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Determining molecule diffusion coefficients on surfaces from a locally fixed probe:
Analysis of signal fluctuations
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Methods of determining surface diffusion coefficients of molecules from signal fluctuations of a locally fixed
probe are revisited and refined. Particular emphasis is put on the influence of the molecule’s extent. In addition
to the formerly introduced autocorrelation method and residence time method, we develop a further method
based on the distribution of intervals between successive peaks in the signal. The theoretical findings are applied
to scanning tunneling microscopy measurements of copper phthalocyanine (CuPc) molecules on the Ag(100)
surface. We discuss advantages and disadvantages of each method and suggest a combination to obtain accurate
results for diffusion coefficients.
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I. INTRODUCTION

To describe the growth kinetics of adsorbates on surfaces,
knowledge of diffusion coefficients of atoms and molecules
on the surface is of vital importance. Different experimental
techniques can be utilized to measure corresponding diffusion
coefficients. Two of the first methods were field emission
microscopy1,2 and field ionization microscopy.3 Another tech-
nique is the laser-induced thermal desorption,4,5 where first
an area of adparticles is cleared by desorption and then the
successive repopulation measured by desorption. For scanning
tunneling microscopy (STM), several modes of operation have
been described: taking scans of the surface with the adsorbed
particles at different time instants to identify individual particle
displacements,6 recording current signals in time with a locally
fixed STM tip,7 and coupling the tip to a single adsorbate
and tracking its motions.8 Different procedures to extract
diffusion coefficients from these and other techniques have
been reviewed by Barth in 2000.9

Analysis of island densities with predictions from rate
equations for submonolayer growth kinetics is a further
powerful method,10,11 which allows one also to determine
binding energies between adatoms or of adatoms to small
clusters. An extension of this method to multicomponent
systems is given in Refs. 12 and 13.

In recent years, the self-assembly of organic molecules on
surfaces has attracted much attention in connection with the
idea of developing electronic devices on a molecular level.14

Molecules in organic surface growth often have high mobilities
and sizes large compared to the lattice constant of the
substrate. In this situation, not all techniques are equally well
suited. A convenient and powerful method is the recording of
temporal current fluctuations with a fixed scanning tunneling
microscope tip15 or, in principle, of signal fluctuations from
any locally fixed microscopic or other probe.2 For example,
for molecules on insulating substrates, the frequency or height
fluctuations in an atomic force microscopy could be used.

In order to extract diffusion coefficients from signal
fluctuations of a probe, a theoretical basis for the analysis of the
measurement is necessary. One approach was developed for
the autocorrelation function (ACF) of an STM signal16,17 and
applied, on the basis of the corresponding power spectrum,

to oxygen atom diffusion on Si(111),15 and more recently
to hydrogen atom diffusion on Si(111).18 Another approach
was followed in Ref. 19 by analyzing the distribution of peak
widths in the signal, which correspond to residence times of
single molecules under an STM tip. We will refer to it as the
residence time distribution (RTD) method in the following. For
determining absolute values of diffusion coefficients, a general
problem is that the theoretical modeling involves a commonly
not precisely known “detection function” with some finite
range. However, when the extension of the diffusing molecules
is larger than the detection range, this problem becomes
essentially irrelevant and the size of the molecule enters as
the relevant length scale.

In this work, we first revisit both the ACF and the RTD
methods. For the ACF method, we study, as a new aspect,
modifications implied by the finite size of molecules and for the
RTD method we give a detailed account of the functional form
of the RTD in different time regimes. In the RTD, time intervals
are considered where the molecule is under (or very close to)
the tip. Corresponding time intervals are also included in the
calculation of the ACF. It can therefore not be precluded that
the interaction of the molecule with the tip is influencing the
results. A possible influence can be evaluated systematically
by changing the bias voltage,19 or the distance between tip
and substrate. In order to ensure that the influence is small,
independent of adjustments, we develop a further method,
which is based on the analysis of the distribution of peak-to-
peak distances in the signal. This method is referred to as the
interpeak time distribution (ITD) method in the following.

All three methods are applied to diffusion measurements
of copper phthalocyanine (CuPc) on the Ag(100) surface
previously reported in Ref. 19. We discuss advantages and
disadvantages of the three procedures mentioned above and a
possible combination of them, which enables us to improve
the quality of results for the diffusion coefficient.

II. AUTOCORRELATION FUNCTION (ACF)

We consider N molecules diffusing on a flat substrate area
A and a probing tip of a STM placed at a fixed position above
the surface. The lateral tip position is chosen as the origin of an
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x-y–coordinate system on the surface. Each diffusing
molecule α with its center at position rα(t) = [xα(t),yα(t)]
gives a contribution iα(t) = G[rα(t)] to the total tunneling
current I (t) = ∑N

α=1 iα(t), where G(r) is the “detection func-
tion.” We regard the molecules as noninteracting, which should
be a valid assumption at low concentrations c = N/A, or more
precisely on time scales smaller than l2/D, where l ∼ c−1/2 is
the mean intermolecular distance and c the number density of
molecules. The autocorrelation function C(t) = 〈δI (0)δI (t)〉
of the current fluctuations δI (t) = I (t) − 〈I 〉 can then be
written as

C(t) = N〈i(0)i(t)〉
= c

∫
d2r0

∫
d2r1G(r1)f (r1,t |r0)G(r0), (1)

where f (r1,t |r0) is the two-dimensional diffusion propagator

f (r1,t |r0) = 1

4πDt
exp

(
− (r1 − r0)2

4Dt

)
. (2)

To provide a quantitative prediction for C(t), knowledge
of the detection function G(r) is necessary. For the STM, this
requires a detailed treatment of the tunneling problem, which
is a long-standing problem since the first pioneering work by
Tersoff and Hamann.20 Based on a simple approach, Sumetskii
and Kornyshev16 suggested a Gaussian detection function
for small particles (adatoms) as a result of the tunneling
barrier. For extended molecules, the lateral structure of the
electronic charge density needs to be taken into account. In
fact, without referring to first-principles calculations for the
specific system under consideration, it is difficult to obtain
accurate expressions for the tunneling current.

While such more detailed treatments are interesting in
themselves, they are not really required for determining the
diffusion coefficient D. A more practical approach is to
transform I (t) into a rectangular signal Irec(t) = �[I (t) − Ic],
where �(.) is the Heaviside jump function [�(x) = 1 for
x > 0 and zero else], and Ic is a threshold current to exclude
background noise. If we consider situations, where at most
one molecule can be in the detection region under the tip, each
single molecule contribution iα(t) to Irec(t) also transforms to
a rectangular signal irec

α (t) ∈ {0,1}, and Irec(t) = ∑
α irec

α (t) ∈
{0,1}. Accordingly, the detection function can be defined as
“indicator function” of the molecule

G(r) =
{

1 if r ∈ M,

0 else,
(3)

where M is the set of center positions of the molecule which
give rise to a tunneling current I > Ic. To get a description that
is independent of details of the molecule’s shape, we assign
a circle to the set M. The radius R of this circle can, for
example, be determined by setting the covered area of the
molecule equal to πR2, by the gyration radius of the set M,
or by some other reasonable requirement. The function G(r)
from Eq. (3) is then approximated by �(R − |r|).

The mutual exclusion under the tip implies that the
molecules are no longer noninteracting as assumed when
deriving Eq. (1). This leads to nonzero cross correlations
〈irec

α (t)irec
β (0)〉, α �= β. While these cross correlations could be

treated approximately, we concentrate here on times smaller

than the mean residence time ∼ τR := R2/D of a molecule
under the tip. In this regime, we can set 〈irec

α (t)irec
β (0)〉 � 0 for

α �= β. Accordingly, the self-part N〈irec
α (t)irec

α (0)〉 appearing in
Eq. (1) gives the correlation function Crec(t) = 〈Irec(t)Irec(0)〉
(i.e., without subtracting a term 〈Irec〉2). Evaluation of Eq. (1)
then yields

Crec(t) = 4πc

∫ R

0
dr0r0

∫ R

0
dr1r1

exp
(− r2

0 +r2
1

4Dt

)
4Dt

I0

(
2r0r1

4Dt

)
,

(4)

where I0 is the modified Bessel function of zeroth order.
The knowledge of Crec(t) for times t < τR , as predicted by

Eq. (4) for single-particle diffusion, is sufficient to determine
D. For t > τR , collective properties and the associated cross
correlations had to be taken into account. In a rough treatment,
one could factorize 〈irec

α (t)irec
β (0)〉 � 〈irec

α (t)〉〈irec
β (0)〉, which

amounts to add (cπR2)2 to the expression in Eq. (4) for t � τR .

A. Application to CuPc on Ag(100)

A relaxed structure of the CuPc molecule in vacuum after
energy minimization, as obtained from a DFT calculation,
is displayed in Fig. 1, together with a circle of radius R =
7.6 Å assigned to it. The relaxed structure can be expected
to be essentially unmodified when the CuPc molecule is
adsorbed on the Ag(100) surface. STM studies combined
with density functional theory (DFT) calculations showed
that transition-metal phtalocyanines generally lie flat on the
Ag(100) surface.21 This is in agreement with STM images of
CuPc islands on Ag(100).22

After deposition of CuPc molecules on Ag(100) up to a
coverage of 10%–15%, islands form and a quasistationary state
is reached, where the rates of detachment from and attachment
to islands balance each other. In this quasistationary state,
the diffusing CuPc molecules have an effective small number
density c. Then, the tunneling current was measured for a
stationary STM tip and constant bias voltage. The height of
the tip was preset indirectly by the choice of setpoint current
Isetpoint and bias voltage Ubias. Further details of the experiment
are given in Ref. 19.

FIG. 1. Relaxed structure of the CuPc molecule. Notice that the
terminating bonds are connected to hydrogen atoms. The assigned
detection area marked in gray is a circle with radius R = 7.6 Å. It
corresponds to the smallest circle that entails all nuclei.
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FIG. 2. (a) Fluctuating STM tunneling current I (t) observed
during CuPc diffusion on Ag(100) at T = 192 K (Ubias = 1.7 V,
Isetpoint = 20 pA). The dashed line marks the threshold value Ic, above
which the distribution of the current values has no longer a Gaussian
shape (see Fig. 3). (b) The rectangular signal Irec(t) = �[I (t) − Ic]
associated with I (t). The widths of the rectangles give the residence
times τ and the distances between the rectangles give the interpeak
times τ ′.

The diffusing molecules cause fluctuations in the tunneling
current I (t) as shown in Fig. 2(a) for a time interval of
2 ms at T = 192 K. A histogram of the tunneling current,
determined for the whole time series of length 40 s, is depicted
in Fig. 3. In this figure, the maximum of the histogram was
shifted to I = 0.23 Negative I values are associated with noise
and their distribution can be fitted to a half-sided Gaussian.
Extending this Gaussian distribution to positive I values yields
the solid line in Fig. 3. For small positive I values, this curve
fits very well the data, implying that these values can also
be attributed to noise. The diffusing CuPc molecules cause
deviations from the Gaussian distribution at larger I values. To
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FIG. 3. Histogram of measured current values for T = 192 K
after shifting the maximum to I = 0. The solid line marks a Gaussian
fit with zero mean and standard deviation determined from the
histogram for negative currents. The inset shows an enlargement
to demonstrate the determination of the threshold value Ic used for
separating the diffusion-induced signal from the noise (see text).
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FIG. 4. (a) Normalized ACFs Crec(t)/Crec(0) as a function of time
for two temperatures (symbols) and best fits with Eq. (4) for t < τR

(solid lines). (b) Arrhenius plot of the resulting diffusion coefficients
(symbols). A least-square fit (solid lines) according to the Arrhenius
law yields Ea = 30 meV and D0 = 10−9.4 cm2/s.

separate the diffusion-induced fluctuations from the noise, we
define a threshold value Ic > 0, where the Gaussian histogram
of the number of occurrences drops below one (cf. Fig. 3).
This threshold is marked by the dashed line in Fig. 2(a) and
the corresponding Irec(t) is shown in Fig. 2(b). Using this
procedure, we determined the ACF of Irec(t) for seven different
temperatures investigated in the experiments.19

Normalized ACFs Crec(t)/Crec(0) for two temperatures
are shown in Fig. 4(a) (symbols) and fits to them with
Eq. (4) and under the constraint t < τR are marked as solid
lines. The resulting diffusion coefficients are displayed in the
Arrhenius plot in Fig. 4(b) (symbols), where a least-square fit
of D = D0 exp(−Ea/kBT ) to these data (solid line) yields an
activation energy Ea = 30 meV and a pre-exponential factor
D0 = 10−9.4 cm2/s.

III. RESIDENCE TIME DISTRIBUTION (RTD)

The residence times τ are the time intervals between
entrance and exit of a molecule into the detection region M
of the probe (see Fig. 2). By sampling these τ values, the RTD
�(τ ) is obtained.
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FIG. 5. Illustration of the geometry used for the calculation of (a)
the RTD and (b) the ITD. The dashed lines indicate the uniformly
distributed initial probabilities on the rings displaced by εR (a) and
(ε ′R) (b) from the absorbing boundary (solid lines). MC stands for
the diffusing molecule center.

For a theoretical description of the RTD, we need to
tackle the problem of the diffusion of a molecule center in a
circle with radius R and absorbing boundaries [see Fig. 5(a)].
Since the molecule center can not be placed at the absorbing
boundary, its initial center position is considered to be at a
distance εR from the boundary. This means that the initial
probability density of the center position is a delta function
concentrated on the ring with radius (1 − ε)R. Physically, the
length εR may be associated with an elementary step size of
the molecule on the substrate.

Due to the symmetric initial condition, the probability
density for the molecule center position r at time t depends on
r = |r| only and is given by (see Appendix)

p(r,t) =
∞∑

n=1

J0(αnr/R)

πR2

J0[αn(1 − ε)]

J 2
1 (αn)

e−α2
nt/τR , (5)

where Jk(.) are the Bessel functions of order k, and the αn are
the (positive) zeros of J0, J0(αn) = 0 with 0 < α1 < α2 < · · · .

With p(r,t) from Eq. (5), the calculation of the RTD
amounts to calculating the first passage time distribution with
respect to the absorbing boundary. This can be carried out
by applying standard techniques from random walk theory,
as described, for example, in Ref. 24. The probability that
the molecule center has not left the circle until time t is
φ(t) = 2π

∫ R

0 dr rp(r,t). The probability that the center leaves
the circle in the time interval [τ,τ + �τ ] is φ(τ ) − φ(τ + �τ ),
implying that the probability density ψ(τ ) for the residence
times τ is ψ(τ ) = −2π∂τ

∫ R

0 dr rp(r,τ ). This yields

ψ(τ ) = 2

τR

∞∑
n=1

αn

J0[αn(1 − ε)]

J1(αn)
e−α2

nτ/τR . (6)

We note that the characteristic time (εR)2/D sets a lower limit
above which Eq. (5) becomes applicable because one would
have to refine the continuum treatment for smaller τ . For the
experiments analyzed here, this is not of relevance because
such small τ are not resolved.

For τ � (εR)2/D, the functional form of the solution
changes with respect to the characteristic time τR the molecule

needs to explore the circle area. For τ � τR , we find

ψ(τ ) ∝ 1

τR

(
τ

τR

)−3/2

. (7)

This power law can be understood by considering the (nega-
tive) time derivative of the probability that the molecule is next
to the absorbing boundary at time t [i.e., the efflux rate, which
equals ψ(τ )]. For τ � τR , this probability is given by the ratio
of the explored boundary section (∝ √

τ ) to the explored area
inside the circle (∝ τ ), yielding �(τ ) ∼ −∂τ

√
τ/τ ∼ τ−3/2.

For τ � τR , we find

ψ(τ ) ∼ 2

τR

α1J0[α1(1 − ε)]

J1(α1)
e−α2

1τ/τR . (8)

This result can be interpreted by noting that for τ � τR ,
where the occupation probability of the molecule is spread
over the circle, the efflux rate is essentially constant and given
by the inverse of the time τR for a molecule to reach the
boundary. A Poisson process with this constant rate yields
�(τ ) ∼ τ−1

R exp(−const × τ/τR).

A. Application to measurements

For the diffusion of CuPc on Ag(100), the τ values were
extracted from the rectangular current signal as described in
Fig. 2. Distributions �(τ ) of these τ values are shown in
Fig. 6(a) for two representative temperatures. By fitting the
exponential tail with Eq. (8), we obtain the diffusion coefficient
D. In a self-consistency check we have assured that the tail
regime used for the fitting fulfills the requirement τ � τR =
R2/D. In addition, the value ε can be calculated from the
prefactor of the fit. We find ε � 0.3, which means that εR is
about the lattice constant a = 2.89 Å of the Ag(100) substrate.
Inserting D and ε, Eq. (6) yields the full distribution ψ(τ ),
which is marked by the solid lines in Fig. 6(a). The very good
agreement of the theoretical prediction with the measured data
demonstrates the reliability of the approach.

The diffusion coefficient D is shown in Fig. 6(b) for the
two temperatures in Fig. 6(a) together with the five further
investigated temperatures in an Arrhenius plot. From the slope
of the fitted line, we find an activation energy Ea = 30 meV
and a pre-exponential factor D0 = 10−9.4 cm2/s. These values
agree with those of the ACF analysis.

We note, however, that these values deviate from those
reported in Ref. 19 (Ea = 81 meV and D0 = 10−8.4 cm2/s).
The difference is due to the fact that error bars were taken
into account in the analysis performed in Ref. 19. One point
in the Arrhenius plot, which was determined from the data
set measured for T = 222 K, had a particularly small error
and was largely influencing the slope of the fit line because
of its exposed position with respect to the other points. When
excluding this particular point from the fitting, values Ea =
38 meV and D0 = 10−9.7 cm2/s are obtained, in fair agreement
with the present analysis. We have refrained from including
error bars here because the fits of the RTD for different
temperatures yielded comparable errors, and small differences
between them seem to be insignificant with respect to other
possible sources of errors, as, for example, minor temperature
fluctuations or the influence of spatial inhomogeneities in
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FIG. 6. (a) Residence time distribution for CuPc/Ag(100) at two
temperatures (symbols). The solid line marks the result predicted by
Eq. (5) after determining the parameters D and ε from the exponential
tail region τ � τR [cf. Eq. (8) and discussion in text]. (b) Arrhenius
plot of the extracted diffusion coefficients. A least-square fit (solid
line) with the Arrhenius law yields an activation energy Ea = 30 meV
and a pre-exponential factor D0 = 10−9.4 cm2/s.

diffusion profiles, which are associated with the fact that
islands act as sinks for the molecule diffusion.

IV. INTERPEAK TIME DISTRIBUTION (ITD)

The interpeak times τ ′ are the time intervals between the end
of a peak and the beginning of the next peak in the rectangular
signal (see Fig. 2). The statistics of them is, for small τ ′,
dominated by entrance and exit of the same molecule into
the detection region M. For calculating the contribution of
these return processes to the ITD, we analyze the diffusion
of a molecule center with initial distance ε′R from a circular
absorbing boundary with radius R [see Fig. 5(b)]. For the
probability density of the molecule center to be at position r
at time t , one obtains (see Appendix)

p(r,t) =
∫ ∞

0

dα

2πR2
α W0(αr/R,α)

W0[α(1 + ε′),α]

J 2
0 (α) + Y 2

0 (α)
e−α2t/τR ,

(9)

where W0(x,y) = J0(x)Y0(y) − J0(y)Y0(x) and Y0 is the
zeroth-order Bessel function of second kind.

The ITD can be derived analogously to the treatment of the
RTD by taking the time derivative of the integral of p(r,t) over
the outer area with respect to the circle. In the present case, it is
more convenient to take the flow through the absorbing bound-
ary ψ(τ ′) = ∮

ds · [−D∇p(r,t)]r=R , which, when making use
of the Wronskian [J ′

0(x)Y0(x) − J0(x)Y ′
0(x)] = 2/πx, yields

ψ(τ ′) = 2

πτR

∫ ∞

0
dα α

W0[α(1 + ε′),α]

J 2
0 (α) + Y 2

0 (α)
e−α2τ ′/τR . (10)

For τ ′ � τR , the asymptotic behavior for τ ′ → 0 is

ψ(τ ′) ∼ ε′

2τR

√
π (1 + ε′)

exp

(
−ε′2τR

4τ ′

) (
τ ′

τR

)−3/2

. (11)

Accordingly, ψ(τ ′) rapidly rises for small τ ′ and, after going
through a maximum ψmax at τ ′

max = (ε′R)2/6D, approaches
a power law with exponent (−3/2). This power law has an
analogous physical origin as the power law in the RTD [see the
discussion in Sec. III after Eq. (7)]. Here, τR is the typical time
where the molecule center in Fig. 5 realizes the finite extent
of the detection area or, in other words, where the molecule
realizes its size.

For τ ′ � τR , Eq. (10) can be approximated by

ψ(τ ′) � 2 ln(1 + ε′)
τ ′ ln2(τ ′/τR)

. (12)

The asymptotics ∼ (τ ln2 τ )−1 follows from the fact that for
large τ ′, the detection area becomes very small with respect to
the area explored by the molecule. Accordingly, �(τ ′) scales as
the probability of first return to the origin of a two-dimensional
random walk.

The large-τ behavior predicted by Eq. (12) is, however, of
limited use because another molecule can enter the detection
area before the molecule, which has left this area at last, returns
to it. The memory to a molecule that leaves the detection area
is lost on time scales of order l2/D ∼ 1/cD. On these time
scales, different molecules can be regarded as entering the
detection area with a constant rate. This rate should scale
with the inverse mean time D/l2 for a molecule outside the
detection area to enter it. Hence, in the limit of large τ ′, an
exponential distribution is expected,

ψ(τ ′) ∼ cD exp(−κπDcτ ′), (13)

where κ is a constant of order unity.

A. Application to measurements

The interpeak intervals were sampled from the current
signal as explained in Fig. 2 and the ITDs for two temperatures
are shown in Fig. 7(a). Note that for very small times the
data indicate a plateau, which is not contained in Eq. (11). A
refinement of the continuum description would be necessary
to capture this behavior, analogous to the very small times
in the RTD. For times τ � τR , the power law predicted
by Eq. (11) is reflected by the straight-line behavior in the
double-logarithmic plot, before eventually the exponential
decay according to Eq. (13) takes over.

To obtain D from the ITD, we first concentrate on
the long-time behavior. Setting κ = 1, the rate cD of the
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FIG. 7. (a) ITD for CuPc/Ag(100) for two temperatures. The inset
shows the exponential decay at large times, where the straight solid
lines (dashed lines in the main log-log plots) are fits with Eq. (13),
yielding D (see text). Using these D values, the solid lines in the
main plots mark the short-time behavior after fitting with Eq. (11).
(b) Arrhenius plot of the extracted diffusion coefficients for all
seven investigated temperatures. A least-square fit (solid line) with
the Arrhenius law yields an activation energy Ea = 31 meV and a
pre-exponential factor D0 = 10−9.6 cm2/s.

exponential decay is provided by the slopes of the lines shown
in the insets of Fig. 7(a). The concentration is determined
from the probability cπR2 = ∑

i τi/T for a molecule to be
in the detection area, where T = ∑

i(τi + τ ′
i ) is the total

measurement time. For the seven data sets taken at different
temperatures, we find c values in the range 0.6–5 × 10−6 Å

−2
,

corresponding to coverages � = 0.01%–0.08% of the diffus-
ing CuPc molecules. The resulting D values are shown in the

Arrhenius plot in Fig. 7(b) and yield an activation energy of
Ea = 31 meV and a pre-exponential factor of D0 = 10−9.6

cm2/s. Note that the assumed value κ = 1 affects only the
prefactor D0 but not the activation energy Ea .

With D obtained from the long-time behavior, we can fit
the remaining part of the ITD with Eq. (11). Corresponding
curves are shown as solid lines in the double-logarithmic plots
of Fig. 7(a). They give a good agreement with the experimental
data. The fits yield ε′ � 0.5, which is consistent with ε � 0.3
obtained in the analysis of the RTD (see Sec. III). Accordingly,
we find again that ε′R is of the order of the lattice constant a,
as one should expect.

In principle, the part of the ITD dominated by the single-
molecule diffusion can also be used to determine D. For
this we have to notice that the necessary refinements of the
continuum theory to describe the behavior of the ITD left to the
maximum

ψmax = 3
√

6D√
π (1 + ε′)e3/2(ε′R)2

≈ D

a2
(14)

are not expected to yield larger values of the ITD. In fact,
when considering jump dynamics of the molecules with
a rate D/a2 for short times, the ITD should behave as
∼ (D/a2) exp(−const × Dτ ′/a2), i.e., the largest value of
the ITD should be of order D/a2. Due to matching with
the continuum treatment, we can identify ψmax with the
maxima seen in Fig. 7(a). This then is a convenient way
to determine D/(ε′R)2, and knowing this value, to extract
D by fitting the part right to the maximum predicted by
Eq. (11). Application of this alternative method indeed yields
values for D and ε′ in good agreement with those discussed
above.

V. COMPARISON OF THE METHODS

For applications it is important to clarify how the three
methods are best combined to obtain most accurate results
for D. To this end, we need to evaluate the strengths and
weaknesses of each method. Let us first note that all methods
work with a single input parameter, which is the molecule
radius R. All other variables arise from the analyses described
in Secs. II–IV. Because τR = R2/D is actually determined,
uncertainties with respect to R slightly affect the diffusion
coefficient.

Table I summarizes the advantages and disadvantages of
the three methods. The ACF can be readily calculated by a fast
Fourier transformation without caring about peak identifica-
tion in the signal. A disadvantage is that only the short-time
regime t � τR is governed by single-particle diffusion, while
an accurate theoretical description of the crossover to the

TABLE I. Strengths and weaknesses of the three methods for determining D.

Characteristics ACF RTD ITD

Signal processing ⊕ Convenient by FFT � Peak widths affected by Ic value ⊕ Negligible influence of Ic on interpeak distances
Tip influence � Possible � Possible ⊕ Less likely
Assumptions � Noninteracting particles ⊕ None ⊕ None in short-time regime

� Noninteracting particles in long-time regime
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long-time regime, governed by collective particle diffusion,
requires a careful consideration of the mutual exclusion of the
molecules (and possibly other interaction effects). The decay
of the correlation function within this regime can be small,
which then affects the accuracy of the D values resulting from
the fitting. Another drawback is that the determination of the
ACF includes time intervals where molecules are under the
tip, and possible interactions with the tip can thus have an
influence on the diffusion properties.

Both the RTD and ITD methods require some more effort in
preparation of the data, which is connected to the determination
of the threshold current Ic and identification of the peaks. Once
Ic is set, both the peak widths and interpeak distances can be
extracted simultaneously. Note that any method of determining
Ic is associated with some uncertainty. For the ITD, this is
no problem in practice because the interpeak intervals are
comparatively large. We have checked that, when taking the
interpeak distances as time intervals between peak maxima,
the results do not change significantly. For the RTD, the
uncertainty of Ic is a more severe problem. Because molecules
diffuse slowly into the detection area, the peaks in the original
tunneling current signal have rather flat flanks. As a result, the
peak widths change more sensitively with Ic than the interpeak
intervals.

An advantage of the RTD is that D can be determined solely
by analyzing the exponential tail for large residence times. One
should note, however, that it may be difficult to obtain a good
statistics in the tail regime, when the molecules are highly
mobile or small. In this case, the peaks are narrow and it could
be difficult to resolve them accurately. In the RTD method,
the interaction with the tip can influence the residence times
and in this case one would not determine the free diffusion
of the molecules on the substrate. By systematically changing
the bias voltage, a possible influence can be reduced to a
minimum.19 A strength of the RTD is that it is related to a
single-particle problem.

The ITD method has the advantage that tip-molecule
interactions can be expected to have, if at all, a marginal
influence on the interpeak times (irrespective of tip-substrate
distances or bias voltages). For small interpeak times, the ITD
is essentially also related to a single-particle problem. For large
interpeak times, an approximate value of D can be obtained
based on an estimate for processes, where one molecule in the
detection area under the tip is followed by another molecule.
The values obtained in this way turn out to be close to those
resulting from the other methods. Compared to the residence
times, the interpeak times are quite large and are thus less
prone to the experimental time resolution and the threshold
value Ic.

VI. CONCLUSIONS

In order to exploit the strength of each method, one can
combine the different methods if the corresponding data in
the relevant time regime have sufficient statistics. For a first
classification of the measurement, it is helpful to choose the
ACF method because it yields fast results without analyzing
the time series in detail. In a subsequent step, the peak
widths and interpeak intervals should be extracted with the
procedure described in Sec. II. We then recommend to use
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FIG. 8. Comparison of the diffusion coefficients obtained from
the three methods. Squares, dashed line: ACF method (Ea =
30 meV, D0 = 10−9.4 cm2/s). Circles, dotted line: RTD method
(Ea = 30 meV, D0 = 10−9.4 cm2/s). Diamonds, dashed-dotted line:
ITD method (Ea = 31 meV, D0 = 10−9.6 cm2/s).

the RTD method for determining D whenever the exponential
tail is sufficiently pronounced and the tip influence on the
diffusion can be neglected. Otherwise, the ITD method should
be preferred. In any case, one should always apply both the
RTD and the ITD methods to perform consistency checks
and to obtain most reliable results. Our analysis for CuPc
on Ag(100) shows that, despite that diffusion coefficients
extracted from the different methods may differ for one
or another sample, the activation energies determined from
the Arrhenius plots should have comparable values (see
Fig. 8).

An interesting question is whether the methods discussed
here can be taken over to other fields. Obviously, the ACF
method is well known in fluorescence correlation spectroscopy
(FCS),25 where intensity fluctuations reflect concentration
fluctuations, typically in some finite detection volume. Simi-
larly, analysis of density fluctuations has been applied as one
variant to determine diffusion coefficients in field emission
microscopy.2 In the situation discussed in Sec. II, only one
particle is in the detection area and, accordingly, information
on the tagged particle diffusion (tracer diffusion) is obtained.
In the hypothetical limit of very small particle concentrations
in FCS, where the mean interparticle distance becomes larger
than the linear size of the detection volume, one should
essentially recover the behavior discussed in Sec. II (with
R then playing the role of the detection length). In common
applications of this method, one is, however, not able to extract
the tagged particle information and this makes a difference to
the ACF method discussed in Sec. II. This also prevents the
use of the RTD and ITD in the analysis of typical fluorescence
signals. These methods can yet become useful in light of
the ongoing development of sophisticated techniques to
measure single-molecule properties.26

We provided formulas for different means of analyzing
fluctuations in the signal of a locally fixed probe on a surface,
where the fluctuations are caused by diffusing particles. By
exploiting the fact that the molecule extension enters as a
scale bar into the equations, a quantitative determination of the
diffusion constant becomes possible. So far, we have neglected
in the treatment rotational degrees of freedom and anisotropies
induced by the substrate. In fact, it has been shown that
rotational dynamics is possible for the particular molecule
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CuPc considered here,27,28 as well as for other organic
molecules.29,30 These effects are expected to have a significant
influence on the determination of the diffusion coefficient
in case of rectangular or even more complicated molecular
shapes. A combined description of the stochastic rotational
and translational dynamics can be developed in an extended
theoretical treatment and will be presented elsewhere.

As mentioned above, we also neglected the interaction of
the STM tip with the diffusing molecule. This interaction is
influenced by the experimental setup (tip shape, tip-substrate
distance, etc.) and it is specific for the tip and molecule
material. One objective could be to minimize the tip influence
experimentally. On the other hand, it could be interesting to
study how the interaction potential affects the diffusion of the
molecule. This potential has so far not been included in the
analysis, but it should be possible and bears an interesting
route to obtain information on the tip-molecule interaction.
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APPENDIX: DIFFUSION PROPAGATORS
FOR RTD AND ITD

The results given in Eqs. (5) and (9) for p(r,t) have been
derived earlier in the literature, in particular Eq. (9) by using the
Heaviside method.31 We give a straightforward derivation here,
using separation of variables and eigenfunction expansions.

Let us first consider the equation for diffusion of a particle
in a circular stripe a < r < c (a here not equal to the lattice
constant used in the main text) with absorbing boundaries and
initial distribution

p0(r) = 1

2πr
δ(r − b), a < b < c. (A1)

Due to the radial symmetry p(r,t) = ρ(r,t)/2π , where ρ(r,t)
satisfies the radial diffusion equation

∂ρ(r,t)

∂t
= D

(
∂2

∂r2
+ 1

r

∂

∂r

)
ρ(r,t) (A2)

with ρ(a,t) = ρ(c,t) = 0 and ρ(r,0) = δ(r − b)/r .
Making the product ansatz ρ(r,t) = ρ(r,0)g(t), Eq. (A2)

separates in the variables r and t . One obtains g(t) = e−λ2Dt ,
where the allowed values for λ2 are the eigenvalues of the
radial Laplace operator in the circular stripe(

∂2

∂r2
+ 1

r

∂

∂r

)
�n(r) = −λ2

n�n(r),

(A3)
�n(a) = �n(c) = 0.

Because the Laplacian is negative definite, λ2
n > 0. The

eigenfunctions �n are given by linear combinations of the
zeroth-order Bessel functions J0(.) and Y0(.) of first and second
kind �n(r) = AnJ0(λnr) + BnY0(λnr) (where restriction to
λn > 0 gives linear independent eigenfunctions). The Dirich-
let boundary conditions yield AnJ0(λna) = −BnY0(λna) [or
AnJ0(λnc) = −BnY0(λnc)], and

J0(λna)Y0(λnc) − J0(λnc)Y0(λna) = 0 (A4)

as determining the equation for the λn, n = 1,2, . . . (0 < λ1 <

λ2 < · · · ). Introducing the cross product

W (x,y) = J0(x)Y0(y) − J0(y)Y0(x), (A5)

the solution becomes

ρ(r,t) =
∞∑

n=1

CnW0(λnr,λna)e−λ2
nDt , (A6)

where W0(λna,λnc) = 0. Utilizing the orthogonality of the
eigenfunctions∫ c

a

dr r W0(λmr,λma)W0(λnr,λna)

= δmn

∫ c

a

dr r W 2
0 (λnr,λna), (A7)

the expansion coefficients Cn follow from the initial condition
Eq. (A1):

Cn =
∫ c

a
dr r W0(λnr,λn,a)ρ(r,0)∫ c

a
dr r W 2

0 (λnr,λna)

= W0(λnb,λna)∫ c

a
dr r W 2

0 (λnr,λna)
. (A8)

The result for p(r,t) thus is

p(r,t) =
∞∑

n=1

W0(λnb,λna)W0(λnr,λna)

2π
∫ c

a
dr r W 2

0 (λnr,λna)
e−λ2

nDt . (A9)

The diffusion propagator in Eq. (9) relevant for the ITD
corresponds to the limit c → ∞, where the spectrum of
eigenvalues determined by Eq. (A4) becomes continuous.
Analogous to the change of a Fourier series to a Fourier
integral, we are led to consider the Weber transform32 of a
function f = f (r):

F (λ) = 1

a2

∫ ∞

a

dr r W0(λr,λa)f (r), (A10)

with back-transformation

f (r) = a2
∫ ∞

0
dλ λ

W0(λr,λa)

J 2
0 (λa) + Y 2

0 (λa)
F (λ). (A11)

Accordingly, Eq. (A6) becomes

ρ(r,t) =
∫ ∞

0
dλ C(λ)W0(λr,λa)e−λ2Dt , (A12)

where

C(λ) = λ

J 2
0 (λa) + Y 2

0 (λa)

∫ ∞

a

dr rW0(λr,λa)ρ(r,0)

= λW0(λb,λa)

J 2
0 (λa) + Y 2

0 (λa)
. (A13)

This yields

p(r,t) =
∫ ∞

0

dλ

2π
λ

W0(λr,λa)W0(λb,λa)

J 2
0 (λa) + Y 2

0 (λa)
e−λ2Dt . (A14)

Equation (9) follows by setting a = R,b = (1 + ε)R, and λ =
α/R.

For the diffusion propagator in Eq. (5) relevant for the RTD,
only one boundary condition ρ(c,t) = 0 has to be taken into
account. In this case, the Bessel functions of second kind
cease to apply because their logarithmic singularity at the
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origin eliminates them from the space of functions, where
the radial Laplace operator is Hermitian. Notice that the
logarithmic singularity would be no problem with respect
of the integrability of p(r,t). The eigenfunctions thus are
given by �n(r) = AnJ0(λnr), where the λn are determined
by J0(λnc) = 0. Equation (A6) becomes

ρ(r,t) =
∞∑

n=1

AnJ0(λnr)e−λ2
nDt , (A15)

and the An are again determined by the initial condition,
corresponding to an expansion of ρ(r,0) into a Fourier-Bessel

series

An =
∫ c

0 dr r J0(λnr)ρ(r,0)∫ c

0 dr r J 2
0 (λnr)

= 2J0(λnb)

c2J 2
1 (λnc)

. (A16)

This yields

p(r,t) = 1

πc2

∞∑
n=1

J0(λnr)J0(λnb)

J 2
1 (λnc)

e−λ2
nDt . (A17)

Equation (5) follows by setting c = R, b = (1 − ε)R, and
λn = αn/R.
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