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Finite temperature inelastic mean free path and quasiparticle lifetime in graphene
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We adopt the GW and random phase approximations to study finite temperature effects on the inelastic
mean free path and quasiparticle lifetime by directly calculating the imaginary part of the finite temperature
self-energy induced by electron-electron interaction in extrinsic and intrinsic graphene. In particular, we provide
the density-dependent leading order temperature correction to the inelastic scattering rate for both single-layer
and double-layer graphene systems. We find that the inelastic mean free path is strongly influenced by finite-
temperature effects. We present the similarity and the difference between graphene with linear chiral band
dispersion and conventional two-dimensional electron systems with parabolic band dispersion. We also compare
the calculated finite temperature inelastic scattering length with the elastic scattering length due to Coulomb
disorder and comment on the prospects for quantum interference effects showing up in low-density graphene
transport. We also carry out inelastic scattering calculation for electron-phonon interaction, which by itself gives
rather long carrier mean free paths and lifetimes since the deformation potential coupling is weak in graphene,
and therefore electron-phonon interaction contributes significantly to the inelastic scattering only at relatively
high temperatures.
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I. INTRODUCTION

Ever since the pioneering work by Novoselov and Geim,1

graphene has attracted attention because of its potential appli-
cation in future nanotechnology. Its chiral 2D linear dispersion
leads to novel properties, distinguishing it from conventional
parabolic band semiconductors. Electron-electron (e-e) inter-
action in graphene is of great interest, both experimentally2–5

and theoretically,6–11 because it plays an important role in
determining the electronic properties of graphene. The reduced
dimensionality dramatically enhances the e-e interaction
effects,12 while chirality and linear dispersion have subtle
qualitative and quantitative effects distinguishing graphene
from the usual nonchiral parabolic semiconductor-based 2D
systems.

Experimentally, the inelastic mean free path of graphene
due to e-e interaction, denoted as l throughout this paper, is
an essential parameter relevant for possible ultrafast device
applications because this length defines the distance over
which the carriers move without any energy loss.13 In addition,
several experimental groups have investigated the temperature
and gate-voltage dependencies of phase coherence length in
graphene,14–16 which is directly determined by l, although
may not always be identical to it. Thus l plays an important
role in determining the quantum interference induced local-
ization phenomenon. The electro-electron interaction induced
inelastic scattering is a dominant factor in determining the
weak localization effects at low temperatures14 since the phase
coherence length mainly originates from Coulomb interaction
among electrons. In particular, the inelastic mean free path
or more specifically whether it is longer or shorter than the
elastic transport mean free path is an important ingredient
in understanding the origin of the recently observed metal-
insulator transition in high-purity graphene devices.17–19

Theoretically, the inelastic quasiparticle lifetime of extrin-
sic or doped graphene at zero temperature has been considered
in the literature.20,21 (In intrinsic undoped graphene, the inelas-

tic quasiparticle lifetime due to e-e interaction vanishes at the
Dirac point, indicating the Dirac point to be a non-Fermi-liquid
unstable point,6 but this is not a problem at any finite carrier
density, which is the case we primarily study in this paper.)
In doped extrinsic graphene, it has been found that the chiral
linear dispersion of graphene results in qualitative differences
in the energy dependence of inelastic quasiparticle scattering
rates compared with conventional parabolic two-dimensional
electron systems (2DES). Recently, Schütt et al. have analyzed
the inelastic scattering rate induced by Coulomb interaction
for intrinsic, i.e., undoped graphene.9 They have shown that
finite temperature strongly affects the inelastic quasiparticle
lifetime at the Dirac point. The inelastic scattering rate corre-
sponds to the so-called on-shell imaginary part of self-energy
Im�R(k,ξk), k being the momentum and ξk the quasiparticle
energy measured from the chemical potential μ. So far, neither
the inelastic mean free path nor the imaginary part of the
self-energy of extrinsic graphene at finite temperature has
been explicitly calculated. In addition, the effect of finite
temperature on the off-shell imaginary part of the self-energy
of intrinsic graphene has not yet been studied.

In this paper, we theoretically study the inelastic mean
free path l and the imaginary part of the retarded self-energy
Im�R(k,ω) in graphene within the leading order many-body
perturbative GW approximation. The GW approximation
involves the leading-order theory in the dynamically screened
Coulomb interaction, which includes all the ring diagrams
in the electron self-energy. We generalize the previous GW

work21–23 in the literature (carried out at T = 0) to finite
temperatures, for both extrinsic and intrinsic graphene. We
find that the finite temperature results for l and Im�R(k,ω) are
very different from the zero-temperature ones due to a dramatic
change in the dynamic dielectric function with increasing
temperature. We also provide an analytical expression for the
on-shell imaginary part of the self-energy for a double-layer
graphene system, which is relevant for a recent experiment.17
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We also calculate the imaginary part of the electron self-energy
due to electron-phonon (e-p) interaction in graphene through
the deformation potential coupling, and provide results for
the corresponding inelastic mean free path as a function of
temperature. In general, phonon effects are rather small in
graphene because the deformation potential coupling is very
weak in graphene. Thus, except at very high temperatures,
phonon effects are negligible in the determination of the
inelastic mean free path and quasiparticle lifetime.

The rest of this paper is organized as follows. In Sec. II,
we introduce the theoretical formalism for treating inelastic
e-e scattering at finite temperatures in both monolayer and
double-layer graphene systems. We also obtain analytical
expressions for the imaginary part of the retarded self-energy
in the low-energy and low-temperature limit. In Sec. III,
we provide numerical calculations of the imaginary part of
the self-energy (which is the inverse of the quasiparticle
lifetime) and the associated inelastic mean free path as a
function of carrier energy and temperature. We also compare
the inelastic mean free path with the disorder induced elastic
mean free path. In Sec. IV, we provide the e-p interaction
results separately, giving both the basic theory briefly and the
numerical results. In Sec. V, we discuss and summarize the
main results of this paper.

II. THEORETICAL FORMALISM

In this section, we provide the theoretical formalism for
evaluating the finite temperature imaginary part of the retarded
self-energy due to e-e interaction in graphene. We also obtain
the asymptotic behavior of the imaginary part of the self-
energy in the low-energy and low-temperature limit.

A. Imaginary part of self-energy for extrinsic doped graphene

The imaginary part of the retarded self-energy of monolayer
graphene within GW approximation can be expressed as6,13

Im�R
s (k,ω) = −1

2

∑
q,s ′=±

Vq[nB(ξk+q,s ′ − ω) + nF (ξk+q,s ′ )]

× (1 + ss ′ cos θ )Im

[
1

ε(q,ξk+q,s ′ − ω)

]
, (1)

where functions nF and nB denote the Fermi and Bose
distribution functions, respectively. Vq = 2πe2/(κq) is the
Coulomb interaction in momentum space with average back-
ground dielectric constant κ . s,s ′ = ±1 are band indices.
ξk+q,s = sεk+q − μ (εk = h̄vF |k| with graphene Fermi veloc-
ity vF = 106 m s−1) is the carrier energy relative to the finite
temperature, noninteracting chemical potential μ, determined
by the conservation of the total electron density. ε(q,ω) = 1 +
Vq
(q,ω) is the finite temperature dynamic dielectric function
within random-phase approximation (RPA),24–26 and 
(q,ω)
is the irreducible polarizability. Note that both single-particle
excitations [Im(ε) �= 0] and plasmon excitations [Re(ε) = 0
and |Im(ε)| = 0+] contribute to Im�R

s (k,ω). We use h̄ = 1
throughout.

The inverse quasiparticle lifetime or the quasiparticle
scattering rate 1/τ = �s(k) is directly related to the imaginary

part of the on-shell self-energy, i.e.,

1

τ
= �s(k) = 2Im�R

s (k,ξk,s). (2)

The inelastic mean free path l due to e-e interaction is then
given by

l = vF τ, (3)

where vF is the noninteracting Fermi velocity.21 The cen-
tral quantity in our calculation is the imaginary part of
the self-energy, which determines the quasiparticle lifetime.
The inelastic length is a derived quantity arising from the
quasiparticle lifetime, not calculated directly by the theory. For
consistency in staying within the leading order in dynamically
screened Coulomb interaction,22,23 the velocity should not
have any interaction dependence and, thus, should be the
bare Fermi velocity. Multiplying the quasiparticle lifetime
by the renormalized velocity will mix different orders in the
perturbation theory.21,27,28

1. Zero-temperature analytical results T = 0

We first give the analytical formula for Im�R
+(k,ξk) at zero

temperature and for εF � ξk . This has already been given in
Ref. 6, and we just provide the results below for completeness
and comparison.

The quasiparticle scattering rate can be obtained through
the imaginary part of the self-energy within the on-shell
approximation ω = ξk,s :

Im�R
+(k,ξk) = 1

2

∑
s ′=±

∑
q

Vq[ϑ(εk − s ′εk+q) − ϑ(−ξk+q,s ′ )]

× (1 + s ′ cos θ )Im

[
1

ε(q,s ′εk+q − εk + i0+)

]
,

(4)

where ϑ(x) is the Heaviside unit step function.
From Eq. (4), it is straightforward to see that the interband

scattering from the valence band s ′ = −1 vanishes at zero
temperature. In addition, the plasmon emission process also
vanishes in calculating the on-shell imaginary part of the self-
energy because the plasmon frequency requires ωpl(q) > h̄vF q

for extrinsic graphene at zero temperature24 but |εk+q − εk| <

h̄vF q in the dynamic dielectric function. Thus Eq. (4) reduces
to

Im�R
+(k,ξk) = e2

4πκ

∫ 2π

0
dθ (1 + cos θ )

∫ k

kF

dk′k′

× Im[1/ε(|k − k′|,εk′ − εk + i0+)]√
k2 + k′2 − 2kk′ cos θ

. (5)

In the long-wavelength x = q/2kF � 1 limit, we can
obtain the analytical expression for Eq. (4). In this limit, the
dominant contribution to Im(1/ε) comes from low energies
u = ω/vF q � 1, where the irreducible polarizability in the
leading order is given by24


(q,ω) � D0

(
1 + i

ω

vF q

)
, (6)
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where D0 = 2kF

πh̄vF
is the density of states at Fermi energy. Then,

the asymptotic behavior of the imaginary part of the dynamic
dielectric function can be written as

Im
1

ε(q,εk+q − εk + i0+)
� −k′ − k

qTF
, (7)

where k′ = |k + q| and qTF = 4kF e2

h̄vF κ
denotes the Thomas-

Fermi screening wave vector in graphene. To obtain Eq. (7),
we have used the fact that the integrand in Eq. (5) has
sharp peaks near forward scattering momentum transfer, i.e.,
q = 0. The asymptotic expansion of the imaginary part of the
self-energy in Eq. (5) can then be obtained by integrating out
the angular part and expanding in the small momentum transfer
k − k′ � kF :

Im�R
k+ � − ξ 2

k

8πεF

[
ln

(
ξk

8εF

)
+ 1

2

]
. (8)

The leading order energy correction to the on-shell imaginary
part of the self-energy is ξ 2

k ln ξk , similar to that obtained for
conventional two-dimensional electron systems (2DES).29 The
subleading term in Eq. (8) has opposite sign to that in 2DES
because of the chiral nature of graphene and the absence of
interband contribution from valence band (s ′ = −1) at zero
temperature.

2. Finite temperature analytical results T > 0

To maintain analytic tractability for Im�R
k+ at finite

temperature, we consider only low temperatures and small
ξk , i.e., εF � kBT � ξk . In this limit, both the interband
scattering and the temperature dependence of Im(1/ε), being
exponentially suppressed at low temperatures, can be ignored.
Applying the same technique as in the T = 0 case, the finite
temperature on-shell imaginary part of the self-energy can be
approximated as

Im�R
k+ = e2

4πκ

∫ 2π

0
dθ (1 + cos θ )

∫ ∞

0
dk′k′[nB(εk′ − εk)

+ nF (εk)]
Im[1/ε(|k − k′|,εk′ − εk + i0+)]√

k2 + k′2 − 2kk′ cos θ
. (9)

The imaginary part of the inverse dielectric function can
still be approximated as in Eq. (7). After integrating out
the angular part and expanding in the limit ξk � εF , the
momentum integration is very straightforward, and we obtain
an asymptotic formula for Eq. (9) in the limit εF � kBT � ξk:

Im�R
k+ � −π (kBT )2

8εF

[
ln

(
kBT

8εF

)
+ 1.08387

]
. (10)

Thus the leading order temperature correction to the on-shell
Im�R

k+ goes as t2 ln t with t = T/TF (TF being the Fermi
temperature).

B. Imaginary part of self-energy for double-layer graphene

In this section, we provide analytical results for Im�R
k+

of a double-layer graphene system consisting of “studied” and
“control” layers of graphene separated by an insulating layer,17

which has recently been studied experimentally. These two
layers of graphene are electronically isolated but the screening
effect of the control layer must be considered. We will only

focus on the doped double-layer case, where Fermi levels of
both layers are above the Dirac point.

The imaginary part of the self-energy of the “studied” layer
for a double-layer graphene, in the presence of screening by
carriers both in the control layer and the studied layer itself,
can be written as30,31

Im�R
s (k,ω) = 1

2

∑
s ′=±,q

[nB(ξk+q,s ′ − ω) + nF (ξk+q,s ′)]V (q)

×(1 + ss ′ cos θ )Im

[
1

εscr(q,ξk+q,s ′ − ω)

]
.

(11)

Here, εscr(q,ξk+q,s ′ − ω) is the RPA dynamic dielectric
function for the double-layer system, which incorporates
screening effects from a nearby “control” graphene layer in
addition to the usual screening by the studied layer electrons
themselves:30–32

1

εscr(q,ω)

= 1 + V (q)
22(1 − e−2qd )

1 + V (q)(
11 + 
22) + 
11
22V (q)2(1 − e−2qd )
,

(12)

where 
11 and 
22 are polarization operators of the studied
and the control layer, respectively. d is the separation between
the two layers. Note that Eq. (12) reduces to the dynamic
dielectric function of monolayer graphene in the large d limit
as it should because the two layers become decoupled in the
large d limit.

1. Zero-temperature analytical results T = 0

In this section, we derive the analytical formula for
the imaginary part of the double-layer self-energy at zero
temperature in the limit εF � ξk . This is very close to what
we derived in the previous section for monolayer graphene but
with different prefactors coming from the additional screening
effects of the second nearby layer.

At zero temperature, the interband scattering from the
valence band s ′ = −1 vanishes in Eq. (11), and the on-shell
expression reduces to

Im�R
k+ = e2

4πκ

∫ 2π

0
dθ (1 + cos θ )

∫ k

kF

dk′k′

× Im[1/εscr(|k − k′|,εk′ − εk + i0+)]√
k2 + k′2 − 2kk′ cos θ

. (13)

In the long-wavelength x = q/2kF (1,2) � 1 and low-energy
u = ω/vF q � 1 limit, it is possible to perform an analytical
evaluation of Eq. (13). In this case, the irreducible polarizabil-
ity of graphene is given in the leading order by24


11(q,ω) � D011

(
1 + i

ω

vF q

)
, (14)


22(q,ω) � D022

(
1 + i

ω

vF q

)
, (15)

where D011 = 2kF1
πh̄vF

and D022 = 2kF2
πh̄vF

correspond to the density
of states at Fermi energy of the studied and the control layer,
respectively.
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Then, the imaginary part of the screened dielectric function
is approximated as

Im
1

εscr(q,εk+q − εk + i0+)

� −(k′ − k)

×qT F1 + qT F2 + 4qT F1qT F2d + 4qT F1(qT F2d)2

(qT F1 + qT F2 + 2qT F1qT F2d)2
,

(16)

where qT F1 = 4kF1e
2

h̄vF κ
and qT F2 = 4kF2e

2

h̄vF κ
are the Thomas-Fermi

wave vectors of the studied and the control graphene layer.
In deriving Eq. (16), we have used the long-wavelength limit
|k − k′|/2kF � 1, which also indicates that |k − k′|d � 1 for
d ∼ O(1 nm) and (k′−k)

|k−k′| � 1. From Eq. (16), we see that the

difference in the analytical expressions for Im�R
+ between

monolayer and double-layer graphene comes from the second
line of Eq. (16).

Using the approximation (16) in Eq. (13), we obtain the
final analytical formula:

Im�R
k+ � − ξ 2

k

8πεF1

[
ln

(
ξk

8εF1

)
+ 1

2

]

× 1 + √
n2/

√
n1 + 16rsd

√
πn2 + 64r2

s d2πn2

(1 + √
n2/

√
n1 + 8rsd

√
πn2)2

,

(17)

where n1, n2 are the carrier densities of the studied and the
control layers, respectively, rs = e2/(h̄vF κ) is the graphene
fine structure constant defining the e-e interaction strength,
and εF1 is the Fermi energy of the studied layer. It is clear that
Eq. (17), as expected, reduces to the monolayer graphene result
as given in Eq. (8) for two extremes: n2 = 0 and d → ∞.

2. Finite temperature analytical results T > 0

Next, we provide the analytical expression for the imaginary
part of the self-energy of a double-layer graphene in the low-T
and small-ξ limit, i.e., εF (1,2) � kBT � ξk as before.

In the low-temperature limit, we neglect both the interband
scattering and the temperature-dependent imaginary part of
the dielectric function, which are exponentially suppressed.
Then, the asymptotic expansion of Eq. (11) is given by

Im�R
k+ � −π (kBT )2

8εF1

[
ln

(
kBT

8εF1

)
+ 1.08387

]

× 1 + √
n2/

√
n1 + 16rsd

√
πn2 + 64r2

s d2πn2

(1 + √
n2/

√
n1 + 8rsd

√
πn2)2

.

(18)

C. Imaginary part of self-energy for intrinsic graphene

The imaginary part of the self-energy for undoped or
intrinsic monolayer graphene can be obtained by setting
μ ≡ 0 in Eq. (1), in which case the chemical potential is
always independent of temperature. At zero temperature, the
analytical form of the irreducible polarizability for intrinsic

graphene24 is


 = q2

4

⎡
⎣ θ (vF q − ω)√(

v2
F q2 − ω2

) + i
θ (ω − vF q)√(
ω2 − v2

F q2
)
⎤
⎦ . (19)

Then, the imaginary part of the self-energy within the on-
shell approximation ε = εk at zero temperature reduces to the
product of two ϑ functions:6

Im�R
+(k,εk) ∼ �qϑ(|εk+q − εk| − εq)ϑ(εk − εk+q).

(20)

The first ϑ function is due to the imaginary part of the dynamic
dielectric function, while the second one comes from the sum
of the Fermi and Bose distribution functions at T = 0. It is
easy to see from the above equation that Im�R

+(k,εk) vanishes
because of phase space restrictions imposed by the ϑ function.
On the other hand, we can evaluate the zero temperature
imaginary part of the self-energy at zero momentum k = 0
and finite energy ω by using the polarizability given in
Eq. (19).

Then the imaginary part of the self-energy at k ≡ 0 is given
by

Im�R
±(k = 0,ω) = ωf (rs) (21)

with

f (x) = 2

π2x

[
π (1 − x) + 2 − (πx/2)2√

(πx)2 − 4

× ln
πx −

√
(πx)2 − 4

πx +
√

(πx)2 − 4

]
, (22)

which was already obtained in Ref. 6. Note that for the general
case (k,ω), it is almost impossible to get an analytical formula
for the imaginary part of the self-energy due to the complicated
angular integration. However, we know that Im�R

+(k,ω) ≡ 0
for ω < h̄vF k at zero temperature because of the combination
of the two ϑ functions mentioned above.

Next, we mention that the analytical formula for the finite
temperature imaginary part of the self-energy for the intrinsic
undoped graphene is quite tricky, necessitating a very careful
analysis of the finite temperature dynamic dielectric function.
Since undoped graphene is not the focus of our current work,
we refer the reader to Ref. 9, where the on-shell imaginary
part of the self-energy in intrinsic graphene has been recently
studied. Note that the finite temperature imaginary part of
the on-shell self-energy is proportional to the temperature
T , as can be shown by dimensional counting and can also
be seen from the numerical results shown in Sec. III. In
addition, we find that the leading order temperature correction
to the imaginary part of the self-energy for two cases: k = 0
and kBT � |ω − εk|, are exponentially suppressed. Since the
self-energy for the undoped case has already been studied
analytically in some details in Ref. 9, we do not provide any
further discussion of this issue in this paper. We also add that
from the experimental perspective, pure intrinsic graphene
is uninteresting since it is unstable to any (for example,
disorder-induced) density fluctuations, which would locally
dope the Dirac point, and thus, all experimentally studied
graphene samples are likely to be extrinsic doped graphene.
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III. NUMERICAL RESULTS

In this section, we provide our numerical results for both in-
elastic mean free path and the imaginary part of the self-energy
(which is essentially the inelastic scattering rate or the inverse
of the quasiparticle lifetime) for both extrinsic and intrinsic
graphene. If not specified, the effective background dielectric
constant used in our calculation is κ = 5, i.e., rs = 0.44,
corresponding to monolayer graphene sandwiched between
two boron-nitride layers.17 We compare our numerical results
with the asymptotic analytical results derived in Sec. II. We
also calculate the ratio between the inelastic mean free path
and the elastic mean free path induced by long-range Coulomb
disorder as a function of temperature in order to assess the
importance of possible quantum interference effects in highly
resistive graphene samples at low temperatures.

A. Inelastic mean free path and imaginary part of self-energy
for extrinsic graphene

In Fig. 1, we compare our calculated analytical results
of the on-shell imaginary part of the self-energy with the
numerical results, which show good agreement with each
other. The ratio λ is Im�R

+(kF ,ξkF
), calculated numerically

at finite temperature, divided by its value given by Eq. (10),
while the ratio σ is Im�R

+(k,ξk), calculated numerically at
zero temperature, divided by its value given by Eq. (8). Both
ratios λ and σ are closer to unity for smaller background
dielectric constant κ . This is because the approximation used
in Eq. (7) is more accurate for a larger value of qTF. In
Fig. 1(a), the nonmonotonic behavior in λ for κ = 1 is due to its
denominator, i.e., Eq. (10), which is a nonmonotonic function
of T/TF . For κ = 5, the nonmonotonic behavior in λ will show
up at higher T/TF . Similarly, the nonmonotonic behavior of
σ will show up at larger values of ξk/EF . Note that both ratios
λ and σ are independent of Fermi-energy EF for a fixed fine
structure constant rs within the GW approximation. We want
to mention that both ratios in graphene have opposite trends
compared with 2DES in the sense that in the latter system
λ and σ are both larger than unity as they approach unity
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σ
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(a) (b)
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1

σ

FIG. 1. (Color online) (a) Calculated ratio λ, which is the
numerical result of Im�R

+(kF ,ξkF
) divided by the analytical asymp-

totic formula − π (kBT )2

8εF
[ln( kBT

8εF
) + 1.08387] [given in Eq. (10)], as a

function of T/TF . The inset presents λ in the low-temperature regime.
(b) Calculated ratio σ , the numerical result of Im�R

+(k,ξk) divided

by − ξ2
k

8πεF
[ln( ξk

8εF
) + 1

2 ] [given in Eq. (8)] as a function of ξk/EF at
T = 0. The inset presents σ in the low-energy regime. The solid and
dashed lines correspond to κ = 5 (rs = 0.44) and κ = 1 (rs = 2.2),
respectively.
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)
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FIG. 2. (Color online) Calculated inelastic scattering length
l and the associated on-shell imaginary part of the self-energy
Im�R

+(k,ξk)/EF for extrinsic graphene (εF > 0) with dielectric
constant κ = 5 (rs = 0.44). (a) l as a function of temperature T . The
solid, dashed, and dot-dashed lines are for carrier density n = 1010,
1011, and 1012 cm−2, respectively. The upper three lines are for
ξk = ξkF

, while the lower three lines are for ξk = 0.5εF . (b) l as a
function of ξk/EF for different temperatures. The solid and dashed
lines are for carrier density n = 1011 and 1010 cm−2, respectively.
For the same carrier density, the lines from top to bottom correspond
to T = 0, 50, and 100 K. (c) and (d) Associated Im�R

+(k,ξk)/EF

corresponding to (a) and (b), respectively.

asymptotically,22,23 whereas in graphene the ratios always lie
below unity. We mention that it is quite interesting to note
that the asymptotic expressions, although they are derived for
energy or temperature being much smaller than EF or TF ,
appear to be valid quantitatively within a factor of two well
outside the asymptotic regime, i.e., even when T ∼ TF .

Figure 2 shows our numerical results for the energy and
temperature dependence of the inelastic mean free path l

and the associated on-shell imaginary part of the self-energy.
In Fig. 2(a), we present the inelastic mean free path l as
a function of temperature for two different carrier energy
values. We can see that l is a monotonically decreasing
function of temperature. In particular, the injected electron
can only decay via intraband processes at zero temperature
as discussed in Sec. II A1. In addition, the decay via plasmon
emission is inhibited at zero temperature due to phase-space
restrictions.21 On the other hand, at finite temperatures, the
injected electron can decay via both interband and intraband
excitations and the region of single-particle excitations also
increases due to thermal smearing effects. Figure 2(b) shows
the energy dependence of l for different temperatures and
carrier densities. At low temperatures, the mean free path of
hot electrons (εk > EF ) is shorter than that of the quasiparticle
in the vicinity of the Fermi energy. However, very interestingly,
the energy dependence of l becomes nonmonotonic at higher
temperatures [see the lowest dashed line in Fig. 2(b)]. This
arises from the competition between damping through valence
and conduction bands, which have opposite trends as a function
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FIG. 3. (Color online) Calculated inelastic scattering length
l and the associated on-shell imaginary part of the self-energy
Im�R

+(k,ξk)/EF for extrinsic graphene (εF > 0) with dielectric
constant κ = 1 (rs = 2.2). (a) l as a function of temperature T . The
solid, dashed, and dot-dashed lines are for carrier density n = 1010,
1011, and 1012 cm−2, respectively. The upper three lines are for
ξk = ξkF

, while the lower three lines are for ξk = 0.5εF . (b) l as a
function of ξk/EF for different temperatures. The solid and dashed
lines are for carrier density n = 1011 and 1010 cm−2, respectively.
For the same carrier density, the lines from top to bottom correspond
to T = 0, 50, and 100 K. (c) and (d) Associated Im�R

+(k,ξk)/EF

corresponding to (a) and (b), respectively.

of carrier energy. To be more specific, the scattering rate from
the valence band contribution (s ′ = −1) is a monotonically
decreasing function of ξk/EF , while the contribution from
the conduction band (s ′ = 1) is a monotonically increasing
function of ξk/EF . Figures 2(c) and 2(d) provide the on-shell
Im�R

+(k,ξk). We point out that Im�R
+(k,ξk)/EF for the two

carrier densities at zero temperature in Fig. 2(d) are essentially
the same because the rescaled Im�R

+(k/kF ,ξk/EF )/EF is
universal at T = 0. Notice that in our theoretical GW

formalism, we exclude multiparticle excitations, which have a
relatively small effect on l in graphene21 because of the small
values of rs implying weak e-e interaction strength.

For the purpose of comparison, in Fig. 3, we show results
of l and Im�+ for suspended graphene with the background
dielectric constant κ = 1 (rs = 2.2). From Figs. 2 and 3, we
can see that the results of the mean free path l for different
values of rs are qualitatively very similar. The inelastic
scattering length l is larger for smaller rs because of the
weaker e-e interaction. At low temperatures (T < 10 K), our
calculated quasiparticle mean free path for ξk = ξkF

is on
the order of 5 × 103–105 nm. However, the typical mean
free path measured in the experiment will saturate at low
temperatures and it is about a few micrometers at liquid-helium
temperature.15,16 This saturation is due to the sample size and
this issue has been discussed by Tikhonenko et al.15

To capture the effects of plasmons and interband single-
particle excitations, we have to consider the off-shell imaginary
part of the self-energy Im�R(k,ω) (ω �= ξk,s), which is also
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FIG. 4. (Color online) Calculated Im�R(k,ω) for extrinsic
graphene (the chemical potential μ > 0) with κ = 5. (a) and (b)
correspond to conduction band, while (c) and (d) correspond to
valence band. In (a), the solid, dashed and dot-dashed lines correspond
to ω/EF = 0.5, 1.0 and 2.0, respectively. (b) The solid, dashed, and
dot-dashed lines correspond to T/TF = 0, 0.2 and 0.4, respectively.
In (c) and (d), the solid and dashed lines correspond to k = 0 and
k = 1.5kF . (c) For the same momentum, the lines from bottom to top
correspond to ω/EF = 0.5, 1.0 and 2.0, respectively. (d) For the same
momentum, the lines from bottom to top correspond to T/TF = 0,
0.2, and 0.4, respectively. Note that Im�R

+(k = 0,ω) = Im�R
−(k =

0,ω).

needed to explain the experimental angle-resolved photoemis-
sion spectroscopy (ARPES) data.7,21,33 The numerical results
for Im�R(k,ω) are shown in Fig. 4. Unlike the calculation
for the on-shell imaginary part of the self-energy, we can see
that the off-shell imaginary part of the self-energy contains
two kinds of contributions from Eq. (4). The first comes
from the single-particle excitation occurring at Imε �= 0.
This can be further divided into intraband and interband
excitations because of the gaplessness of graphene. The second
contribution comes from plasmon excitations, where both
Imε and Re ε vanish. The plasmon resonance consists of a
δ function at zero temperature, of which the width will be
broadened as temperature increases. Figures 4(a) and 4(b)
present the rescaled conduction band Im�R

+(k,ω)/EF with
k = 1.5kF as a function of rescaled temperature T/TF and
energy ω/EF . We point out that Im�R

+(k/kF ,ω/EF )/EF is
universal, not depending on the position of the Fermi level
but only on the graphene fine structure constant rs . The
nonmonotonic temperature dependence of Im�R

+ for fixed
ω/EF as shown in Fig. 4(a) comes from the competition
among interband, intraband, and plasmon excitations. In the
zero-temperature limit, it has been shown in Ref. 21 that the
plasmon contribution dominates in the low-energy regime for
k/kF � 1, and it vanishes in the higher energy regime. As
the temperature goes up, the plasmon contribution is not a δ

function anymore and it gets broadened by Landau damping
[see Fig. 4(b)]. Also, the boundaries of both interband and
intraband excitations are thermally smeared. The above two
effects give rise to the appearance of a smaller bump in Im�R

+
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in the lower energy region at finite temperature as shown in
Fig. 4(b). Figures 4(c) and 4(d) show the imaginary part of
the self-energy for the valence band Im�R

−. Im�R
− is generally

an increasing function of temperature. In the k = 0 and T = 0
limit, only single-particle excitations contribute to Im�R

−(0,ω)
and there is no plasmon emission because it requires q < kF .
But the integrand in Eq. (1) has nonzero values only for
q > kF , being restricted by the sum of the Bose and Fermi
distribution functions, i.e., (ω + EF − εq)(EF − εq) < 0. In
particular, only intraband single-particle excitations contribute
for energy ω/EF � 1 and the interband single-particle excita-
tion contribution increases sharply around ω/EF ∼ 1. On the
other hand, for k = 0 but at nonzero temperature, Im�R(0,ω)
becomes much smoother compared with the zero temperature
case. In addition, Im�R(0,0) has a finite value increasing
with temperatures due to the thermally smeared boundaries of
single particle excitation continua. Note that Im�R

− = Im�R
+

for k = 0 as seen from Eq. (1), in which case the equation has
no band-index dependence.

B. Comparison between inelastic and elastic mean free paths in
extrinsic graphene

In this section, we compare the inelastic mean free path
l induced by e-e interaction with the elastic mean free
path le due to charged impurity in the environment. The
ratio ζ = l/ le � 1 is the necessary condition for quantum
interference effects to be operational in experiments since
interference necessarily requires the phase coherence of energy
eigenstates. A detailed discussion on this issue has been given
in Ref. 18, where, however, the inelastic mean free path was
not calculated. In Fig. 5, we show our calculated ratio ζ as
a function of temperature for different values of the potential
fluctuation (i.e., puddle) parameter s. This parameter is defined
as the standard deviation of the probability distribution of the
disorder potential at a given point in the graphene plane. It
can be tuned using screening by the second nearby graphene
layer.18 A detailed calculation for the elastic mean free path

0 50 100
T (K)

0.1

1.0

10.0

ζ

s = 1 meV
s = 5 meV
s = 15 meV

s = 25 meV

FIG. 5. (Color online) Calculated ratio ζ = l/ le, the inelastic
mean free path divided by the elastic mean free path, as a function of
temperature for carrier density n = 109 cm−2, κ = 5, and charged
impurity density 9 × 1010 cm−2. The solid, dotted, dashed, and
dot-dashed lines correspond to s = 1.0, 5.0, 15.0, and 25.0 meV,
respectively, indicating increasing effects of Coulomb disorder
induced inhomogeneous puddles. The horizontal line indicates where
(above the line) quantum interference could play a role.

le has been given in Ref. 34. Note that we do not take into
account e-p scattering in the calculation of the mean free
path here since the temperature (T < 100 K) is relatively low
and the inelastic mean free path can be even shorter if we
include electron-phonon scattering mechanism. We defer our
discussion of e-p interaction to Sec. IV of the paper.

C. Inelastic mean free path and imaginary part of self-energy
for intrinsic graphene

In this section, we show our numerical results for the
inelastic mean free path l and the imaginary part of the
self-energy for intrinsic graphene. The behavior of inelastic
e-e scattering of intrinsic graphene is quite different from that
of extrinsic graphene. Intrinsic graphene is a marginal Fermi
liquid.6 By contrast, extrinsic graphene is a well-defined and
relatively weak-coupling Fermi liquid since typically rs < 1
and is independent of the carrier density.

In order to compare with the results provided for extrinsic
graphene, we show the finite-T inelastic scattering mean free
path l for intrinsic graphene in Figs. 6(a) and 6(b) and the
corresponding imaginary part of the self-energy in Figs. 6(c)
and 6(d) using similar parameters as used for our extrinsic
graphene results. Similar to extrinsic graphene, the inelastic
mean free path of intrinsic graphene is a monotonically
decreasing function of temperature. However, the leading
order temperature dependence of Im�R

+(k,εk) for intrinsic
graphene is linear in T as shown in Fig. 6. At zero temperature,
Im�R

+(k,ξk) vanishes due to phase-space restrictions leading
to infinite l. On the other hand, finite temperature effects give
rise to a nonmonotonic energy-dependent l and Im�R

+(k,ξk).
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FIG. 6. (Color online) Calculated inelastic scattering length l and
the associated on-shell imaginary part of the self-energy Im�R

+(k,εk)
for intrinsic graphene (εF ≡ 0) with dielectric constant κ = 5. (a) l as
a function of temperature T for different energy εk. The solid, dotted,
dashed, and dot-dashed lines are for energy εk = 1, 5, 10, and 20 meV.
(b) l as a function of energy ω for different temperatures. The solid,
dashed, and dot-dashed lines are for temperature T = 10, 50, and
100 K. (c) and (d) Associated Im�R

+(k,εk) corresponding to (a) and
(b), respectively.
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FIG. 7. (Color online) Calculated imaginary part of the self-
energy Im�R(k,ω) for intrinsic graphene (the chemical potential
μ ≡ 0) with κ = 5. (a) and (b) Conduction band Im�R

+(k = 0,ω)
as a function of temperature T and energy ω, respectively. (c) and (d)
Conduction band Im�R

+(k,ω) with k = 10 meV/h̄vF as a function of
temperature T and energy ω, respectively. (e) and (f) Valence band
Im�R

−(k,ω) with k = 10 meV/h̄vF as a function of temperature T

and energy ω, respectively. The solid, dotted, dashed, and dot-dashed
lines in (a), (c), and (e) are for energy ω = 1, 5, 10, and 20 meV.
While the solid, dotted, dashed, and dot-dashed lines in (b), (d),
and (f) are for temperature T = 0, 10, 50, and 100 K. Note that
Im�R

+(k = 0,ω) = Im�R
−(k = 0,ω).

Im�R
+(k,εk) (or the quasiparticle scattering rate) first increases

linearly with εk and then decreases with εk. This nonmonotonic
energy-dependent feature of Im�R

+(k,ξk) has also been found
in Ref. 9, and can be explained by the peculiar property of
the dynamic dielectric function of intrinsic graphene at finite
temperatures.

The numerical results for the off-shell Im�R(k,ω) for
intrinsic graphene are shown in Fig. 7. Figure 7(a) presents
Im�R

+(0,ω) as a function of temperature T . Quite differ-
ent from extrinsic graphene, where the plasmon peaks are
broadened by Landau damping due to finite temperature
effects, intrinsic graphene has no plasmon excitations at zero
temperature as seen from Eq. (19). Note, however, that the
plasmon modes are thermally restored at finite temperatures in
intrinsic graphene. We find that there is a peak in Im�R(0,ω)
as a function of temperature, which arises from the appearance
of thermal plasmon modes. In particular, the position of
these peaks is approximately proportional to the energy ω

because the rescaled function Im�̃R(k̃,ω̃) is universal with

respect to the rescaling, �̃R = �R/(kBT ), k̃ = h̄vF k/(kBT )
and ω̃ = ω/(kBT ). Only the line of Im�R(0,ω) with ω =
1 meV in Fig. 7(a) shows a peak since the position of peaks
for higher energy lie outside of the temperature regime we
are interested in. Figure 7(b) shows the energy dependence
of Im�R

+(0,ω) for several values of temperature. At zero
temperature, Im�R

+(0,ω) is linearly increasing as a function
of ω indicated in Eq. (21). In the lower-energy regime,
Im�R

+(0,ω) shows a peak associated with the resonance of
plasmon excitations. Specifically, both the position and the
height of the peak are roughly proportional to temperature
T as mentioned above. The finite temperature Im�R

+(0,ω)
approaches the zero temperature Im�R

+(0,ω) as the energy
ω further increases. According to Fig. 7(c), the tempera-
ture dependence of off-shell conduction band Im�R

+(k,ω) is
exponentially suppressed, while the on-shell Im�R

+(k,ω) is
proportional to T at low temperatures. We plot the conduction
band Im�R

+(k,ω) as a function of energy in Fig. 7(d). One
interesting feature is that Im�R

+(k,ω) vanishes for ω < εk and
increases rapidly with ω for ω > εk at zero temperature. As
the temperature increases, two characteristic peaks show up in
Im�R

+(k,ω) similar to extrinsic graphene as shown in Fig. 4(b).
This arises from an interplay between plasmon enhancement
and thermally smeared single-particle continuum boundaries.
We have found that the positions of these peaks |ωpl − εk|
are proportional to the temperature T . We provide the valence
band Im�R

−(k,ω) as a function of temperature T and energy
ω in Figs. 7(e) and 7(f), respectively. The low-temperature
correction to Im�R

−(k,ω) is exponentially suppressed for
ω > 0 due to the constraint imposed by the Fermi and Bose
distribution functions in Eq. (1). Im�R

−(k,ω) increases rapidly
at higher temperatures, especially, for small energy ω. From
Fig. 7(f), we can see that Im�R

−(k,ω) increases slowly with
ω for ω > εk at low temperatures and Im�R

−(k,ω) shows
nonmonotonic dependence on ω at higher temperature. This
nonmonotonicity can be understood through the competition
between a decrease in valence band contribution (s ′ = −1)
and an increase in conduction band contribution (s ′ = 1) with
increasing energy ω.

IV. MEAN FREE PATH DUE TO ELECTRON-PHONON
INTERACTION

In this section, we present results for the mean free path lep

induced by e-p interaction. We analytically calculate its high-
(T � TBG) and low-temperature (T � TBG) limits, where TBG

is the Bloch-Grüneisen temperature, while in the intermediate
temperature regime we provide numerical results. In addition,
we consider the energy and carrier density dependence of lep

for different values of temperature. In this work, we consider
acoustic phonons only and neglect the optical phonons because
their energy in graphene is too high (∼2000 K) for them to
play any important role in the temperature range (T � 500 K)
of our interest.

A. Imaginary part of self-energy due to e-p interaction

The mean free path lep is directly related to the
on-shell imaginary part of the self-energy, i.e., lep =
vF /[2Im�

ep
+ (k,ξk)], as given in Sec. II. Thus we first present
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the theoretical formalism for calculating Im�
ep
s (k,ω). We

consider the e-p interaction through the deformation potential
coupling. In this case, Im�

ep
s (k,ω) is given by35

Im�ep
s (k,ω) = π

∑
s ′,ν

∫
d2q

(2π )2
|M|2 1 + ss ′ cos θ

2

× [
nF (ωq + νω) + nB(ωq)

]
δ(ω + νωq − ε′),

(23)

where |M|2 = D2h̄q

2ρmvl
is the e-p scattering matrix element, while

D, ρm, and vl are the deformation potential, the graphene
mass density, and the phonon velocity, respectively. s,s ′ =
±1 denote the band indices, ν = 1 (−1) corresponds to the
absorption (emission) of an acoustic phonon with frequency
ωq = vlq. ε′ = s ′h̄vF |k + q| − μ, and θ is the angle between
k and k + q.

B. The asymptotic behavior of Im�
ep
s (k,ξk)

We start with the asymptotic behavior for the energy and
temperature dependence of Im�

ep
s , calculated analytically

within the quasielastic scattering approximation,36–38 namely,
|k| ∼ |k + q|. This approximation is justified by the fact that
the phonon velocity is much smaller than the Fermi velocity
vF in graphene.

At zero temperature, nF becomes the Heaviside unit step
function, nB(ωq) ≡ 0, and the interband scattering vanishes.
Then, the integration in Eq. (23) can be carried out in the limit
ξk � EF as

Im�
ep
+ (k,ξk) � 1

8π

D2k2
F

ρmvlvF

(
vF

vl

)2 (
ξk

EF

)2

, (24)

which shows that Im�
ep
+ (k,ξk) increases quadratically with

increasing quasiparticle energy, in contrast to Im�+(k,ξk) ∝
ξ 2
k ln ξk induced by e-e interaction. Equation (24) implies that

lep ∝ ξ−2
k at T = 0.

Next, we consider the temperature dependence of
Im�

ep
+ (k,ξk). In the low-temperature Bloch-Grüneisen limit,

T � TBG, with TBG = 2kF vl/kB , where the phonon system
is degenerate, we get the following asymptotic form for the
on-shell Im�

ep
+ (k,ω):

Im�
ep
+ (kF ,ξkF

) � π

2

D2k2
F

ρmvlvF

(
T

TBG

)2

. (25)

In the Bloch-Grüneisen regime, the temperature dependence
of lep is a power law with lep ∝ T −2. We also find that lep does
not depend on the carrier density in the low-temperature limit.

On the other hand, in the high-temperature regime TF �
T � TBG, where the phonon follows the nondegenerate
equipartition distribution, the asymptotic formula for the
on-shell Im�

ep
+ (k,ω) is given by

Im�
ep
+ (kF ,ξkF

) � 1

2

D2k2
F

ρmvlvF

T

TBG
. (26)

Equation (26) shows that lep decreases inverse linearly with
increasing temperature and is proportional to n−1/2. We note
that TBG ∼ kF ∼ √

n has a carrier density dependence and
increases with increased doping in the system.
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FIG. 8. (Color online) Calculated mean free path lep induced by
e-p interaction. We use37 D = 25 eV, vl = 2.6 × 106 cm/s, and ρm =
7.6 × 10−8 g/cm2. (a) lep for ξk = ξkF

as a function of temperature
T for different carrier densities. (b) lep as a function of energy ξk/EF

for different carrier densities and temperatures. (c) lep for ξk = ξkF
as

a function of carrier density for different temperatures.

C. Numerical results of lep

Figure 8 shows our numerical results for the mean free
path lep. Figure 8(a) plots lep as a function of temperature for
different values of carrier density. It is clear that lep decreases
monotonically with increasing temperature. Figures 8(b) and
8(c) demonstrate that lep is a decreasing function of ξk and
the carrier density n. From Fig. 8(c), we see that lep is
longer than 1000 nm for T < 100 K and n < 1013 cm−2.
Comparing Figs. 2(a) and 8(a), we find that lep is about one
order of magnitude longer than the inelastic mean free path l

induced by e-e interaction for T < 100 K and n � 1012 cm−2.
Thus the inelastic scattering is dominated by e-e scattering
processes in this regime. With increasing carrier density
and temperature, lep becomes comparable to l, implying a
considerable contribution of e-p interaction to the inelastic
scattering processes. We mention that in the presence of both
e-e and e-p interaction, the net quasiparticle scattering rate is
given by 1/τee + 1/τep, and thus the net inelastic mean free
path goes as ∼1/(1/lee + 1/lep).

V. DISCUSSION AND CONCLUSION

Before concluding, we first discuss the similarity and
difference between graphene and conventional 2DES. Because
of the gapless nature of graphene, there are two contributing
bands in graphene, i.e., conduction and valence bands, which
allow both interband and intraband single-particle excitations.
By contrast, the conventional 2DES has only one contributing
band, either the conduction or the valence band, because of the
large energy gap. In addition, at zero temperature, Im�R

+(k,ξk)
of graphene is a smooth function of ξk, where both plasmon and
interband excitations are absent. While there is a discontinuity
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in Im�R(k,ξk) for a 2DES caused by the plasmon29 and
electron-hole excitations,21,39 there is no such discontinuity
in graphene due to its gaplessness.

We now discuss the difference between extrinsic and
intrinsic graphene. The low-energy quasiparticle scattering
rate of extrinsic graphene is quite similar to conventional
2DES, which is well described by the Fermi liquid theory.
The nonmonotonic temperature dependence of Im�R

+(k,ω)
in extrinsic graphene arises from the competition between
plasmon broadening effects and thermally smeared single-
particle excitation boundaries. On the other hand, the quasi-
particle scattering rate of intrinsic graphene is linear in energy
ω, a signature of the marginal Fermi liquid behavior. The
characteristic feature of the nonmonotonic Im�R

+(k,ω) for
intrinsic graphene as a function of temperature is due to
an interplay between plasmon enhancement and enlarged
single-particle excitation continua. We have also compared
the inelastic mean free path with the elastic mean free path in
order to assess the density and temperature ranges where the
inelastic scattering length is decisively longer so that quantum
interference is in principle allowed in graphene. When l <

le, quantum interference induced localization effects cannot
manifest itself. In addition, motivated by a recent experiment
on double-layer graphene, we have obtained analytic results
for inelastic scattering in double-layer graphene where one
layer acts to screen the other layer.

Our numerical calculation shows that inelastic scattering
due to e-p interaction is negligible for T < 100 K, and e-e
interaction dominates in this temperature range. The e-p
scattering starts to play a role in extrinsic graphene when
the temperature is above 200 K. In particular, the temperature
dependence of lep changes from T −2 to T −1 as the temperature
increases from the low-T Bloch-Grüneisen regime to the high-
T equipartition regime. On the other hand, the low-temperature
asymptotic temperature dependence of the e-e interaction leads
to l ∼ (T 2 ln T )−1 for extrinsic graphene and l ∼ T −1 for
intrinsic graphene.

We should note here that our calculation of the inelastic
scattering length based on the imaginary part of the graphene
self-energy is carried out in the so-called “ballistic limit” where
disorder effects are neglected in the calculation of the inelastic
mean free path itself. As such our calculated inelastic mean
free path is an upper limit on the phase breaking length lφ

applicable to graphene quantum interference phenomena. It
is well known that disorder has qualitative and quantitative
effects on the inelastic mean free path40 and the phase breaking
length, in general, suppressing the mean free path substantially
from its ballistic limit. In the diffusive limit, we anticipate
the inelastic mean free path due to e-e interaction to have
the asymptotic low-temperature behavior of l ∼ (T ln T )−1

instead of the l ∼ (T 2 ln T )−1 ballistic behavior we find in
Sec. II. The phase breaking length lφ is anticipated to be
lφ ∼ T −1 in the low-temperature diffusive regime. Thus the
actual inelastic length due to e-e interaction would be smaller
than the ballistic limit results we obtain in the current work. We
note that the disorder effect on the electron-phonon interaction
induced inelastic mean free path lep derived in Sec. IV is
likely to be small,40 and our ballistic limit results should apply
equally well to the diffusive regime also.

To conclude, we have obtained analytical asymptotic
behavior of Im�R

+(k,ξk) in graphene utilizing the GW approx-
imation. We have also analyzed Im�R

+(k,ξk) for a double-layer
graphene system. We have shown numerical results for the
inelastic mean free path l and Im�R(k,ω). We emphasize that
finite temperature has strong effects on the inelastic scattering
mean free path. We have discussed the difference between
graphene and conventional 2DES. We have also provided
results for the inelastic mean free path arising from electron-
phonon interaction, which becomes important only at very
high temperatures since the typical e-p dimensionless coupling
constant (<0.04 for carrier density n < 1013 cm−2) is much
less than the typical dimensionless coupling constant rs(∼0.4)
in graphene. Our use of the GW approximation, which is
the leading order Feynman-Dyson perturbative expansion in
the dynamically screened Coulomb interaction, should be
an excellent approximation for graphene (with quantitative
predictive power) because of the small values of rs(<1) in
graphere on substrates. Going beyond the GW approximation
is a formidable task, which may not be necessary in under-
standing graphene inelastic processes.
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