac
point.13,15,21,22,26,36–38 In contrast, for ABA-trilayer graphene,
previous works30,39 considered the gate-field effect on the
band structure without the trigonal warping, and they showed
that the perpendicular electric field causes a band overlap of
the conduction and valence bands at zero energy, rather than
opening a gap. These two bands intersect on a circle around
the K point whose radius is proportional to the potential
asymmetry, causing an increase of the conductivity at the
charge neutral point.17

In this paper, we closely study the band structures of ABA-
stacked multilayer graphenes in the presence of a uniform
perpendicular electric field, and we find that the interplay of the
trigonal warping and the potential asymmetry generally gives
rise to a number of additional Dirac cones nearly touching
at zero energy, as depicted in Fig. 1(b) for trilayer graphene.
For these gate-induced Dirac cones, the band velocity and the
energy region (i.e., the distance between the Dirac point to the

Lifshitz transition point) are tunable with gate bias voltage. The
energy region is typically a few tens of meV, which is greater by
an order of magnitude than in the original nonbiased multilayer
graphene. In a magnetic field, there arise triply degenerate
Landau levels originating from off-center gate-induced Dirac
cones, with wide energy spacings due to the linear dispersion.

The gate-induced Dirac cones are generally gapped at the
Dirac point by symmetry-breaking terms. When the Fermi
energy is in the gap, the system is in a topologically nontrivial
valley Hall state, where electrons at K+ and K− valleys carry
opposite Hall conductivities.40,41 A manifestation of the valley
Hall state is the emergence of chiral edge modes at a zigzag
interface which transports valley pseudospins in an analogous
way to the spin Hall effect.42,43 The valley Hall state and
the helical edge modes were previously studied for gapped
monolayer and bilayer graphenes,40,44–48 and also for ABC

(rhombohedral) -stacked trilayer graphene.49 We study the
edge states a semi-infinite zigzag ribbon of asymmetric ABA

multilayer graphenes, and we relate the number of edge modes
to the valley Hall conductivity which is a bulk property. In
trilayer graphene, in particular, we find that the nonzero valley
Hall state is realized in a small external electric field, and
moreover, a topological transition takes place at a certain
higher electric field, which is accompanied by a change of
the number of edge channels inside the bulk gap. In four-layer
graphene, in contrast, the valley Hall conductivity is always
zero and there are no edge modes filling the energy gap. We
show that the nontrivial valley Hall state generally occurs in
asymmetric odd-layer graphenes, and this is largely due to an
approximate chiral symmetry peculiar to odd-layer graphenes.

This paper is organized as follows. We briefly introduce the
effective-mass model for graphite in Sec. II, and we discuss
the trilayer graphene in Sec. III in terms of the gate-induced
Dirac cones, the chiral symmetry, the Landau-level structure,
and the edge states. In Sec. IV, we study the four-layer
graphene as an example of even-layer cases without chiral
symmetry. In Sec. V, we discuss the chiral symmetry in general
odd-layer graphenes, generalizing the trilayer’s argument. The
conclusion is given in Sec. VI.
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FIG. 1. (Color online) Band structures of ABA-trilayer graphene
in a perpendicular electric field depicted in a three-dimensional (3D)
plot (left panel) and contour plot (right), for the band models (a)
only with v,γ1,v3 terms and (b) with full parameters. The interlayer
potential asymmetry is set to be � = 200 meV.

II. MODEL

We describe the electronic properties of ABA-stacked
multilayer graphene using the Slonczewski-Weiss-McClure
model33–35 with hopping parameters described in Fig. 2.
The model includes intralayer coupling γ0, nearest interlayer
couplings γ1, γ3, and γ4, next-nearest layer couplings γ2 and
γ5, and on-site energy asymmetry �′, which are estimated
in bulk graphite as follows:35 γ0 = 3.16 eV, γ1 = 0.39 eV,
γ3 = 0.32 eV, γ2 = −0.020 eV, γ5 = 0.038 eV, γ4 = 0.044 eV,
and �′ = 0.050 eV. �′ is the energy difference between the
sites which are involved in the coupling γ1 and the sites which
are not.

We consider ABA-stacked N -layer graphene, where |Aj 〉
and |Bj 〉 represent Bloch functions at the Kξ point, corre-
sponding to the A and B sublattices of layer j , respectively. If
the basis is arranged as |A1〉,|B1〉; |A2〉,|B2〉; . . . ; |AN 〉,|BN 〉,
the Hamiltonian in the vicinity of the Kξ valley is written
as22,25,28,29

H =

⎛
⎜⎜⎜⎜⎜⎝

H0 V W

V † H ′
0 V † W ′

W V H0 V W
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FIG. 2. Lattice structure of ABA-trilayer graphene with tight-
binding hopping parameters. The bottom figure is a top view, and the
right is a schematic diagram of the lattice structure.

with

H0 =
(

0 vπ †

vπ �′

)
, H ′

0 =
(

�′ vπ †

vπ 0

)
,

V =
(−v4π

† v3π

γ1 −v4π
†

)
,

W =
(

γ2/2 0
0 γ5/2

)
, W ′ =

(
γ5/2 0

0 γ2/2

)
,

Uj = −�

(
j − N + 1

2

) (
1 0
0 1

)
,

where π = ξπx + iπy , π = p + eA, with A being the vector
potential arising from the applied magnetic field, and ξ = ±1
are the valley indices for K±. The parameter v = √

3aγ0/(2h̄)
is the band velocity for monolayer graphene, and v3 =√

3aγ3/(2h̄) is a velocity related to the band parameter γ3,
where a ≈ 0.246 nm is the distance between the nearest A

sites on the same layer. Uj describes the electrostatic potential
on the j th layer induced by the external electric field, where
we assumed a uniform potential gradient in the perpendicular
direction, This is valid in a few-layer graphene with typically
N < ∼5. For thicker multilayers with N > ∼10, the potential
drop occurs within a few layers near the external gate due to
the screening by the charge carriers in graphene.30,39

III. TRILAYER GRAPHENE

A. Chiral symmetry and gate-induced Dirac cones

The Hamiltonian of ABA-trilayer graphene is given
by Eq. (1) with N = 3, where the external potential is
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(U1,U2,U3) = (�,0, − �). In the absence of �, the Hamil-
tonian can be block-diagonalized into a monolayer-like band
and a bilayer-like band.30 In finite �, these subblocks are
hybridized, and it is then useful to arrange the basis as

{(|A1〉 − |A3〉)/
√

2, |B2〉, (|B1〉 + |B3〉)/
√

2,
(2)

(|B1〉 − |B3〉)/
√

2, |A2〉, (|A1〉 + |A3〉)/
√

2},

where the monolayer-like band corresponds to first and fourth
bases, and the bilayer-like band corresponds to second, third,
fifth, and sixth. We categorize the first three bases in Eq. (2)
as group ◦ and the last three as group •. The Hamiltonian is
written in this basis as

H =
(

H◦ D−
D+ H•

)
, (3)

D+ =
⎛
⎝ vπ 0 �

0 vπ † √
2γ1

�
√

2v3π vπ †

⎞
⎠ , D− = (D+)†, (4)

H◦ =
⎛
⎝−γ2/2 0 0

0 0 −√
2v4π

0 −√
2v4π

† γ5/2 + �′

⎞
⎠ , (5)

H• =
⎛
⎝−γ5/2 + �′ 0 0

0 �′ −√
2v4π

0 −√
2v4π

† γ2/2

⎞
⎠ . (6)

If we keep only relevant band parameters γ0,γ1,γ3 and
the potential �, and neglect the remaining parameters, the
Hamiltonian Eq. (3) possesses chiral symmetry (sublattice
symmetry) in that the diagonal matrix blocks H◦ and H• all
vanish, leaving the off-diagonal blocks D± which connect
the bases of ◦ to the bases of •. The reason for this can be
understood in terms of reflection symmetry as follows: In the
group ◦ (•), the bases associated with A and B sublattices
have odd and even (even and odd) parity, respectively, with
respect to the reflection in the middle layer. The Hamiltonian
without �, i.e., the first term in Eq. (1), has even parity in
the reflection, and has matrix elements only between A and B

sublattices when only γ0, γ1, and γ3 are kept. After the unitary
transformation, it does not give any matrix elements in H◦ or
H• because in each group (◦ or •), a base associated with A and
one associated with B always have different parity from the
definition. On the other hand, the potential term, i.e., the second
term in Eq. (1), is odd in the reflection and matrix elements
only connect the same sublattice. It gives no matrix elements
in H◦ or H• either, because in each group, bases associated
with the same sublattice always have the same parity.

The energy spectrum of this simplified Hamiltonian con-
tains a single center Dirac cone and six off-center Dirac cones
at zero energy, as depicted in Fig. 1(a). The robustness of
the gapless spectrum is protected by the chiral symmetry. The
extra terms with γ2, γ5, v4, and �′ in the diagonal blocks break
the chiral symmetry and open small energy gaps at these Dirac
cones, as shown in Fig. 1(b).

The positions of the Dirac points in the chiral Hamiltonian
without H◦ and H• can be found by solving det D+ = 0 with
π = ξpx + ipy = peiθ . We obtain a Dirac point at p = 0, and

six off-center Dirac points at

p = p+; θ = 0,
2π

3
,
4π

3
,

p = p−; θ = π

3
,π,

5π

3
, (7)

p± =
±γ1v3 +

√
�2v2 + γ 2

1 v2
3

v2
.

At each Dirac point, the degenerate zero-energy bases
ψ◦ and ψ• are derived from the equation D+|ψ◦〉 = 0 and
D−|ψ•〉 = 0, and the effective Dirac Hamiltonian is given by

Heff =
(

0 〈ψ◦|D−|ψ•〉
〈ψ•|D+|ψ◦〉 0

)
, (8)

keeping the lowest order in the momentum shift from the Dirac
point. By rotating the (x,y) coordinates and the spinor space
by angle θ at the same time, this is transformed to

Heff = vxπ̃xσx + vyπ̃yσy, (9)

where σx and σy are Pauli matrices and (π̃x,π̃y) is the
momentum measured from each Dirac point. We find for the
Dirac point at p = 0 (no need for rotation)

ψ◦ = (0,1,0),

ψ• = (−
√

2γ1,�,0)/
√

�2 + 2γ 2
1 , (10)

and

vx = ξ
�v√

�2 + 2γ 2
1

, vy = − �v√
�2 + 2γ 2

1

(11)

with the valley index ξ = ±. For the off-center Dirac points at
p = p±,

ψ◦ = (−�eiθ , ∓
√

2γ1,vp±e2iθ )/C1,

ψ• = (−�, ∓
√

2v3p±,vp±e−iθ )/C2, (12)

C1 =
√

�2 + 2γ 2
1 + v2p2±, C2 =

√
�2 + (

2v2
3 + v2

)
p2±,

and the velocities after rotation of (x,y) by θ become

vx = 2ξv(±�2 + γ1v3p±)/(C1C2),
(13)

vy = −6γ1v3vp±/(C1C2),

where vx and vy correspond to the radial and azimuthal
directions, respectively, with respect to p = 0. vx and vy of
each Dirac point are plotted in Fig. 3(d). The velocities are
mainly enhanced by applying �, while vy for p+ decreases
only slowly. This indicates that the conductivity, which is
roughly proportional to the square of the band velocity,5 is
enhanced by �, as is consistent with the previous transport
measurement17 and the theoretical estimation.30

The chirality for each Dirac cone can be defined by νc ≡
sgn(vxvy), and this coincides with the Berry phase in units
of π around the Dirac point. We find νc = −ξ for p = 0 and
νc = ∓ξ for p = p±, so that the summation of chirality over
seven Dirac points in the valley Kξ is −ξ . Since the chirality is a
topologically protected number as long as the chiral symmetry
is present, nonzero total chirality indicates that the conduction
band and the valence band inevitably touch at some points in
any value of �.
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FIG. 3. (Color online) (a) Band structure of gated ABA trilayer with various potential asymmetry �. (b) Gate bias dependence of
Landau-level energy in B = 0.5 T. Landau levels in K+ and K− valleys are plotted as solid (blue) and dashed (red) lines, respectively. Shaded
area represents the charge neutral region, where the number indicates the single-valley Hall conductivity σKξ

xy in units of ξe2/h. (c) Effective
mass m and (d) band velocities vx,vy for the effective Dirac cones at p = 0,p+,p−, plotted against �.

Now we consider all the band parameters in Eq. (3) to argue
the energy gaps at the Dirac points. The effective Hamiltonian
of each gate-induced Dirac cone is modified to

Heff = vxπ̃xσx + vyπ̃yσy + mσz + ε0I, (14)

where the mass m and the energy shift ε0 are given by

m = [〈ψ◦|H◦|ψ◦〉 − 〈ψ•|H•|ψ•〉]/2, (15)

ε0 = [〈ψ◦|H◦|ψ◦〉 + 〈ψ•|H•|ψ•〉]/2. (16)

The width of the energy gap is 2m. Note that the approximation
using the gapped Dirac Hamiltonian above is valid when the
mass gap is smaller than the energy region of the gate-induced
Dirac cone below the Lifshitz transition point. In Fig. 3(c), we
show the evaluated mass m for the seven Dirac points. We see
that the mass for p = p− changes from negative to positive
when � exceeds the critical value,

�c ≈ 270 meV, (17)

at which the energy gap closes.

When the Fermi energy lies in the gap in massive Dirac
Hamiltonian Eq. (14), the Hall conductivity takes nonzero
value σxy = [e2/(2h)]sgn(vxvym) even in zero magnetic
field.50,51 Considering the chirality and mass for each Dirac
point in Table I, the total Hall conductivity summed over the
Dirac points at single-valley Kξ becomes

σ
Kξ

xy = e2

h
×

{− 5
2ξ (� < �c),

+ 1
2ξ (� > �c).

(18)

TABLE I. Sign of chirality, mass, and in-gap Hall conductivity
for gate-induced Dirac cones at the Kξ valley.

p 0 (×1) p+ (×3) p− (×3)

sgn(vxvy) −ξ −ξ +ξ

sgn(m) −1 +1

{−1(� < �c)
+1(� > �c)

sgn(vxvym) +ξ −ξ

{−ξ (� < �c)
+ξ (� > �c)
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We have a topological change at gap closing point, � = �c.
The Hall conductivity has opposite signs between two valleys
K± due to the time-reversal symmetry, so that the net Hall
conductivity is always zero. Nevertheless, the single-valley
Hall conductivity is directly related to the number of chiral
edge modes appearing in the zigzag edge, as we will see in
Sec. III C.

B. Landau-level structure

The Landau levels in the presence of a uniform magnetic
field B = (0,0,B) can be calculated by the Hamiltonian with
π = (

√
2h̄/�)a† and (

√
2h̄/�)a for K+ and K−, respectively.

Here a† and a are raising and lowering operators, respectively,
which operate on the Landau-level wave function φn as
aφn = √

nφn−1,a
†φn = √

n + 1φn+1, and � = √
h̄/(eB) is the

magnetic length. The Landau-level spectrum at B = 0.5 T is
plotted as a function of potential asymmetry � in Fig. 3(b).
Landau levels in K+ and K− valleys are plotted as solid
(blue) and dashed (red) lines, respectively. There we can see
two distinct regions, a region around zero energy where the
Landau-level spacing is wide due to Dirac Landau levels, and a
region above the Lifshitz transition where the Landau levels are
densely spaced due to the large density of states. In increasing
�, the gate-induced Dirac pockets accommodate more and
more Landau levels as the energy region within the Dirac
pockets expands.

The low-energy Landau levels inside the gate-induced
Dirac pockets can be approximately described by the massive
Dirac Hamiltonian, Eq. (14). There the Landau-level spectrum
is explicitly written as

E0 = ε0 − sgn(vxvy) m,
(19)

E±n = ε0 ±
√

�2
Bn + m2, (n > 0),

where

�B = √
2|vxvy |h̄eB. (20)

We note that the Landau level of n = 0 is sensitive to the
chirality and the sign of the mass: it appears at the top of
the valence band and the bottom of the conduction band
when sgn(vxvym) > 0 and < 0, respectively. The two cases
correspond to the midgap values of the Hall conductivity,
σxy = e2/(2h) and −e2/(2h), respectively. Also, since the
chirality sgn(vxvy) is opposite between K+ and K− valleys,
the n = 0 Landau-level splits in valleys while all others
are valley-degenerate. Besides, we have additional triplefold
degeneracies for each of p+ and p−.

In Fig. 3(b), we actually see that the n = 0 level is
nondegenerate in valleys, appearing at either of the band edges
of each massive Dirac band. At � = �c, we observe that one
pair of n = 0 levels from K± valleys cross each other at the
charge neutral point, in accordance with the topological change
of σ

Kξ

xy from (−5/2)ξe2/h to (+1/2)ξe2/h. The n > 0 levels
are almost valley-degenerate, while a tiny splitting is due to
the deviation from the massive Dirac Hamiltonian Eq. (14).

When we drop the band parameters other than γ0, γ1, and
γ3, the Hamiltonian becomes chiral symmetric and the zeroth
Landau level E0 of each Dirac cone comes exactly to zero
energy as a chiral zero mode, of which the wave function has

amplitude only on ◦ and • for νc = ∓ξ , respectively. The index
theorem then states that the difference between the number of
the zero modes belonging to ◦ (n+) and those to • (n−) is
defined as the chiral index, which coincides with the gauge
flux penetrating the system. The chiral index in the present
case is shown to be n+ − n− = ξ, where  = eBS/h is the
magnetic flux penetrating the system area S. This is, in units
of , coherent with a summation of −νc in each single valley.
As in the conventional Dirac Hamiltonian,52–54 the chiral index
can be related to the geometric curvature of the gauge field, and
the above relation between the chiral index and total magnetic
flux stands in nonuniform magnetic field as well. A detailed
argument is presented in Appendix A.

C. Edge modes

Nontrivial Hall conductivity in a single valley indicates the
existence of chiral edge modes localized at the interface, as
long as the valley mixing is not present. There the number
of emergent edge modes is directly related to the Hall
conductivity, so that chiral edge modes as many as the number
of σ

K±
xy should counterflow in opposite directions between K+

and K−, as is analogous to the spin Hall insulator.42 Here
we numerically examined the edge modes in the asymmetric
ABA-trilayer graphene with zigzag interfaces, in which the
valley mixing is absent. We consider a semi-infinite system
with a zigzag boundary along the x direction as shown in
Fig. 4(a), where px is a good quantum number. The energy of
edge modes in the bulk gap can be obtained by searching for
the evanescent modes satisfying a boundary condition at the
interface. The method is detailed in Appendix B.

First we consider the chiral symmetric case neglecting
γ2,γ5,v4,�

′. Figure 4 illustrates the energy spectrum near the
K+ point at � = 200 meV, where we see that zero-energy
edge modes appear between some of the gate-induced Dirac
points. The number of zero-energy edge modes is closely
related to the chirality of each Dirac cone.55–58 When we
regard a two-dimensional periodic system on the x-y plane
as a one-dimensional system with fixed px as a parameter, we
can define a winding number γ (px) by integrating the Berry
phase change all the way along py on the Brillouin zone at
the fixed px . When we set the boundary perpendicular to the
y axis (i.e., px is still a good quantum number), the number of
zero-energy edge modes appearing at the boundary coincides
with γ (px) except a constant.55 In the present system, this
bulk-edge relationship can be clearly seen in Fig. 4.

Other hopping terms breaking the chiral symmetry give
rise to mass of the Dirac points, and relative signs between
these masses determine the connection of the chiral edge
modes between different Dirac points. In Fig. 5(a), we plot
the band structure near K+ including full band parameters at
� = 200 meV. We see that the left and right edge modes stick
to either the top or bottom gapped Dirac cone depending on
the sign of the mass. At the charge neutral point, we have three
sets of chiral edge channels crossing the Fermi energy, which
all circulate in a clockwise direction when viewed from the
+z direction. We also observe two edge states extending out
of the plot and leading to the other valley K−. In K−, we have
the exact same spectrum with px inverted to −px .
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(c) Contour plot of the bulk band structure with white dots and labels
denoting the position and the chirality of gate-induced Dirac points,
respectively. One-dimensional winding number γ (kx) is indicated
between dotted lines penetrating the Dirac points.

The correspondence with the single-valley Hall conductiv-
ity can be understood using a similar argument to that for the
integer quantum Hall effect.59 Let us consider a cylindrical
system which is closed in x with circumference Lx while
finite in the axial direction y with −Ly/2 < y < Ly/2 bound
by the zigzag edges. When we adiabatically turn on a magnetic
flux quantum h/e penetrating into the cylinder (inducing an
electric field along the −x direction), every state at px is shifted
to px + 2πh̄/Lx . The single-valley Hall conductivity of K+
then coincides with the total move of K+ electrons in the −y

direction through this adiabatic process. At the Fermi energy,
an electron moves from the left edge to the right for each
of three pairs of counterpropagating channels, contributing to
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FIG. 5. (Color online) Band structure around the K+ valley of
zigzag ribbon of ABA-trilayer graphene with the parameters fully
included, in the asymmetric potential (a) � = 200 meV and (b) � =
400 meV. Bulk, left-edge, and right-edge states are plotted with solid
lines, red dots, and blue dots, respectively.

σ
K+
xy = −3e2/h. A charge transfer also occurs below the Fermi

energy, where a bulk state (〈y〉 = 0) is pumped to an edge state
(〈y〉 = −Ly/2) in the left-edge channel going out of the valley.
This yields a contribution to σ

K+
xy = (+1/2)e2/h, which adds

up to σ
K+
xy = (−5/2)e2/h all together.

Figure 5(b) plots the band structure at larger bias, � =
400 meV after the topological transition at �c. We find that
the connection of the edge modes changes at p = p−, leaving
only one clockwise and one anticlockwise chiral edge mode
crossing at the Fermi energy. The Hall conductivity from those
two exactly cancel out, while we have the same contribution
from the edge channel below the Fermi energy, giving the total
Hall conductivity σ

K+
xy = (+1/2)e2/h. This again coincides

with bulk valley Hall conductivity estimated from the mass and
chirality. Conversely, the single-valley Hall conductivity gives
the number of counteredge modes crossing at the Fermi energy,
when we appropriately exclude the half-integer contribution
from the edge modes connecting K±.

IV. FOUR-LAYER GRAPHENE

Unlike trilayer, a four-layer graphene with interlayer
asymmetry does not possess chiral symmetry even in the
approximate model, and the band gap is always open at zero
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energy. The effective low-energy Hamiltonian can be obtained
by excluding the high-energy bonding states at |ε| ∼ O(γ1)
as Heff = H11 − H12H

−1
22 H21,21 where H11 and H22 represent

diagonal blocks of the original Hamiltonian for low-energy
bases spanned by (A1,B2,A3,B4) and for high-energy bases
by (B1,A2,B3,A4), respectively, and H12 and H21 are off-
diagonal blocks connecting them. This is explicitly written in
basis (A1,B2,A3,B4) as

Heff = v2

γ1

⎛
⎜⎜⎝

0 −(π †)2 0 (π †)2

−π2 0 0 0
0 0 0 −(π †)2

π2 0 −π2 0

⎞
⎟⎟⎠

+ v3

⎛
⎜⎜⎝

0 π

π † 0 π †

π 0 π

π † 0

⎞
⎟⎟⎠ + �

⎛
⎜⎜⎝

3
2

1
2 − 1

2
− 3

2

⎞
⎟⎟⎠,

(21)

where we neglected the band parameters other than γ0, γ1, and
γ3. The approximation is valid only when vp,� � γ1.

If we even neglect the v3 term, the low-energy energy band
is rotationally symmetric around K± points and its dispersion
relation is given by

ε(p) = ± 1
2

√
6ε̃2 + 5�2 − 2

√
5ε̃4 + 20ε̃2�2 + 4�4 (22)

with ε̃ = v2p2/γ1. The band gap appears between ε =
±(�/2)(−7 + 16/

√
5)1/2, corresponding to an off-center mo-

mentum p0 = (−2 + 6/
√

5)1/4√γ1�/v.
When we resume the v3 term and other parameters, six

off-center pockets emerge at momentum p+ and p− near p0,
each of which are arranged in 120◦ symmetry as illustrated
in Figs. 6 and 7(a). The preexisting gap never closes during
this process. The pockets at p = p+ are much deeper than
those at p = p−, and the energy depth is about 15 meV at
� = 100 meV. Figure 7(b) describes an evolution of Landau-
level energies with increasing �, where we observe the triply
degenerate Landau levels of p+ pockets with wide energy
spacing, similarly to trilayer graphene.

We can expand the Hamiltonian with respect to the center
of each Dirac pocket, and we obtain the effective 2 × 2
Hamiltonian in the massive Dirac form of Eq. (14). The masses

vp
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FIG. 6. (Color online) Band structures of ABA-stacked four-
layer graphene with the interlayer asymmetric potential � =
100 meV, depicted in a 3D plot (left panel) and contour plot (right).

and the velocities are shown in Figs. 7(c) and 7(d), respectively,
where we set the basis so that the chirality becomes +1 (i.e.,
vxvy positive). The masses at p+ and p− are opposite in sign,
so that the contributions to the Hall conductivity of Dirac
cones cancel out in summation over a single valley. Therefore,
the single-valley system is a trivial insulator with zero Hall
conductivity in contrast to trilayer graphene. Accordingly, we
observe no Landau-level crossing at a charge neutral point
in Fig. 7(b), and if we look at the edge states in Fig. 7(e),
there are no edge channel crossing in the bulk gap nor the
counterpropagating flows of valley pseudospin.

V. GENERAL ODD-LAYER GRAPHENES

The approximate chiral symmetry in the presence of the
external electric field argued in a trilayer actually holds in
any odd-layer Bernal multilayer graphenes. As we see in
the following, if we only consider γ0,γ1,γ3,� terms, the
Hamiltonian of odd-layer graphene is chiral symmetric with a
nonzero chiral index in the presence of magnetic field, which
means that the band is gapless in the limit of zero magnetic
field.

The Hamiltonian for Bernal stacked N -layer graphene is de-
composed into block diagonal form with effective monolayer
and bilayer blocks with a unitary transformation.28,29,31,32 Let
us define

fm(j ) = cm

√
2

N + 1
[1 − (−1)j ] sin κmj,

(23)

gm(j ) = cm

√
2

N + 1
[1 + (−1)j ] sin κmj,

where

κm = π

2
− mπ

2(N + 1)
,

(24)

cm =
{

1/2 (m = 0),
1/

√
2 (m �= 0),

j = 1,2, . . . ,N is the layer index, and m is the block index
given as

m =
{

1,3,5, . . . ,N − 1, where N is even,

0,2,4, . . . ,N, where N is odd.

Then we take a basis

∣∣φ(X,odd)
m

〉 =
N∑

j=1

fm(j )|Xj 〉,
(25)∣∣φ(X,even)

m

〉 =
N∑

j=1

gm(j )|Xj 〉,

where X = A or B. A superscript (X,odd) [(X,even)] indicates
that the wave function is nonzero only on the sublattice X on
the layer j = odd (even).

With the above basis set, the Hamiltonian with � = 0 is
block diagonalized with m. A block labeled by m spanned
by {|φ(A,odd)

m 〉,|φ(B,odd)
m 〉,|φ(A,even)

m 〉,|φ(B,even)
m 〉} is dictated as
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four layer with � = 200 meV.

H (λm) with λm = 2 cos κm and

H (λ) =

⎛
⎜⎜⎝

0 vπ † 0 λv3π

vπ 0 λγ1 0
0 λγ1 0 vπ †

λv3π
† 0 vπ 0

⎞
⎟⎟⎠, (26)

where we only left the terms with γ0,γ1,γ3, For the case of m =
0, only two bases |φ(A,odd)

m 〉,|φ(B,odd)
m 〉 survive due to g0(j ) = 0,

and the corresponding block Hamiltonian is the first 2 by 2
component of Eq. (26).

Now let us consider an odd-layer graphene with the inter-
layer potential asymmetry U (�), i.e., the second term of the
Hamiltonian, Eq. (1). When N is odd, we can easily show that
the basis function belonging to the block m is either symmetric
or antisymmetric with respect to reflection in the central layer
j = (N + 1)/2, and the parity is given by (−1)(N−m−1)/2.32

If we write down U (�) in this basis, the matrix element
〈φ(X′,p′)

m′ |U |φ(X,p)
m 〉 (p,p′ = even or odd) becomes nonzero only

when m′ = m + 4l + 2 (l is an integer), X = X′, and p = p′,
because U is an odd function in the reflection and is also
diagonal in the original site representation.

Therefore, if we separate the basis functions into two groups
◦,• as (∣∣φ(A,odd)

m

〉
,
∣∣φ(B,odd)

m

〉
,
∣∣φ(A,even)

m

〉
,
∣∣φ(B,even)

m

〉)
∈

{
(◦, • , ◦ ,•) (m = 4l),
(•, ◦ , • ,◦) (m = 4l + 2), (27)

then the Hamiltonian including only γ0,γ1,γ3,� has matrix
elements only between ◦ and •, and thus is chiral symmetric.
Note that the chiral symmetry does not hold for even-layer
graphenes since the basis function labeled by m cannot be
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categorized to either even or odd parity, and the interlayer
potential term gives rise to matrix elements connecting blocks
m and m + 4l.

In the presence of a magnetic field, the chiral index, i.e., the
difference between the number of the zero modes belonging
to ◦ (n+) and those to • (n−), can be easily obtained by
considering the Landau-level spectrum with γ1, v3, and � all
switched off, since the chiral index never changes in such
a continuous transformation. The bilayer-like Hamiltonian
block, Eq. (26), then consists of two monolayer-type 2 × 2
diagonal blocks, giving two zero-energy Landau levels local-
ized at the second and fourth (first and third) elements in the
valley ξ = +(−). Considering the base grouping in Eq. (27),
the difference in zero-energy states in block m is found to be
n+ − n− = ∓2ξ for m = 4l and m = 4l + 2, respectively,
where  = eBS/h is the magnetic flux penetrating the system.
The monolayer-type block m = 0 lacks the third and fourth
elements, giving n+ − n− = −ξ. As a result, the total chiral
index in odd-layer graphene for valley Kξ is finally given by

n+ − n− = (−1 + 2 − 2 + 2 . . .)ξ

=
{−ξ, N = 4l + 1,

+ξ, N = 4l + 3.
(28)

This states that at least one Landau level remains at zero
energy, and thus in zero magnetic field the conduction and
valence band touch at one k point at least. The sum of Berry
phases in a single valley coincides with −π times the chiral
index in units of , that is, ±ξπ for N = 4l + 1 and 4l + 3,
respectively. When the Dirac cones are gapped by including the
additional band parameters, the Hall conductivity per single
valley must be nonzero, because the number of Dirac cones
per valley must be odd to achieve total Berry phase ±π .

This result might seem to contradict the well-known fact
that the Berry phase is Nπ in N -layer graphene at � = 0.
As argued, the Hamiltonian with � = 0 is block-diagonalized
into independent monolayer-like and bilayer-like subsystems.
In each block, there is an ambiguity in the choice of bases for ◦
or •, and the Berry phase of the block actually changes its sign
when ◦ and • are interchanged. If we simply assign all A and
B sublattices to ◦ and •, respectively, we obtain n+ − n− =
(−1 − 2 − 2 − 2 . . .)ξ = −ξN instead of Eq. (28). In the
presence of nonzero �, on the other hand, the subsystems are
mixed with each other and then the grouping of Eq. (27) is the
only possible way to make the Hamiltonian chiral symmetric.

VI. CONCLUSION

In Bernal multilayer graphene, more than three layers, an
interplay of the gate electric field and the trigonal warping
effect, give rise to emergent Dirac cones in the low-energy
bands, whose band velocity and Lifshitz transition energy
are tunable by the gate voltage. In trilayer graphene, in
particular, the low-energy effective theory shows that the
valley Hall state is realized at the charge neutral point, where
single-valley Hall conductivity is quantized at a nonzero
half-integer. We have investigated the edge states at the zigzag
interface and demonstrated that the number of edge modes
is closely related to the bulk single-valley Hall conductivity.
In four-layer graphene, gate-induced Dirac cones also appear,

though the system is a trivial insulator with zero-valley Hall
conductivity. The nontrivial valley Hall state is generally
found in odd-layer graphenes, where the approximate chiral
symmetry is responsible for the emergence of nonzero-valley
Hall conductivity.

The gate-induced Dirac cones should be experimentally
accessible directly by observing Landau levels with wide
energy spacing.60–62 Also, the single-valley Hall conductivity
argued here is expected to be observable in the transport
through the edge modes at a zigzag interface, while a valley
mixing caused by a concentration of atomic-scale scatterers or
the presence of an armchair edge would dilute the effect. There
the conductance is related to the number of edge channels,
and the topological transition at �c should be observed as
a change in the conductance. Since the helical edge modes
appearing in the gated multilayer graphene carry valley pseu-
dospins, modulation of edge modes through the gate voltage
could be a way to electrically control the valley polarized
transport.
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APPENDIX A: INDEX THEOREM FOR
ODD-LAYER GRAPHENES

Here we show that the chiral index of general odd-layer
graphenes can be written in terms of the total gauge flux
penetrating the system, in a similar way to the argument
for the usual Dirac Hamiltonian.52–54 The chiral symmetric
Hamiltonian of odd-layer graphene with interlayer asymmetric
potential is written as

H =
(

0 D−
D+ 0

)
, (A1)

where D+ = (D−)† is an N × N matrix. The chiral symmetry
is then expressed by �H + H� = 0 with the chiral operator
�,

� =
(

1lN 0
0 −1lN

)
,

where 1lN is an N × N unit matrix. We can take zero modes of
H as an eigenvector ψ± of � with eigenvalue ±1, respectively.
If we write the number of chiral zero modes ψ± as n±, the
chiral index ν is defined as

ν = n+ − n− = Tr�f (H 2/M2),

where f is a regularization function, which is a smooth
and monotonically decreasing function with f (0) = 1 and
f (∞) = 0, and M is an ultraviolet cutoff. The action of f to
the matrix is defined through its action onto the eigenvalues,
as seen if we take f (z) = e−z.

085424-9



TAKAHIRO MORIMOTO AND MIKITO KOSHINO PHYSICAL REVIEW B 87, 085424 (2013)

If we take plane waves exp(ik · x) as a basis for the spatial
direction, we have

ν = Tr�f (H 2/M2)

= Tr[f (D−D+/M2) − f (D+D−/M2)]

=
∫

d2x

∫
d2k

(2π )2
tr e−ikx[f (D−D+/M2)

−f (D+D−/M2)]eikx,

where Tr means a trace over all the states while tr is a trace
over the layer and site indices or, equivalently, m, X, and even
(odd) indices in Eq. (25).

The operator π acts on a plane wave to give e−ikxπeikx =
h̄k + π . Since D± contains at most first-order derivative terms,
we can write

e−ikxD+eikx = D0|k| + D+,

e−ikxD−eikx = D
†
0|k| + D−,

where D0 is a c-number matrix and of zeroth order in |k|, but
may depend on a polar angle of k. Since D0 is a square matrix,
it can be written in a singular value decomposition,

D0 = U�V †,

with unitary matrices U,V and a diagonal matrix � =
diag(

√
λi) (λi � 0).

The action of D−D+ on a plane wave is then described as

e−ikxD∓D±eikx = G±k2 + F±,

where

G+ = D
†
0D0 = V �2V †,

G− = D0D
†
0 = U�2U †,

are c-number matrices of zeroth order in |k|. F± are matrices
including the operator π , and up to first order of |k|.

Having in mind that the ultraviolet behavior (h̄vk ∼ M) is
important for the contribution of the D−D+ term to the chiral
index, we obtain

tr{e−ikxf (D−D+/M2)eikx}
= tr{Vf (k2�2/M2 + V †F+V/M2)V †}
= tr{f (k2�2/M2) + f ′(k2�2/M2)(V †F+V )/M2}

+ O(M−4)

=
∑

i

{f (k2λi/M
2) + f ′(k2λi/M

2)(V †F+V )ii/M
2)}

+ O(M−4).

With a similar form for the D+D− term, the chiral index with
M → ∞ reduces to

ν =
∫

d2x

∫
d2k

(2π )2

∑
i

f ′(k2λi/M
2)

× (V †F+V − U †F−U )ii/M
2. (A2)

As argued in Sec. V, the Hamiltonian of multilayer
graphene with � = 0 is decomposed into block-diagonal form
with effective monolayer and bilayer blocks labeled by m, and
when the number of layers is odd, � always enters in the
off-diagonal blocks. Then G± is block-diagonal because it is

independent of �, and so U and V are. Therefore, although
block off-diagonal terms in F± arise from �, they do not
contribute to the sum of (V †F+V − U †F−U )ii , and thus we
only have to compute the chiral index for each block separately
and add them up to obtain the overall chiral index.

Monolayer block (m = 0). Using the commutation relation
[π,π †] = −ξ2h̄eB,

D−D+/v2 = π †π = π2 + ξh̄eB,

D+D−/v2 = ππ † = π2 − ξh̄eB,

G± = h̄2v2,

F± = v2(π2 + 2h̄k · π ) ± ξv2h̄eB.

From Eq. (A2),

ν =
∫

d2x

∫
d2k

(2π )2
f ′(h̄2v2k2/M2)(2ξv2h̄eB)/M2

= −ξ,

where  = ∫
d2x eB/h is the magnetic flux penetrating the

system. When the magnetic field is uniform, this is the Landau-
level degeneracy of the n = 0 Landau level, and its sign reflects
that the level is assigned to ψ−(ψ+) at the K+(K−) valley.

Bilayer block (m �= 0). For simplicity, we set v = 1 and λ =
1, and compensate it by redefining M/v → M , λv3/v → v3,
and λγ1/v → γ1. If we rewrite the block Hamiltonian Eq. (26)
in an order of bases |φ(A,odd)

m 〉,|φ(A,even)
m 〉,|φ(B,even)

m 〉,|φ(B,odd)
m 〉 as

H =
(

0 D−
D+ 0

)
=

⎛
⎜⎜⎜⎝

0 0 v3π π †

0 0 π † γ1

v3π
† π 0 0

π γ1 0 0

⎞
⎟⎟⎟⎠,

we have

D−D+ =
(

π2
(
1 + v2

3

)
γ1π

† + v3π
2

γ1π + v3(π †)2 π2 + γ 2
1

)

+ ξh̄eB

(
1 − v2

3 0

0 1

)
,

D+D− =
(

π2
(
1 + v2

3

)
γ1π + v3(π †)2

γ1π
† + v3π

2 π2 + γ 2
1

)

− ξh̄eB

(
1 − v2

3 0

0 1

)
.

The action on the plane-wave basis is then given by

e−ikxD−D+eikx = G+k2 + F̃ + F,

e−ikxD+D−eikx = (G+k2 + F̃ )T − F,

G+ = h̄2

(
1 + v2

3 v3e
2iθ

v3e
−2iθ 1

)
,

F = ξh̄eB

(
1 − v2

3 0

0 1

)
,

where F̃ is a matrix including π , of which the expression (not
presented) is not important in the following argument.
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With a relation trf (A) = trf (AT), an explicit calculation
of Eq. (A2) shows that

ν =
∫

d2x

∫
d2k

(2π )2

∑
i

f ′(k2λi/M
2)

× [V †(F̃ + F )V − (V T)†(F̃ T − F )V T]ii/M
2

=
∫

d2x

∫
d2k

(2π )2

∑
i

f ′(k2λi/M
2)(2V †FV )ii/M

2

= − 1

2π

∫
d2x

∑
i

1

λi

(V †FV )ii

= − 1

2π

∫
d2x tr (G−1

+ F ) = −2ξ.

Thus, the chiral index of the bilayer block is twice that of
the monolayer block, and inclusion of v3 does not affect the
result. This is naturally expected because the chiral index
is a topological number and never changes in a continuous
deformation.

If we combine these results for the monolayer and bilayer
blocks noting the orders of the chiral bases for each block
[Eq. (27)], we find that the chiral index for biased N (odd)
-layered graphene is given by

n+ − n− = (−1 + 2 − 2 + 2 . . .)ξ

=
{−ξ, N = 4l + 1,

+ξ, N = 4l + 3.

This exactly coincides with Eq. (28), while the present
argument is more general and valid for nonuniform magnetic
field B(x,y).

APPENDIX B: DERIVATION OF THE EDGE MODES FROM
THE EFFECTIVE-MASS HAMILTONIAN

When the Hamiltonian is linear in k, it is possible to
obtain the edge state energies in the bulk gap by searching
for the evanescent modes satisfying a boundary condition at
the interface. We consider a 2N × 2N Hamiltonian matrix
H (k̂x,k̂y) with k̂ = −i∇, and we assume it is linear in k̂. It is
expressed as

H = Ak̂y + B(k̂x), (B1)

where A and B are 2N × 2N matrices and A is independent
of k̂x . We assume the system is periodic in x and we replace
k̂x with its eigenvalue kx . H is regarded as a one-dimensional
Hamiltonian with a parameter kx . The Schrödinger equation,

H F(y) = εF(y), is transformed to

∂

∂y
F(y) = iA−1[−B(kx) + ε]F(y) ≡ M(kx,ε)F(y), (B2)

with M = iA−1[−B(kx) + ε]. Let κ (α) and f (α)(α =
1, . . . ,2N ) be the eigenvalues and right eigenvectors of the
matrix M(kx,ε), The corresponding wave function becomes

F(α)(y) = exp(κ (α)y) f (α). (B3)

Generally κ (α) is a complex number, and the state is a bulk
mode when κ (α) is pure imaginary, and an evanescent mode
otherwise. When the bulk spectrum of H (kx,ky) is fully gapped
at particular kx , and ε is inside the gap, we have 2N evanescent
modes with N modes of Re κ (α) > 0 and another N modes of
Re κ (α) < 0. When we consider the half-infinite system in the
region y � 0, an edge state localized near y = 0, if it exists,
should be written as a linear combination of the states with
Re κ (α) < 0. When the indices α = 1,2, . . . ,N are assigned to
the modes of Re κ (α) < 0, it is written as

F(y) =
N∑

α=1

C(α) exp(κ (α)y) f (α). (B4)

The boundary condition at y = 0 for the wave function F
is composed of N linear equations with respect to the 2N -
dimensional vector F(0). This is written as DF(0) = 0, with
D being an N × 2N constant matrix. For the trilayer graphene
with a zigzag edge, for example, the boundary condition at
y = 0 is F1(0) = F3(0) = F5(0) = 0, so that D becomes

D =
⎛
⎝ 1 0 0 0 0 0

0 0 1 0 0 0
0 0 0 0 1 0

⎞
⎠. (B5)

By using Eq. (B4), the boundary condition is written as

X

⎛
⎜⎜⎜⎝

C(1)

C(2)

...
C(N)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎝

0
0
...
0

⎞
⎟⎟⎠, (B6)

where X = X(kx,ε) is an N × N matrix defined by

X = D
(

f (1), f (2), . . . , f (N)) . (B7)

The equation has a nontrivial solution when det X(kx,ε) = 0.
The edge mode energy can be found by tracing det X(kx,ε)
throughout the energy gap, for each fixed kx . When more than
two edge modes are degenerate at the energy ε, the number of
degeneracy is found by N − rankX(kx,ε).
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