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Unified model for conductance through DNA with the Landauer-Büttiker formalism
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In this work, we model the zero-bias conductance for the four different DNA strands that were used in
conductance measurement experiment [A. K. Mahapatro, K. J. Jeong, G. U. Lee, and D. B. Janes, Nanotechnology
18, 195202 (2007)]. Our approach consists of three elements: (i) ab initio calculations of DNA, (ii) Green’s
function approach for transport calculations, and (iii) the use of two parameters to determine the decoherence
rates. We first study the role of the backbone. We find that the backbone can alter the coherent transmission
significantly at some energy points by interacting with the bases, though the overall shape of the transmission
stays similar for the two cases. More importantly, we find that the coherent electrical conductance is tremendously
smaller than what the experiments measure. We consider DNA strands under a variety of different experimental
conditions and show that even in the most ideal cases, the calculated coherent conductance is much smaller than
the experimental conductance. To understand the reasons for this, we carefully look at the effect of decoherence.
By including decoherence, we show that our model can rationalize the measured conductance of the four strands,
both qualitatively and quantitatively. We find that the effect of decoherence on G : C base pairs is crucial in
getting agreement with the experiments. However, the decoherence on G : C base pairs alone does not explain
the experimental conductance in strands containing a number of A : T base pairs. Including decoherence on
A : T base pairs is also essential. By fitting the experimental trends and magnitudes in the conductance of the
four different DNA molecules, we estimate for the first time that the deocherence rate is 6 meV for G : C and
1.5 meV for A : T base pairs.
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I. INTRODUCTION

Molecular electronic devices have been increasingly at-
tracting attention from researchers working on both top down
and bottom up approaches.1–3 Among various molecular
candidates, DNA has the attractive features of recognition
and self-assembly.4–6 Many efforts7–16 have been devoted
to understanding the mechanism of charge transfer and
transport in DNA. From an electrical device perspective,
double barrier resonant tunneling structures,17 spin spe-
cific electron conductor,18,19 field effect transistor,20 trinary
logic,21 optomechanical molecular motor,22 negative differen-
tial resistance,23 detection of lesions by repair proteins,24 and
doping25 are in principle possible with DNA. Furthermore,
recent work has also shown that it is possible to detect
diseases by measuring the electrical conductivity of DNA.26,27

Researchers have also found that DNA can either be an
insulator,28 a semiconductor,29,30 an ohmic conductor,31,32 or
a superconductor,33,34 depending on a variety of conditions.

It is broadly agreed upon that while the understanding of
the electrical conductance of DNA has matured over the last
two decades, explaining experiments or making predictions
remains a challenge, compared to nanoengineered materials
such as nanotubes and nanowires that have comparable
dimensions. Modeling of the conductivity of a DNA molecule
in solution is complex because many factors contribute to
the charge transport process. In wet DNA, water molecules
are critical in influencing the molecular structure and hence
the electronic properties. A-DNA usually has five to ten
water molecules per base, while for B-DNA more than
thirteen water molecules per base are preferred.35 At different
hydration levels, different local densities of states (DOS)
are obtained.10 Besides, because the backbone of a DNA
molecule is negatively charged in its phosphate groups, it

is believed that the molecule is surrounded by cations such
as Na+, K+, Mg2+, and H3O+. Previous studies have shown
that variations in cation position10 and type36 can modulate
the highest occupied molecular orbital (HOMO) and lowest
unoccupied molecular orbital (LUMO) levels. Configuration
changes (lattice vibrations/deformation) can also modify the
conductivity of DNA molecules. Theoretical calculations have
confirmed that changes in the distance and the angle between
consecutive bases can cause variability in conduction channels
by influencing the hybridization between the π orbitals
of adjacent bases.17 Additionally, the length and sequence
play an important role in determining the conductivity of
DNA. The sequence is important37,38 because of the different
ionization potential of the four bases, adenine (A), thymine
(T), guanine (G), and cytosine (C) and sequence-dependent
conduction.39,40

The conductivity of DNA molecules lying between two
metal contacts has been studied by a few different groups.
References 17,36,41–50 have examined the conductance of
DNA molecules whose coordinates are frozen based on
the Landauer-Büttiker formalism. Their approaches can be
classified into two categories, the first of which uses density
functional theory (DFT).17,36,41,42 Because DFT calculation
for long DNA strands is very time-consuming, researchers
alternatively first carry DFT calculations on short strands
(typically two to five base pairs), and extract the Hamiltonian
and overlap matrices for the bases and their interactions
with neighbors. One can then construct a larger matrix
corresponding to the Hamiltonian for a longer strand from the
sub-Hamiltonians obtained from the mentioned calculations
on shorter strands. Another category is to use more simplified
Hamiltonians that account for only one or two energy levels
on each base and their interactions with energy levels in
neighboring bases.43–50
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The modeling of conductance in wet DNA lying be-
tween metal contacts is a more difficult problem because
the surrounding environment (water molecules, ions, and
conformation) fluctuates with time. In this case recent work by
Ref. 51 uses a combination of QM/MM to evaluate the role of
fluctuating environment on DNA transport. These calculations
freeze the location of the atoms at each sampling point in
the MD simulation and calculate the phase-coherent conduc-
tance using the Landauer-Büttiker approach. In addition to
the above-mentioned work that uses the Landauer-Büttiker
approach, there has also been work that model DNA using a
rate equation involving hopping and tunneling depending on
the sequence involved.7,13,52–54

In this work, we study the conductance of dry DNA by
carefully investigating the role of decoherence. Decoherence
in dry DNA molecule mainly arises from time-dependent
fluctuations where the electrons will lose phase information
to the environment. Electrons in dry DNA can lose phase
information by interacting with lattice vibrations and ambient
electromagnetic fields. In this paper, we model the decoherence
using the phenomenological Büttiker probes.55,56 We do this
in the context of four different dry DNA strands considered
in the experiments of Ref. 40 and shown in Fig. 1(a). The
four strands, which will be further discussed in Sec. II, contain
zero, one, three, and five A : T base pairs in the middle part of
a strand that otherwise consists of only G : C base pairs. We
note that the method of including decoherence is not unique.
Four perceptive recent papers include the effect of decoherence

FIG. 1. (Color online) (a) Sketch of the four DNA sequences:
Seq. 1, Seq. 2, Seq. 3, and Seq. 4, where each base is num-
bered. Yellow regions indicate the ends connecting to the contacts.
(b) Atomic structures of the hydrogen atoms terminated DNA bases.
Arrows indicate the hydrogen atoms that replace the backbones.

in wet DNA using completely different approaches.44–46,57,58

Reference 57 represents the influence of atomic charges from
the DNA backbone, water molecules, and counterions with
an empirical force field using a hybrid quantum mechanics-
molecular mechanics (QM/MM) framework. Reference 58
uses a new statistical decoherence model developed by their
group. References 44 and 45 use the harmonic phonon bath to
describe the dissipative environment. Reference 46 includes
the effect of energetic vibronic coupling via a full-fledged
nonequilibrium Green’s function approach. In our approach
the DNA strands are fixed and charge transport in DNA is
a decoherent process. A self-energy is used to represent the
decoherence. A similar approach has been adopted by Ref. 59
with a simplified model Hamiltonian. In our calculation, we
use DFT to get the full Hamiltonian which can describe the
system more accurately.

The remainder of this paper is organized as follows:
In Sec. II we describe the method used for studying the
conductance in detail. In this part, the Green’s function
formalism and Büttiker probes are reviewed. Then, we discuss
the results in Sec. III. We first study the phase-coherent
conductance of the four strands both with and without the
backbone and find that the phase-coherent conductance is
many orders of magnitude smaller than the experimental
values of the conductance. We then include decoherence in
these strands to understand how decoherence changes the
conductance. We show that by using two different decoherence
rates one can provide reasonable agreement with experiments.
Finally, we make a brief conclusion in Sec. IV.

II. MODEL AND METHOD

We consider four different DNA strands, in which
the five base pairs in the center part are changed from
G : C to A : T [Fig. 1(a)]. The choice of our model
system is motivated by the experiment in Ref. 40, which
provides data for the room temperature conductance of
these four different strands under similar conditions,
where the strands are connected to electrical contacts via
thiol groups. The four strands we study consist of the
following 15-base pair double-stranded DNA molecules:
(a)GGCGCGCGGGCGGGC; (b)GGCGCGGAGGCGG

GC; (c)GGCGCGAAAGCGGGC; (d)GGCGCAAAAAC

GGGC [Fig. 1(a)]. Conductances of these strands were
measured in Ref. 40 under dry condition. The polycation
spermidine was used to stabilize the double-stranded DNA
molecules. In these systems, both the base pairing and base
stacking of B-DNA is expected to remain unaffected.60,61

Our method involves the following five steps. First,
we obtain the atomic coordinates for the double-stranded
B-DNA using the Nucleic Acid Builder (NAB) software
package.62 To study the effect of the backbone, we consider
two types of strands—the native ones with the backbones
and the ones whose backbones are replaced with hydrogen
atoms. The sketch of the latter case is shown in Fig. 1(b),
where the arrows indicate the hydrogen atoms that replace
the backbone. Second, we use GAUSSIAN 0963 to obtain
the Hamiltonian and overlap matrices, H0 and S0, where the
B3LYP functional and the 6-31G basis set64,65 are adopted.
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We then transform the system to an orthogonal basis using
Löewdin transformation,66,67

H1 = S
− 1

2
0 H0S

− 1
2

0 , (1)

H = U †H1U. (2)

In Eq. (2), U is a block diagonal matrix. To obtain U , we first
diagonalize every diagonal subblock of H1 and then arrange
the eigenvectors in the order of DNA bases. While the diagonal
blocks of H0 are full matrices, the diagonal blocks of H are
diagonal matrices and the dimension of the diagonal block
matrices is equal to the number of orbitals used to represent
that base. Physically, the diagonal blocks of H correspond to
the localized energy levels of each DNA base and off-diagonal
blocks correspond to interactions between different bases. If
we look at the values of the off-diagonal elements, we find
that the interaction corresponding to energy levels at the two
nearby bases is large while that corresponding to two far away
bases is relatively small.

The transmission through the molecule is computed using
the Green’s function approach,68 with the Büttiker probes to
account for the decoherence. We calculate the retarded Green’s
function, which is defined by

[E − (H + �L + �R + �B)]Gr = I, (3)

where H is the Hamiltonian shown in Eq. (2). The self-energy
of the left (right) contact �L(R) represents the coupling of the
DNA to left (right) contact through which charge enters and
leaves the DNA. The self-energy due to the phase-breaking
Büttiker probes is �B .

The self-energy due to the contacts is the third step of our
calculations. The correct expressions for the self-energy due
to the contacts are �L = TDLgLTLD and �R = TDRgRTRD .
Here gL and gR are the surface Green’s functions of the
contacts, TLD and TRD are the coupling between the left and
right contacts and the device, with TDL = T

†
LD and TDR =

T
†
RD . Computing these self-energies for realistic contacts is

challenging. To obtain an accurate answer, the inclusion of
contact surface atoms with optimized structure and their
influence on the device molecule are required though some
progress has been made recently in this area.69 In this paper, we
neglect the real part of the self-energy and further set �L(R) =
−i�L(R)/2, where �L(R) is treated as an energy-independent
parameter. Mathematically, the coupling matrix is diagonal
with the nonzero elements representing the coupling strength.
This approximation has been adopted by other researchers
in DNA transport,46,58,70 especially at small biases as long
as the value of �L(R) is close to experiments. We verify this
approximation by trying different �L(R) values.

The fourth step involves the inclusion of Büttiker probes.
Büttiker probes are fictitious probes which extract electrons
from the device and re-inject them after phase breaking, as
illustrated in Fig. 2. The net current at each Büttiker probe
is zero. Similar to the effect of the left and right contacts,
the effect of Büttiker probes is also included as a self-energy,
�B , as shown in Eq. (3). Specifically, we use �i to represent
the decoherence at the ith probe, �B = ∑

i �i . In our model,
�i is controlled by an energy-independent coupling strength
between the probe and the coherent system �i , �i = −i�i/2.

FIG. 2. (Color online) Sketch of the device with Büttiker probes.
Yellow regions indicate the ends connecting to the contacts. Blue
regions indicate DNA bases and black dots are Büttiker probes. Red
arrows describe the behavior of the electron at Büttiker probes: first
extracted from the device and then re-injected back.

In the calculations, we attach the Büttiker probes to the energy
levels of the bases that correspond to the diagonal elements
of H . The strength of coupling of electrons from the DNA
to the Büttiker probe is assumed to depend only on whether
it is a G : C or A : T base pair. Note that at first we include
the Büttiker probes only in the G : C base pairs as A : T

base pairs are tunneling barriers.41 We find that only including
decoherence on G : C is not enough to explain the experiment.
The decoherence on A : T also plays a role in conduction,
indicating that A : T is not a coherent static barrier.

The fifth step uses the Green’s function approach to
calculate the conductance for various coupling strengths of the
Büttiker probes. The structure of the DNA is assumed to be
static in the conventional B form throughout the calculation.
The effect of fluctuations in the lattice and environment is
included only via the Buttiker probes. In the following part of
this section, we summarize the steps of obtaining the effective
transmission and conductance after including the effect of
Büttiker probes using the D’Amato-Pastawski model.71

Assuming that the total number of DNA bases is N (here,
N = 30), the number of Büttiker probes is Nb = N − 2. At
the low-bias region, the current at the ith probe is

Ii = 2q

h

N∑
j=1

Tij [μi − μj ], i = 1,2, . . . ,N. (4)

The factor 2 is used to account for the spin degeneracy.
In the above equation, Tij is the transmission between the
ith and j th probes calculated by Tij = �iG

r�jG
a , where Ga

is the advanced Green’s function, Ga = (Gr )†. Because the
transmission coefficients are reciprocal, we have Tij = Tji .68

Using the condition that the net current is zero at each
Büttiker probe, Eq. (4) gives us Nb independent formulas,
from which we can express the chemical potential of the ith
Büttiker probe, μi ,

μi − μL =
⎡
⎣

Nb∑
j=1

W−1
ij TjR

⎤
⎦ (μR − μL), i = 1,2, · · · ,Nb.

(5)

In the above equation, W−1 is the inverse matrix of W ,
whose elements are given by72 Wij = [(1 − Rii)δij − Tij (1 −
δij )], where Rii is the reflection probability at probe i, which is
given by Rii = 1 − ∑N

j �=i Tij . The currents at the left contact IL

and right contact IR are not zero. Because of the conservation
of the electron number, IL + IR = 0. Expressing the current at
the left contact in terms of the difference between the chemical
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potentials at the two contacts μL and μR ,

IL = 2q

h
Teff(μL − μR). (6)

Comparing Eq. (6) and the expression for the current at
the left contact given by Eq. (4), we can write the effective
transmission between left contact and right contact as

Teff = TLR +
Nb∑

i,j=1

TL,iW
−1
ij Tj,R. (7)

The first term TLR is the coherent transmission from left
contact to right contact while the second term describes the
effect of decoherence. From Eq. (6), the zero-bias conductance
is, approximately,

G = 2q2

h
Teff, (8)

G0 = 2q2

h
≈ 7.75 × 10−5�−1 is the quantum conductance.

III. RESULTS AND DISCUSSION

The sketch of the four 15-base pair DNA sequences that we
model is shown in Fig. 1(a). In the experiment, thiol groups are
used to connect the 3′ end of the DNA molecules to the metal
contacts, because thiol groups are expected to provide a strong
coupling between the DNA molecule and the metal contact.40

In this work, we use two broadening matrices, �L and �R ,
to represent that coupling. We vary �L and �R between 50
and 100 meV, and find that there is no significant change in
our results. For the results presented here, we set �L = �R =
100 meV.

In this section, we analyze the effect of two factors in
DNA charge transport using the Landauer-Büttiker formalism,
namely, the backbone and the decoherence. In Sec. III A,
we compare the transmission for the four strands with and
without the backbones in the phase-coherent limit. We find that
the backbone does not change the transmission qualitatively.
However, it can affect the transport significantly at some
energy points by interacting with the atoms in bases. In
Sec. III B, we discuss the role of decoherence. We observe
that the coherent transmission is too small to explain the
experiment. We infer that the low value of conductance can be
due to a number of reasons: poor coupling to contacts, position
of Fermi energy, or incorrect bandgap. We will show below
that even for the best possible values of these parameters, the
phase-coherent conductance is smaller than the experimental
conductance. We will then show that by including appropri-
ately chosen decoherence rates the calculated conductance
values are comparable to the experiment. The strength of
decoherence rate is difficult to compute ab initio. Here we
have considered a variety of values to lend some insight into
the ones which may be experimentally feasible. In the process
of modeling decoherence, we have also found that it is possible
to explain the experiments only if we assume that there is also
decoherence in the A : T barriers. That is, the A : T barriers
cannot be assumed to be static rectangular barriers.

A. The role of the backbone

To study the effect of backbone, we have calculated
transmission for two cases—DNA strands with and without
backbones in the phase-coherent limit. For the strands with
backbone, we use the positively charged sodium ions Na+
to neutralize the backbone. To determine the geometry of
the DNA strand after being neutralized, we first carry DFT
calculation on a short strand containing five G stacking bases
with sodium ions placed nearby the phosphate group by setting
the initial distances based on Ref. 42. The atom coordinates for
the DNA molecule are fixed while the positions of Na+ ions
are relaxed. We approximate the optimized position of the
sodium ion around the backbone of the middle G in this short
strand to be the positions of the thirty sodium ions in the long
15-base pair strand. We then carry out DFT calculation on the
15-base pair strand to obtain the self-consistent Hamiltonian
and overlap matrices. For the strands without backbone, we
simply delete the backbone and then terminate the base with
hydrogen atoms using GAUSSVIEW 5.73

The transmission of the four DNA strands is calculated in
the phase-coherent limit as shown in Fig. 3. For the strands with
backbone, we model the contacts via two approaches—charge
is injected and extracted at the (i) base and backbone (blue
solid) and (ii) base only (magenta dash). Transmission for
the strands without the backbone is shown by the red dash-dot
curve of Fig. 3. We note that the overall shapes of transmission
with and without the backbone qualitatively seem to be similar
but the two curves are shifted in the energy axis. To obtain a
quantitative understanding, we shift the energy axis of the
transmission for the strand without the backbone to the right-
hand side by 0.85 eV for Seqs. 1 and 2, and 1 eV for Seqs. 3
and 4, as shown in Fig. 4. A close inspection of Fig. 4 reveals

FIG. 3. (Color online) Transmission vs energy for the four DNA
strands with and without the backbones in the phase-coherent limit.
The transmission for the strands with the backbones is calculated
by two methods—charge is injected and extracted at the (i) base and
backbone (blue solid) and (ii) base only (magenta dash). Transmission
for the strands without the backbone is shown by the red dash-dot
curve. The transmission through the base only is slightly smaller
than that through the base and backbone and the overall shapes of
transmission with and without the backbone qualitatively seem to be
similar but the two curves are shifted in the energy axis.
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FIG. 4. (Color online) Transmission vs energy for the four DNA
strands with and without backbone in the phase-coherent limit. The
transmission for the strands with backbone is shown in blue solid
curves, while that for strands without backbone is shown in red
dash-dot with the energy axis shifted 0.85 eV for Seqs. 1 and 2, and
1 eV for Seqs. 3 and 4. The difference in magnitude of transmission
for the strands with and without the backbones can be significant at
some energy points.

that the difference in magnitude of transmission for the strands
with and without the backbones can be up to 5 orders for Seq. 1,
6 orders for Seq. 2, 7 orders for Seq. 3, and 8 orders for Seq. 4
at some energy points.

We study the effect of backbone further by plotting the
HOMO orbitals for the four strands. HOMO orbitals for
DNA strands with the backbones have been studied by a few
groups.10,70,74 It has been shown that the spatial distribution
of HOMO orbitals depends on a variety of conditions, such as
the position of counterions relative to the phosphate groups10

and the hydration levels.74 In addition, Ref. 70 states that
the HOMO orbitals can temporarily have a large weight on
the backbones as a function of time. In our calculation, we
find that the HOMO orbital is distributed over both the bases
and the backbone, as shown in Fig. 5. We conclude from the
above observations related to transmission (Fig. 4) and wave
function (Fig. 5) that while most of the contribution to charge
transport comes from the bases, the phosphate groups, sugar
rings, and sodium ions on the backbone alter the electronic
structure sensitively by interacting with the bases. This leads to
mismatches in the coherent transmission for strands with and
without the backbone at some energy points while keeping
the overall shape similar. We also note that the coherent
transmission through the HOMO-LUMO gap also depends on
the inclusion of the backbone. This finding indicates that when
modeling the coherent charge transport in DNA molecules,
one should take the effect of backbone into account. In the
remainder of this paper, we will focus on the strands with the
backbones, injecting and extracting from and into the strands
via both backbone and base.

B. The role of decoherence

Besides the interaction between the molecule and the metal
contacts, the position of the Fermi level Ef relative to the
molecular energy levels is also important in understanding the

FIG. 5. (Color online) Isosurfaces of HOMO orbitals for Seq. 1
(a), Seq. 2 (b), Seq. 3 (c), and Seq. 4 (d). The red color represents the
positive part of the wave function and the green color represents the
negative part of the wave function. The HOMO orbital is distributed
over both the bases and the backbone.

flow of charge. Ef depends sensitively on the surface condition
and work function difference between two materials. Experi-
mentally, it is very difficult to determine the position of Ef .
Here, we explore the conductance when the Fermi level is in the
HOMO vicinity. At the low-bias region, only electrons with en-
ergies nearby the Fermi level contribute to the transport. Thus,
the transmission T (E) ∼= T (Ef ). From DFT calculations, the
HOMO levels of the four strands have been determined to be
−3.18 eV, −2.84 eV, −2.91 eV, −2.85 eV, respectively.

The zero-bias conductance versus the position of Fermi
energy is shown in Fig. 6. Comparing the conductances of
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Seq. 2, Seq. 3, and Seq. 4, we find that the A : T base pair plays
the role of a barrier. This is consistent with the fact that in our
calculation the ionization potential (IP) of an isolated G : C

base pair is 7.12 eV while that of the A : T base pair is 7.68 eV.
The similarity of the conductance for Seq. 1 and Seq. 2 can be
attributed to the fact that Seq. 1 has a G : C base pair in the sixth
position and a C : G base pair in the seventh position which can
cause interstrand hopping, and results in lower transmission
while in Seq. 2 both the sixth and seventh positions are
placed with G : C base pairs. However, the presence of
the A : T base pair in the eighth position cancels out this
advantage. More importantly, in this coherent model, we find
that the conductivity is much smaller than the experimental
results. At the low-bias region, the experimental value40 of the
conductance for Seq. 1, Seq. 2, Seq. 3, and Seq. 4 is around
5 × 10−10 S, 2 × 10−10 S, 3.5 × 10−11 S, and 6 × 10−12 S,
respectively. However, in the coherent case of our calculation,
the conductance is only about 10−24 S for Seq. 1 and 10−28 S
for Seq. 2, Seq. 3, and Seq. 4 when the Fermi level is nearby
the HOMO. For Seq. 1, the coherent result is about 1014 times
smaller than the experiment; for Seq. 2, 1018 times smaller; for
Seq. 3, 1017 times smaller, and for Seq. 4, 1016 times smaller.

The huge difference between the coherent conductance and
experimental values indicates that there are other mechanisms
that play a role in determining the conductance. We rule out
the location of Fermi energy because irrespective of where
the Fermi energy is in Fig. 6 (including well within the
HOMO band), the conductance is significantly smaller than
in experiments. We also rule out the nature of the coupling to
contacts because we have verified that our results change by
small amounts when the coupling to the contacts �L and �R

is varied from 50 to 100 meV. Another reason for the larger
experimental conductance could be the possibility of having
a large number of strands, which is extremely unlikely in the
break junction geometry of Ref. 40.

The mismatch in energy level between neighboring bases
combined with the small interbase coupling leads to the
smaller than experimental conductances in the phase-coherent
calculations. Decoherence due to interaction with the environ-
ment broadens these energy levels and can lead to a larger
conductance. To account for decoherence, we use Büttiker
probes as presented previously.

FIG. 6. (Color online) Conductance vs Fermi energy for the four
DNA strands without any decoherence. The coherent conductance
is orders of magnitude smaller than experiment irrespective of the
locations of Fermi levels for all the four strands.

As shown in Fig. 6, for hole transport, G : C base pair
is preferred while A : T base pair is considered as a barrier
because the transmission decreases with an increasing number
of A : T base pairs. As the transit time through a rigid barrier
A : T is small, we first include decoherence only on the
G : C base pairs with the coupling strength �i = 5 meV,
6 meV, and 10 meV, as shown in Fig. 7. Compared with the
ballistic transport, one can find that after including Büttiker
probes the conductance is smoother for the four strands. The
small peaks in the ballistic conductance are smeared out
due to the broadening of energy levels. For Seq. 1, we find
that when we add 5 meV decoherence only on the G : C

base pairs, the conductance increases by around 1015 times
around their HOMO levels, while for Seq. 2, Seq. 3, and
Seq. 4, the increase is 1018, 1016, and 1013, respectively. The
tremendous enhancement in the conductance after including
Büttiker probes suggests the crucial role of decoherence in
charge transport through DNA molecules.

In addition, we find that for strands containing A : T base
pairs, the same values of decoherence rates can enhance the
conductance more effectively for Seq. 2 than Seq. 3 and Seq.
4. We observe that when the decoherence on G : C base pairs
is 5 meV, as the number of A : T base pairs increases from 1 to
5, the increase in conductance decreases from around 1018 to
1013. This is because in Seq. 3 and Seq. 4, where the numbers
of A : T are 3 and 5, respectively, the wider barriers begin to
play a larger role than in Seq. 2. We also find that when the
decoherence on G : C base pairs changes from 5 to 10 meV,
the conductance increases around 4 times for Seq. 1 and Seq.
2 around the HOMO levels. However, for Seq. 3 and Seq. 4,
when the decoherence value on G : C varies from 5 to 10 meV,
the conductance only increases 1.5 times. More importantly,
for Seq. 1 and Seq. 2, as the Büttiker probe coupling strength
changes, we can fit the experimental conductance by setting
the Fermi energy to be a particular value. For instance, when
the decoherence on G : C is 5 meV if we set the Fermi level to
be −3.06 eV for Seq. 1 and −2.82 eV for Seq. 2, the computed
conductance is comparable to that of experiment. However, for
Seq. 3 and Seq. 4, where the wide A : T barriers are present,
irrespective of the strength of decoherence chosen (varying
from 0 to 10 meV), the conductances are still too small when
compared with the experiments. For example, for Seq. 3 the
best conductance value is 10 times smaller than experiment and
for Seq. 4, the best value is 100 times smaller. This indicates
that the decoherence on A : T barriers is also important, that
is, the A : T barrier is not a static barrier for hole transport.
For this reason, we study the effect of decoherence on A : T

base pairs to get better agreement with the experiments.
Figure 8 shows the conductance versus Fermi energy with

different decoherence values on both G : C and A : T base
pairs. It is found that for Seq. 2, the decoherence on G : C

base pairs is more important than that on A : T base pair. For
example, when the decoherence on A : T base pair is fixed as 2
meV, the conductance increases 1.5 times with the decoherence
on G : C base pairs increasing from 5 to 6 meV. However, if
the decoherence on G : C base pairs is fixed as 6 meV, the
coductance stays unchanged at the HOMO level when the
decoherence on A : T base pair is varied from 1 to 2 meV.
In contrast, for Seq. 3 and Seq. 4, the decoherence on A : T

base pairs is much more important. Take Seq. 3, for example.
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FIG. 7. (Color online) Conductance vs Fermi energy with 5 meV,
6 meV, and 10 meV decoherence only on G : C base pairs for (a)
Seq. 1, (b) Seq. 2, (c) Seq. 3, and (d) Seq. 4. The conductance values
for Seq. 3 and Seq. 4 around their HOMO levels are still too small to
explain the experiment, suggesting the decoherence on A : T barrier
is also important.

FIG. 8. (Color online) Conductance vs Fermi energy with differ-
ent decoherence values on both G : C and A : T base pairs for (a)
Seq. 2, (b) Seq. 3, and (c) Seq. 4. The decoherence on A : T base
pairs can increase the conductance effectively, especially for Seq. 3
and Seq. 4.

If the decoherence on A : T base pairs is fixed as 2 meV
and the decoherence on G : C is varied from 5 to 6 meV, the
conductance only changes around 1.1 times. Similarly, if the
decoherence on A : T is fixed as 1 meV and the decoherence on
G : C is changed from 6 to 10 meV, the conductance also only
changes around 1.1 times. However, if the decoherence on G :
C is fixed as 6 meV and the docoherence on A : T is changed
from 1 to 2 meV, the conductance increases around 2.8 times.
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FIG. 9. (Color online) Conductance vs Fermi energy with 6 meV
decoherence on G : C and 1.5 meV decoherence on A : T . The
conductance has been increased effectively. The conductance values
for the four strands around their HOMO levels are quantitatively
comparable to the experimental results, demonstrating the impor-
tance of adding decoherence on both G : C base pairs and A : T

barrier.

We find that for the four strands a decoherence strength of
6 meV on G : C base pairs and 1.5 meV on A : T base pairs
give a relatively good agreement with experiments. The results
are summarized in Fig. 9, where the experimental values of
conductance from Ref. 40 are also shown, with horizontal
lines. We find that for all the four strands, the computed con-
ductance lies in the ball park of the experimental values. That
is, the qualitative trend of the conductance variation for the four
sequences matches well with the experiments (conductance
decreases from Seq. 1 to Seq. 4). More importantly, in contrast
to the phase coherent results in Fig. 6, where the conductance
values are orders of magnitude smaller than the experiments,
the conductance values in Fig. 9 are now comparable to the
experiments. This qualitative match holds well irrespective of
the Fermi energy as can be seen in Fig. 9. Although for Seq.
4, the computed conductance is about 2 times larger than the
experimental result around the HOMO level, we still think
that the fitting is good because of the uncertain factors in the
experiments.

These results indicate that the decoherence is important
in experiments involving dry DNA, and this might be one
of the reasons why the theory has difficulty in explaining
experiments.

Recently, there have been proposals to calculate the conduc-
tance of DNA by calculating the phase-coherent conductance
for many points (each of which provides a static set of
distinct coordinates) along the trajectory of and MD simulation
and averaging the coherently calculated conductance.51 These
coordinates include the effect of time-varying ions and water

molecules, apart from thermally induced lattice vibrations.
It would be interesting to compare results from the two
methods for the case of dry DNA to see if one can match
experiments on the linear response conductance and current-
voltage characteristics. To start with one could compare the
average DOS obtained by the two methods. In addition,
work in Ref. 51 calculates the phase-coherent conductance
of DNA for many realizations of coordinates obtained from
MD calculations of DNA in water. Such a process may give
rise to an effective broadening of energy levels.

IV. CONCLUSION

In summary, we have modeled the zero-bias conductance
of dry DNA using a combination of density functional theory
and the phenomenological Büttiker probes to account for
decoherence. We first explore the effect of the backbone in
charge transport by comparing the coherent transmission for
strands with backbones and strands whose backbones have
been deleted. We find that the DNA backbone can affect
the coherent transmission significantly at some energy points.
However, the overall shapes of the transmission are similar for
the strands with backbones and strands without backbones.
More interestingly, we find that the calculated conductance
using phase-coherent transport is orders of magnitude smaller
than experiments, and that including the effect of decoherence
on G : C is crucial because it broadens the energy levels
of DNA and significantly enhances the conductance. By
comparing with experiments, we find that quite a large
decoherence is required even on the A : T base pairs, even
though they behave as barriers in the energy ranges of
importance. It is also worth noting that for the G : C rich
strands (strands which contain one A : T base pair), the
decoherence on G : C base pairs is more important than that
on A : T base pairs, while for the strands containing three or
five A : T base pairs, the decoherence on A : T plays a more
significant role. By analyzing the four different DNA strands,
it has been determined that the decoherence strength due to
Büttiker probes is approximately 6 meV for G : C base pairs
and 1.5 meV for A : T base pairs. While the phenomenological
Büttiker probes is able to explain the experiments qualitatively
at low biases, a more accurate description of vibronic coupling
would be necessary to explain experiments at large biases. This
is a significantly more difficult problem requiring knowledge
of both the vibronic modes and the coupling strength in DNA,
which is well beyond the extent of this work.
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