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Recovering hidden Bloch character: Unfolding electrons, phonons, and slabs
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For a quantum state, or classical harmonic normal mode, of a system of spatial periodicity “R,” Bloch character
is encoded in a wave vector “K .” One can ask whether this state has partial Bloch character “k” corresponding
to a finer scale of periodicity “r .” Answering this is called “unfolding.” A theorem is proven that yields a
mathematically clear prescription for unfolding, by examining translational properties of the state, requiring no
“reference states” or basis functions with the finer periodicity (r,k). A question then arises: How should one
assign partial Bloch character to a state of a finite system? A slab, finite in one direction, is used as the example.
Perpendicular components kz of the wave vector are not explicitly defined, but may be hidden in the state (and
eigenvector |i〉). A prescription for extracting kz is offered and tested. An idealized silicon (111) surface is used
as the example. Slab unfolding reveals surface-localized states and resonances which were not evident from
dispersion curves alone.
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I. UNFOLDING IN GENERAL

An alloy, and various other complicated systems, may
“inherit” approximate translational order from an underlying
simpler periodic system. For example, “modulated crystals”1,2

have a double-layer structure, each layer with its own “inher-
ent” two-dimensional translational symmetry. Adjacent layers
have translations incommensurable with each other. Interlayer
interaction modulates both translations. Computations are
done in a supercell, chosen to be as close a multiple as
is feasible of the two different inherent translations. The
eigenstates of the system remember, in some approximation,
the periodicity of one, or the other, or both, of the unmodulated
lattices. One should then ask, for a given supercell eigenstate
|i〉, how closely does it correspond to either of the two inherited
families of Bloch states |�k〉? “Closeness” is measured by
weights Wi(�k) between 0 and 1, with 0 and 1 meaning no
inheritance or full. Dispersions can then be plotted in an
extended Brillouin zone of a simpler system. Definitions of
unfolding algorithms were given Ku, Berlijn, and Lee (KBL),3

and by Popescu and Zunger.4 Many earlier papers have used
related versions of unfolding.5,6 A recent application to alloys
contains interesting views.7 The discussion by Popescu and
Zunger4 provides a convenient notation.

A simple type of unfolding has been used in discussing
eigenstates of multilayers.8 For example, Scamarcio et al.9

compute phonons in (Si)m(GaAs)n multilayers, and relate
normal modes confined in the silicon layers to vibrational
normal modes unfolded into a silicon crystal lattice. A more
closely related application (but with weights always 0 or 1) is
unfolding optical phonons measured in SiC polytypes into a
larger Brillouin zone of a simpler structure of SiC. This was
done by Feldman et al.10 and Karch et al.11

The aim of this paper is to generalize the definition of
unfolding. Finite systems pose a particular challenge. A recipe
for unfolding slab calculations is proposed.

A. Notational preliminaries

Assume that complicated system eigenstates are avail-
able from computation, performed with periodic boundary
conditions. The “supercell” (SC) has translation generators
�Ai (i = 1, . . . ,3). These are usually integer multiples of

“primitive cell” (PC) translation generators �ai (i = 1, . . . ,3).
Upper and lower case will be used for SC and PC properties.
The integer multiple relation is �Ai = ∑

j Nij �aj , where the

3 × 3 matrix N̂ has integer entries. Vectors �R will always be SC
translations �R = ∑

i mi
�Ai , vectors �r always PC translations

�r = ∑
i ni �ai , and when needed, the symbol �x will denote an

arbitrary location in space.
The SC eigenstates | �KJ 〉 have the �K-space translational

symmetry T̂ ( �R)| �KJ 〉 = exp(i �K · �R)| �KJ 〉, for SC translations
T̂ by distance �R. The Bloch vectors �K lie in the supercell
Brillouin zone (SBZ) which is the unit cell of the SC reciprocal
lattice. Its translation generators are �Bi , where �Ai · �Bj =
2πδij . Reciprocal-lattice translation generators �Bi of the SC
and �bj of the PC are related by the inverse of the transpose
of the integer matrix Nij , specifically, �Bi = ∑

j [(NT )−1]ij �bj .

Vectors �G will always be SC reciprocal space translations
�G = ∑

i mi
�Bi , and vectors �g = ∑

i ni
�bi will be PC reciprocal

space translations.
The states | �KJ 〉 are not expected to have �k-space transla-

tional symmetry: T̂ (�r)| �KJ 〉 �= exp(iφ)| �KJ 〉, if �r is a transla-
tion of the PC but not of the SC. However, suppose the SC is
nothing other than an exact N -fold repetition of the PC (where
N = det N̂ ). Then the SC has hidden translational symmetry,
and it would be possible to choose its eigenstates to have the
Bloch property φ = �k · �r , where the Bloch vector �k would lie
in the primitive cell Brillouin zone (PBZ), being related to
the supercell Bloch vector �K by �k = �K + �G, for some SC
reciprocal-lattice vector �G. In this case, unfolding would be
an exact simplification.
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The volumes ω and � of the PC and SC are related
by �/ω = det N̂ ≡ N . There are exactly N distinct PC
translations by multiples of �ai that generate the SC from the PC.
These will be labeled as �ri, i = 1, . . . ,N . There are similarly
exactly N reciprocal space translations by multiples of �Bi

that generate the PBZ from the SBZ. These will be labeled
as �Gi, i = 1, . . . ,N . These conjugate sets of discrete real and
reciprocal space translations obey the “Fourier” relations

1

N

N∑
i=1

ei �Gi ·�rj = δ(j,0), (1)

1

N

N∑
k=1

ei( �Gi− �Gj )·�rk = δ(i,j ). (2)

These are discrete versions of the familiar “quasicontinuum”
Fourier relations of the �k vectors of a normal Brillouin zone
(BZ) and the discrete translations of a normal crystal. The
crystal’s translation group was made finite by the mechanism
of Born–von Karman periodic boundary conditions. One
way to understand Eq. (2) is as a group representation
orthogonality relation. The discrete translations �ri indeed
form a finite Abelian translation group under the closure that
is obtained when the supercell translations are regarded as
identity operators.

B. Unfolding theorem

Suppose we have a function � �K with Bloch symmetry of the
supercell: � �K (�x + �R) = exp(i �K · �R)� �K (�x). The Bloch wave
vector is an arbitrary point �K in the SBZ. This section shows
that there is a unique decomposition of this function, � �K =∑

G ψ �K+ �G into N functions having the additional Bloch
symmetry of a primitive cell, ψ�k(�x + �r) = exp(i�k · �r)ψ�k(�x),
where �k = �K + �G and �G is any of the N �Gi’s. The wave
vectors �K + �G lie in the PBZ, but only the �G = 0 part lies in
the SBZ. The starting function � �K is normalized to 1, but the
partial functions ψ �K+ �G are not. Then a candidate invariant
weight for unfolding is the norm of the partial function,
W �K ( �G) = ∫

d3 �x|ψ �K+ �G(�x)|2. Note that the partial functions
obtained by unfolding are not in general eigenfunctions of
any particular Hamiltonian. The function being unfolded, � �K ,
need not be an eigenfunction; it only needs Bloch symmetry.
The translations �r of the PC need not have a meaningful
crystallographic relation to the translations �R of the SC,
except for having some integer commensurability relation
�Ai = ∑

j Nij �aj .

Start by defining an operator P̂ ( �K → �K + �G), that op-
erates on the SC Bloch function � �K , and projects out the
component that has the additional Bloch symmetry �K + �G,

P̂ ( �K → �K + �G) = 1

N

N∑
i=1

T̂ (�ri)e
−i( �K+ �G)·�ri , (3)

where T̂ (�ri)f (�x) = f (�x + �ri). To prove the projective prop-
erty, translate by a PC translation �rj the function obtained

by operating with P̂ on a test function � �K ,

T̂ (�rj )P̂ ( �K → �K + �G)� �K (�r)

= ei( �K+ �G)·�rj

N

N∑
i=1

T̂ (�ri + �rj )e−i( �K+ �G)·(�ri+�rj )� �K (�r)

= ei( �K+ �G)·�rj P̂ ( �K → �K + �G)� �K (�r). (4)

The projected function has the appropriate PBZ Bloch wave
vector. The proof looks a little more trivial than it is. One has to
be careful that it is legitimate to relabel the N PC translations
�ri + �rj as PC translations �rk , because often �rk may lie outside
the SC. Is it legitimate just to subtract the appropriate SC
translation �Rk to make �rk lie in the interior of the SC? The
answer is yes, for a subtle reason. The same difficulty occurs
in proving P̂ 2 = P̂ , or

P̂ ( �K → �K + �G)2 = 1

N 2

∑
i,j

T̂ (�ri + �rj )e−i( �K+ �G)·(�ri+�rj ). (5)

The simple relabeling, that allows the double sum in Eq. (5)
to be N times the single sum in Eq. (3), has to be considered
with skepticism; it is not true in general, but only true because
the P̂ operator can operate only on functions with SC Bloch
wave vector �K . When doing so, any part where �ri + �rj lies
outside the SC has the following effect. This translation
is rewritten as �rk + �Rk , where �Rk is a SC translation. The
corresponding translation operator becomes T̂ (�rk)T̂ ( �Rk). The
translation by �Rk generates the Bloch phase exp(i �K · �Rk).
This cancels a corresponding phase exp(−i �K · �Rk) in Eq. (4),
and, together with the identity exp(i �G · �Rk) = 1, proves the
required theorems.

The final step is to show that the sum of all N projectors
P̂ ( �K → �K + �G) is the unit operator, or equivalently, the
translation T̂ (0) by zero. This follows easily from Eq. (1).
Therefore, any function with any SC Bloch symmetry �K
has a unique (representation-independent) decomposition into
N functions of the higher PC translational symmetries �K +
�Gi . This actually does not require having an approximate
higher translational symmetry. The translational cells can be
arbitrarily divided into subcells that replicate the full crystal by
additional translations, and Bloch functions can be separated
into components, each of which has some higher translational
symmetry.

C. Unfolding formula

The previous section suggests a formula

W �KJ ( �G) =
∫

d3 �x|P̂ ( �K → �K + �G)� �KJ (�x)|2, (6)

i.e., that the PBZ �K + �G weight is the norm of the �K + �G-
projected part of the SC wave function, � �KJ . Using P̂ 2 = P̂ ,
this is equivalent to

W �KJ ( �G) = 〈 �KJ |P̂ ( �K → �K + �G)| �KJ 〉

= 1

N

N∑
j=1

〈 �KJ |T̂ (�rj )| �KJ 〉e−i( �K+ �Gi )·�rj . (7)
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The sum rule ∑
i

W �KJ ( �Gi) = 1 (8)

follows from Eq. (1). This could be used on numerical supercell
wave functions � �Kj to indicate how similar is a numerical
�K state to a �k = �K + �Gi Bloch state of the underlying PC.

The formula uses only the eigenfunctions of the SC, with no
reference states needed.

D. Relation to spectral function

One of the motivations of KBL3 for unfolding was
to facilitate comparison with angle-resolved photoemission
spectra. These provide an approximate measure of the “spectral
function,” A(�k,E), rigorously definable as

A(�k,E) = (−1/π )trImĜ(�k,E + iδ). (9)

The Green’s function matrix Ĝnn′ (�k,E) is the time-to-
frequency transform of −i〈T̂ c

†
�kn

(t)c�kn′ (0)〉. Any complete set

of Bloch functions can be used to define Ĝ and give a spectral
function A. If the set is orthonormal, invariance of the trace
under unitary transformations shows that the spectral function
is invariant.

Computations for a disordered alloy can be done using
a “supercell,” an artificial periodic construct that enables
computation. A sharp �K-space spectrum is computed for
representative configurations. The sharpness is an artifact, to
be destroyed by averaging over an ensemble of supercells
occupied by different representative local alloy configurations.
The result, after unfolding and averaging, is a �k-space de-
scription. Single-particle Bloch-like states have energies ε �KJ

and unfolding weights W �KJ ( �G). These define average values
ε(�k) where �k = �K + �G. The distribution of weighted unfolded
states determines a spectral function A(�k,E). Green’s-function
language allows us to interpret this via a complex self-energy

(�k,E). Green’s-function theory tends to motivate perturba-
tive understanding of 
(�k,E). Nonperturbative computational
construction has only recently been implemented.3,7 Computa-
tions, in order to sample realistically the multiple complicated
alloy configurations, need large supercells. A single, very large
SC computation may approach the “self-averaging” limit, and
yield a good approximation to A(�k,E) by unfolding.

Consider a particular supercell with known Bloch eigen-
states | �KJ 〉. Let there be a primitive cell with a complete
Bloch basis |�kn〉. Note that the states |�kn〉 are not required
to be eigenstates of anything except translations, but they are
required to be complete in the space of translational quantum
number �k. To any �k in the PBZ belongs a unique �K in the SBZ.
(However, to each SBZ �K there are N PBZ �k’s.) Assuming
the eigenstates | �KJ 〉 also to be complete (in the �K subspace,
which includes Bloch functions of �k = �K + �G symmetry, for
any �G), we can write expansions

|�kn〉 =
∑

J

| �KJ 〉〈 �KJ |�kn〉, (10)

c�kn =
∑

J

〈 �KJ |�kn〉c �KJ , (11)

where c�kn is a destruction operator for the PBZ Bloch basis
function, and similarly c �KJ for the SBZ Bloch eigenstate. The
single-particle approximation is assumed, and no ensemble
averaging is yet performed on the SC states. Therefore the
Green’s function of the SC is

ĜJJ ′ ( �K,E) = (E − ε �KJ )−1δJJ ′ (12)

An alternate Green’s function is defined using the PBZ Bloch
basis,

Ĝnn′ (�k,E) = −i

∫ ∞

0
dte−iEt/h̄

〈
T̂ c�kn′(t)c

†
�kn

(0)
〉

=
∑

J

〈�kn′| �KJ 〉〈 �KJ |�kn〉(E − ε �KJ )−1. (13)

This alternate Green’s function contains all the information
of Eq. (12), except unfolded into the larger PBZ, with the full
details of the exact SC eigenstates obscured in the matrix nature
and in the complex coefficients given by overlap matrices.
Now we can use Eq. (9) to define a spectral function and
corresponding weight,

A(�k,E) =
∑

J

W �KJ ( �G)δ(E − ε �KJ ), (14)

W �KJ ( �G) =
∑

n

|〈 �KJ |�kn〉|2. (15)

The weight W �KJ ( �G) corresponds to the KBL definition, up to
their assumption that the Wannier functions have the transla-
tional symmetry of the primitive cell unit. If the Bloch basis
|�kn〉 is complete, the weight of Eq. (15) is identical to W �KJ ( �G)
of Eq. (7). The proof follows (for complete, orthonormal
basis sets) by inserting 1̂ �K = ∑

nm |�k + �Gm,n〉〈�k + �Gm,n|.
The completeness relation in the SC �K subspace requires
summing over the N PBZ vectors �k + �G that map into �K .
This is inserted on either side of the translation operator in
Eq. (7). Then simple theorems, including Eq. (2), prove the
equivalence to Eq. (15).

II. NOTES AND POSSIBLE APPLICATIONS

An unfolded spectrum does not contain the full information
that was in the SC spectrum. The full PC Green’s function
ĜJJ ′ ( �K) contains full information, but its trace, used to find
the spectral function and the unfolding weights, does not. The
purpose of unfolding is to simplify in a way that provides
physical insight. The unfolding weight defined in Eq. (7) has
some possible advantages. By avoiding the need for a basis
of reference functions in a PBZ, it encourages more general
applications. For example, phonon spectra can be similarly
unfolded.

Among the applications that might be imagined are curious
ones of uncertain value that could be tried. For example,
the spectrum of a crystal with rocksalt structure could be
unfolded from the primitive rocksalt two-atom cell into a
smaller simple cubic one-atom cell. A primitive fcc crystal
could be regarded as a supercell of a simple cubic structure
which had alternate cells empty, and could be unfolded into
this hypothetical primitive cell. Diamond structure could be
considered a supercell which has alternating cells with two
and zero atoms, and could thus also be unfolded to a simple
cubic cell.
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FIG. 1. Vibrational eigenfrequencies of a diatomic chain, un-
folded onto the monatomic Brillouin zone. The spectrum of the
monatomic chain is also shown as a thin continuous line. The width
of the diatomic dispersion curve indicates the amount of weight at
the unfolded wave vector.

III. EXAMPLE: PHONONS IN ONE DIMENSION

As a test of the unfolding formula, consider the lattice
normal modes of a diatomic chain in one dimension. The
Hamiltonian is

H = T + V ; T =
∑

n

[
P 2

n,1

2M1
+ P 2

n,2

2M2

]
;

(16)

V = F

2

∑
n

[(un,1 − un,2)2 + (un−1,2 − un,1)2].

“Atoms” are alternately of type 1 and 2; they are spaced
evenly and interact equally with neighbors on both sides.
The separation is a and the lattice constant is 2a. The
normal-mode spectrum has two bands (acoustic, labeled “−,”
and optic, labeled “ + ”) in the BZ −π/2a < K < π/2a.
Let us regard the two-atom cell of size 2a as the supercell
(SC), and a one-atom cell of size a as the PC. The PBZ has
−π/a < k < π/a. In the PBZ there are two vectors, K and
K + G (where G = π/a), for each SBZ vector K . Equation
(7) gives a prescription for unfolding. The results are shown
in Fig. 1.

The algebra is based on textbook procedures,12 but is
slightly tedious. Details are in the Appendix. Bloch’s theorem
for the SC gives a 2 × 2 dynamical matrix ω2

K |s〉 = D̂|s〉,
which has the form

D̂ = �2
0 1̂ + �2

1

(
cos θ − sin θe−iKa

− sin θe+iKa − cos θ

)
. (17)

Here �2
0, �2

1, and θ are defined by

�2
0 = F

(
1

M1
+ 1

M2

)
, (18)

�2
1 = F

[(
1

M1
− 1

M2

)2

+ 4 cos2(Ka)

M1M2

]1/2

, (19)

sin θ = 2F cos(Ka)/
√

M1M2

�2
1

. (20)

The eigenfrequencies are ω2
± = �2

0 ± �2
1, and the weights turn

out to be

WK±(0) = 1
2 [1 ∓ sin θ ],

(21)
WK±(π/a) = 1

2 [1 ± sin θ ].

The two branches K+ and K− unfold to the wave vectors
k = K and k = K + π/a. Over most of the spectrum, a
normal mode belongs mostly to one or the other k point,
except near the SC BZ boundary K = π/2a, where sin θ → 0
and modes belong equally to both PBZ k vectors, as shown
in Fig. 1. If the masses evolve to equality (M1 = M2), the
weights properly unfold the spectrum into the single band
ωk = (2F/M)| sin(ka/2)|. It does this because the weights
WK,− are 1 in the first SBZ and 0 in the second, and opposite
for WK,+.

IV. SLAB STATES UNFOLDED TO BLOCH STATES

DFT calculations are often done for “slabs,” cells with
a small period in x and y directions, and a long period in
the z direction. Examples include modeling stacking faults or
artificial multilayers. A common application is for surfaces,
where the slab contains significant vacuum space, with two
solid/vacuum interfaces (surfaces). Electron chemistry causes
surface atoms to relax to new ground-state positions. The
surface alters the electronic structure. Most of the resulting
electronic eigenstates are much like the eigenstates of a bulk
crystal, except modified near the surface. A few states may be
localized at surfaces. For example, dangling bonds are likely to
be built from localized surface states. Unfolding can be used
to illuminate the character of the slab states. The presence
of a vacuum layer creates a new situation. Is there a natural
definition of unfolding in such a case? To answer this, it is
appropriate to look at specific examples. The two examples
given below lead to a particular way of dealing with the
problem. One wants to exhibit the standing-wave nature of
the states in the slab’s interior (referred to as “bulk” states.)
Since we care about electron states that are bound inside the
slab, the standing waves are analogous to classical waves
on a string with “hard wall” boundary conditions. That is,
they have the character of sine-wave states |�kn〉s = (|�kn〉 −
| − �kn〉)/√(2), rather than cosine waves, |�kn〉c, as occur with
open-end boundary conditions. There are only half as many
such states as there are �k vectors in the BZ, consistent with
restricting �k = (�k‖,kz) vectors to kz > 0. This reduces the
number of states by 2. But we need to describe N states.
Hard wall eigenstates are twice as dense in kz as those selected
by periodic boundary conditions. This observation is one guide
to how unfolding must be done.

A. Monatomic linear chain

The first example is a finite one-dimensional chain of N
atoms, treated in orthogonal tight-binding approximation, with
a single s-orbital per atom. The s orbital on the �th atom is
denoted |�〉. The single-electron states are |ψ〉 = ∑

� c�|�〉,
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and the eigenstates obey Ĥ |ψ〉 = E|ψ〉, or

−t

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 γ 0 . . . 0 0 0

γ 0 1 . . . 0 0 0

0 1 0 . . . 0 0 0
...

...

0 0 0 . . . 0 1 0

0 0 0 . . . 1 0 γ

0 0 0 . . . 0 γ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1

c2

c3

...

cN−2

cN−1

cN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= E

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1

c2

c3

...

cN−2

cN−1

cN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(22)

The hopping matrix element to nearest neighbor is −t ; farther
neighbor hopping is neglected. At the surface, the matrix
element is enhanced by a factor γ . First, let us solve this
for the special case γ = 1. This can be done by noticing that
it “inherits” standing-wave states from the periodic solutions
of the cyclic chain with 2N + 2 atoms. Those are the usual
traveling wave Bloch eigenstates,

|k〉 = 1√
2N + 2

∑
�

eik�|�〉 (23)

with eigenenergy E(k) = −2t cos(k) and k quantized as
2πm/(2N + 2). The 2N + 2 distinct integers m lie in the
range −N � k � N + 1. Consider now the special standing-
wave states

|k〉s = 1√
2N + 2

2N+2∑
�=1

eik� − e−ik�

√
2i

|�〉. (24)

This is both a standing sine-wave eigenstate of the cyclic chain
(for γ = 1), plus, because of k quantization, it vanishes on the
special atoms � = 2N + 2 ≡ 0 and � = N + 1. This means
that all such wave functions have two distinct parts separated
by nodes, and that each separate part is an eigenfunction of
the finite chain of N atoms with γ = 1, after renormalizing
by

√
2. That is, the finite N -atom chain with γ = 1 has a

complete orthonormal set of N standing-wave eigenstates,

c�(k) = 〈�|k{N ,γ = 1}〉 =
√

2√
N + 1

sin k�, (25)

where k is quantized as k = πm/(N + 1), and where the
integer m is non-negative, m = 1,2, . . . ,N . This choice
satisfies Eq. (22). The energies of these states are E = E(k) =
−2t cos(k), exactly the same as for the bulk band structure. The
wave vectors with m = 0 or N + 1 (corresponding to k = 0
or π ) do not work because the corresponding state vanishes
on every atom. There is a close analog to vibrational standing
waves with hard wall boundary conditions.

Now consider what happens when γ is allowed to vary. The
simplest case is if γ is set to zero. The two end atoms are now
decoupled, and the remaining coupled chain has N − 2 atoms.
The orbitals |�〉 for � = 1 and � = N are now eigenstates of
energy 0, while the bulk states look just as before, except
there are fewer k’s, being quantized in new units πm/(N − 1),
with m = 1,2, . . . ,N − 2. The atoms are renumbered so that
2 → 1, etc., and the quantized k’s are redefined so that c�

vanishes at � = 0 and � = N − 1.

FIG. 2. Slabs extended cyclically to facilitate unfolding.
(a) Simple slab of Eq. (22). (b) Diatomic slab with a single dangling
atom on one end and a corresponding Shockley state. (c) Generic
slab.

For all other values of γ , besides 0 and 1, careful inspection
shows that there continue to be standing-wave eigenstates.
However, k quantization is no longer13 in simple units of π

divided by something like N . The actual evolution of the

0 π /2 π
k

0

1

2

3

4

γ 2

FIG. 3. k vectors (horizontal; between 0 and π ) evolving as
the surface hopping enhancement factor γ (squared and plotted
vertically) varies, for a seven-atom single s-orbital tight-binding
chain. Simple periodicity of k is seen in the two cases γ = 1
and γ = 0 where surface enhancement is absent and the simplest
bulk behavior is reproduced by slab standing waves. As the critical
value γ = √

2 is exceeded, two bulk standing waves disappear,
and surface states appear with energies above and below the bulk
bands, symmetric between the two surfaces. Above a larger critical
value (γ = √

3 for the seven-atom slab) two more bulk standing
waves disappear, and antisymmetric surface states appear. The dashed
lines should be imagined moving perpendicular to the page in the
imaginary k direction. These give the decay rates exp(−κ�) and
exp[−κ(N + 1 − �)] of the surface eigenstates.
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standing-wave k’s, for a seven-atom chain, is shown in Fig. 2.
There is a critical value, γc = √

2, beyond which pairs of
bulk standing-wave solutions disappear, and new surface states
emerge. It is simplest to describe if the origin is taken in the
middle of the chain. Then the standing waves are either even
(cosine waves) or odd (sine waves.) Similarly, the surface
states are either even (cosh) or odd (sinh) combinations of
modes that decay exponentially from both surfaces. Surface
states appear both below the bulk band (E < −2t) and above
(E > 2t). The ones below have complex k vector k = iκ and
those above have k = π − iκ . The value of κ is related by a
transcendental equation to the value of γ. Their energies are
±2t cosh κ . The symmetric (cosh) solutions appear at γ 2 > 2
while the odd (sinh) solutions appear at slightly larger values
γ 2 > 2/{1 − [2/(N − 1)]}.

There is a lesson from this that applies to unfolding,
namely, that in slab calculations, good standing-wave bulklike
solutions continue to exist. However, they are perturbed by
the surface in three ways. First, k quantization is twice as
dense as with periodic boundary conditions. Instead of having
N solutions between k = −π and k = π , there are N , or
N − 2, orN − 4 solutions between k = 0 and k = π . Second,
k quantization is no longer in easily predictable multiples
of 2π/N . Third, as can be verified by direct computation,
the amplitude of both bulk and surface states, on surface
atoms, is reduced by 1/γ , when the surface hopping is
enhanced by γ . Similarly, in real crystals, the surface layers
will displace, couplings will be altered, and bulklike states
will be altered, probably reduced in amplitude, near the
surface.

B. Diatomic linear chain

There is another example, the diatomic chain of N
molecules, that provides further illumination. Atoms are
paired. They have identical on-site energies (set to zero),
weaker first-neighbor coupling −t to adjacent molecules,
and stronger intramolecular −t ′ = −γ t coupling within the
molecule. The cyclic chain of 2N + 2 molecules is illus-
trated in Fig. 3(b). Bloch’s theorem reduces this to a 2 × 2
problem. Denoting the wave function coefficients as u� =
uk exp(ik�)/

√
N + 1 for the left atom of a molecule, and

similarly with u → v for the right atom, the Hamiltonian and
eigenstates become

Hk = −
(

0 |Ek|eiφk

|Ek|e−iφk 0

)
, (26)

(
uk

vk

)
= 1√

2

(
eiφk/2

e−iφk/2

)
, (27)

with k quantized as k = 2πm/(2N + 2) and energy eigen-
values Ek = ±|Ek|, with |Ek| = |t |(a2

k + b2
k)1/2 and tan φk =

ak/bk . The parameters are ak = γ sin k and bk = 1 + γ cos k.
There are two bands symmetrically distributed around E = 0.
Once again, standing sine-wave eigenstates can be made, and
can be chosen to vanish on two oppositely placed atoms, as
shown in Fig. 2(b). The sine waves are eigenstates for the
separated half chains with the nodal atoms eliminated. Next
to each nodal atom is an unpaired atom that remains. Each
separate chain thus has N molecules, plus a single weakly
coupled adatom on one side of the chain. The 2N + 1 × 2N +
1 Hamiltonian matrix for the upper separated chain is

−t

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 . . . 0 0 0

1 0 γ 0 . . . 0 0 0

0 γ 0 1 . . . 0 0 0

0 0 1 0 . . . 0 0 0
...

...

0 0 0 0 . . . 0 1 0

0 0 0 0 . . . 1 0 γ

0 0 0 0 . . . 0 γ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v0

u1

v1

u2

...

vN−1

uN

vN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= E

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v0

u1

v1

u2

...

vN−1

uN

vN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (28)

There are N positive k’s with 2N corresponding standing
sine waves (the 2 being from the two orbitals per molecule) of
the 2N + 2-molecule cyclic chain. These generate states for
the N + 1/2-molecule finite chain. Specifically, there are N
states with energy −|Ek| and N with energy +|Ek|, two for
each intact molecule of the upper separated chain. But there
are 2N + 1 atoms on this chain, so one state remains to be
found. It is a Shockley-type surface state13,14 lying exactly
at midgap, E = 0. Its eigenfunction, for the upper chain, has
coefficients v� = (−1/γ )� and u� = 0. That is, it is zero on
the right atom of each molecule, and decays with complex
wave vector k = π + i log γ . It alternates in sign and decays
as exp(−� log γ ), going to the right from the left-most atom
(� = 1). This remains a midgap eigenstate for all γ � 1.

C. Slab unfolding

How therefore should we “unfold” such slab calculations?
In the real three-dimensional (3D) world of surfaces, slab
states have �k’s quantized in the x and y directions parallel to
the slab, but perpendicular, only kz = 0 states are of interest.
Any dispersion in kz derives from undesired, hopefully small,
interaction between the slab and its periodic images. These
images were included only for computational convenience, to
permit the use of periodic codes. The true slab states are either
surface states, or else they are extended, and hence, standing
waves. Even though they have quantum number kz = 0 from
the band-structure code, nevertheless, the extended states relate
to superpositions of bulk Bloch states with equal contributions
from kz and −kz for some value of kz. The valence and
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low-lying conduction standing-wave states are bound in the
potential well of the solid. Thus they have sine-wave rather
than cosine-wave character. We wish to know the approximate
relevant kz = |kz|. Their weights will be the same at +kz and
−kz. The maximum value of kz is certainly π/c where c is
the (atomic scale) layer spacing within the slab. But the kz

values are definitely not related to multiples of 2π/N where
N is the number of layers. Instead, their average spacing is
2π/(2N + 2). Precise spacing is only obeyed for very special
model situations. A standing wave of a thick slab should have
a sharply defined, but slightly unpredictable, kz characterizing
its behavior in the interior, and more complicated wave
functions near the boundaries, predictable only by detailed
calculation.

The procedure that seems most general and sensible is illus-
trated by Fig. 2(c). The slab inherits an approximate periodicity
c in the perpendicular direction, and has N well-defined layers
plus possible adatoms or reconstruction at the surface. This
gives an approximate thickness N c + δ. Imagine instead a
cycle of length (2N + 2)c. If the surface is thick with adatoms,
(2N + 4)c might be preferable. Reflect the eigenstates of the
actual slab through the separating midline of Fig. 2. This
generates a candidate continuation onto the (2N + 2) loop.
But because of the hard wall standing-wave nature of the bulk
states, and sinelike disappearance of the bulk states as they
merge into the vacuum, the reflected wave function should
have its sign changed to give it sinelike character. Finally,
use the unfolding algorithm explained above in Sec. I C. The
basis k vectors can be chosen to have kz = πm/(N + 1)
for m = 1,2, . . . ,N . These will not exactly conform to the
actual standing-wave eigenvector wavelengths, but provide a
convenient basis set for unfolding. Surface states will unfold
to a broad range of kz’s, while bulklike standing waves, for
thick slabs, will have weights distributed more narrowly.

Finally, it is sensible for plotting E versus kz to use
a horizontal bar to indicate the width in kz that a state
unfolds to. The mean and rms k values can obviously be de-
fined as k̄ = ∑

k W (k)k/
∑

k W (k), and δk2 = ∑
k W (k)(k −

k̄)2/
∑

k W (k).
As an example, Fig. 4 shows the results for the single-orbital

1D tight-binding chain of 11 atoms thickness. The surface
enhancement factor was chosen as γ = 2, large enough so that
both even and odd surface states occur, both above and below
the bulk bands. The layer thickness of 11 is sufficient that very
little splitting occurs between even and odd. The figure shows
by circles the “exact” values of kz that characterize the interior.
These are found by numerical solution of transcendental
equations derived from Eq. (22). Their energies agree with
the eigenenergy −2t cos(k).

V. SILICON (111) SLAB UNFOLDED

We performed an N = 18 double-layer silicon slab calcu-
lation using the SIESTA15 implementation of density-functional
theory (DFT), and the Perdew-Burke-Ernzerhof–generalized-
gradient approximation (PBE-GGA)16 exchange-correlation
potential. The slab orientation is perpendicular to (111).
Charge self-consistency was obtained using 128 k points [all
perpendicular to the (111) axis]. A cubic lattice constant

0 0.2 0.4 0.6 0.8 1
wave vector (π /a)

-3

-2

-1

0

1

2

3

En
er

gy
/|t

|

FIG. 4. Unfolded bands of an 11-atom tight-binding one-band
model. Surface hopping is enhanced by a factor of γ = 2. Symmetric
and antisymmetric surface states are essentially degenerate. They
occur at energies 0.32t above the top and below the bottom of the
bulk bands at ±2t . The bulk band dispersion E(k) = −2t cos(k) is
plotted, and agrees with the wave vectors found for bulk states in the
slab’s interior.

a = 5.499 Å (compared to experimental a = 5.43Å) mini-
mizes the total energy of the two-atom bulk primitive cell (PC),
using the standard double-ζ -polarized (DZP) basis orbital set
with 13 orbitals per silicon atom. The unit cell has 36 atoms,
one per layer (two per double layer). Translation vectors within
the (111) plane are �a = a

2 (−1 0 1) and �b = a
2 (0 − 1 1). Since

the aim is to study unfolding, the simplest possible surface
is used, namely a completely unrelaxed cut between adjacent
double layers. The bottom of the slab is symmetrical with the
top. The top-most and bottom-most atoms have one dangling
bond each. The shortest translation vector in the (111) direction
is �c = a(1 1 1). The vectors (�a,�b,�c) define a hexagonal cell
with six atoms arranged in three double layers, as shown in
Fig. 5. The 18 double layers define a section of bulk with
vertical distance 6�c. On top of the slab is a large vacuum layer,
and periodic repeats with period 50�c.

The computed band structure is shown in Fig. 6. Note that
the Fermi level lies in the middle of a doublet of surface
states. The surface is metallic. It is certainly possible that
including spin-polarized options in the DFT calculation would
have split up and down spins, perhaps creating a magnetic
insulator instead of a metal. It did not seem important to test
this, because the unrelaxed ideal surface can only be regarded
as an oversimplified model.

The primitive unit cell has two atoms. A conventional
description would use vectors �a,�b, �d , where �d = �c/3 −
(�a + �b)/3 is shown in Fig. 5 as the slanted side of the
parallelogram. It has vertical height |�c/3|. Two comments can
be made. First, a two-atom hexagonal cell defined by �a,�b,�c/3
is an allowed unit cell; it translates by multiples of �a,�b, �d to
fill space, like bricks, with a horizontal offset. Second, the
primitive cells fill the slab unit cell (supercell) by symmetry
translations that slant relative to the �c axis. This forces simple
modifications in applying the unfolding algorithm.
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FIG. 5. (Color online) Section through the silicon slab, seen along
�a − �b. The vector �c ‖ (111) is vertical, with vacuum at the top. Vector
�a + �b, defined in the text, is horizontal. Two types of translational
cells are shown. The parallelogram outlines a diagonal slice through a
primitive diamond cell with two silicon atoms. The rectangle outlines
a slice through a hexagonal cell containing six atoms, arranged in
three bilayers. The bilayers stack in the fcc ABC pattern. Also shown
are contours of the real part of ψ for one of the pσ surface bands in
the gap, shown by an arrow in Fig. 7. Contours are evenly spaced;
pale and dark grey indicate opposite signs.

SIESTA gives expansion coefficients, denoted here by 〈N |J 〉,
for the slab eigenstate with band index J , in terms of the slab
local basis orbitals |N〉. We examine only eigenstates with
�K = 0, and ask how their approximate translational symmetry

unfolds onto wave vectors parallel to �c. The slab comes from
a section of bulk of thickness 18c/3 where c = |�c| = √

3a.
The longest standing-wave wavelength is then approximately
λmax = 2 × 19 × (c/3). The factor 2 is because the longest
sine wave has only a half wavelength in the slab. The factor

FIG. 6. Band dispersion for the (111) slab of 18 double layers,
with 36 atoms per cell. Two directions perpendicular to (111) are
shown. The Fermi level (dashed line) intersects a doubly degenerate
surface state. This state is a result of one dangling bond per surface
atom (and two surfaces), obtained because atoms are frozen in perfect
terminated bulk positions. The arrow points to occupied surface states
just above the top of the valence band, one of which is shown in
contour in Fig. 5.

19 is used instead of 18, following Sec. IV. The extra distance
c/3 estimates the additional distance for a typical sine-wave
state to vanish at the edges. The kc character of states should
be approximately quantized in units k = m(2π/λmax), m going
from 1 to N = 18, as required to represent the states of the 18
double layers.

The unfolding algorithm of Sec. IV and KBL3 is im-
plemented as follows. First, a mirror copy of the slab is
positioned adjacent, with the extra separation c/3. Second,
wave functions |J 〉 must be extended from the original slab
to its mirror. Third, this 2N + 2 double-layer slab is repeated
periodically (vacuum is neglected except for the two extra
c/3 slices). The mirror image slab orbital N ′ corresponding to
orbital N of the real slab is assigned the expansion coefficient
〈N ′|J 〉 = −〈N |J 〉. The extra space c/3 contains a missing
double layer, whose two missing atoms contain contributions
to state |J 〉 with 〈N |J 〉 = 0. All coefficients are divided by

√
2

to maintain normalization. Fourth, a mapping is constructed
between orbitals of the slab and the 26 “reference orbitals”
that form the SIESTA basis states of the primitive two-atom
cell. The transverse components of the positions are ignored,
as only the relative position in the (111) direction is relevant
for kz unfolding.

The slab eigenstates are unfolded onto the 2N + 2 wave
vectors �k = (0,0,kz) = [mπ/(N + 1)a](111), where m =
−N , . . . ,−1,0,1, . . . ,N + 1. Only values m = 1, . . . ,N are
needed, as confirmed below. The weights are given by

WJ ( �kz) =
∑
n,n′

〈kzn|J 〉〈J |kzn
′〉〈kzn

′|kzn〉. (29)

This is the altered version of Eq. (15), the difference arising
from the nonorthogonal nature of SIESTA basis functions. The
elements 〈kzn|J 〉 are given by

〈kzn|J 〉 = 1√
2N

e−i �kz· �ro(n)
∑
N

e−i �kz·�r(N)δnn(N)〈N |J 〉. (30)

The sum over N runs over all orbitals in the slab plus
mirror slab construction. �r(N ) and δnn(N) comprise the two
components of the orbital mapping. n(N ) is the PC orbital
corresponding to the slab orbital N and �r(N ) is the position
vector connecting n(N ) to N . �r0(n) is the position of the
orbital n(N ) within the PC. In the formula for the weight
WJ ( �kz), 〈kzn

′|kzn〉 is the overlap matrix element between the
two Bloch basis states associated with the local orbitals n and
n′. This overlap matrix is extracted from a SIESTA calculation
for the bulk silicon PC.

The weights for kz and −kz are found to be identical, as
expected. The weights for kz = 0 and kz = π are zero, so there
are 18 independent weights for each state |J 〉, as expected.
On average, the sum of the unfolding weights

∑
kz

WJ ( �kz)
satisfies the sum rule given by Eq. (8). More specifically, the
average value of

∑
kz

WJ ( �kz) = 0.998 ± 0.114. The sum rule
is not exact, because of nonorthogonality of the SIESTA basis
orbitals. The plot of E versus kz in Fig. 7 shows, for each
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FIG. 7. The �k = (0,0,0) bands of the 18 bilayer Si (111) slab (the
states shown at � in Fig. 6) are here unfolded to reveal their relation
to bulk states with �k = (π/a)(ζ,ζ,ζ ). Smooth curves show the bulk
dispersion in this direction. Horizontal bars indicate the position and
width of the peak of the distribution in ζ for each eigenstate of the
slab. The dashed line indicates the Fermi energy, and the arrow locates
the surface state shown in Fig. 5.

eigenstate near the band gap, the mean and rms variance of the
distribution of kz that the state unfolds to.

Notice that there are three states visible in the gap in
Fig. 7, each of which is actually a doublet. The position
and width of their k distribution reveals that they are paired
surface states, lying on top and bottom surfaces, almost
completely decoupled. The higher energy doublet involves
(111)-oriented p states, which bond strongly to each other
when the separated surfaces are allowed to recombine. Upon
coupling, one state moves down to the top of the valence band,
while the other moves up, above the antibonding s state, in
the conduction band. The lower energy quartet, when viewed
without unfolding, in Fig. 6, would not be easily recognized
as localized, except that the unfolded version in Fig. 7 makes
its nature clear. We examined contour plots of all four of these
states, to confirm the localized nature. One of these states is
shown in Fig. 5. They are p states oriented parallel to the
plane, bonded weakly to neighboring surface atoms. It is not
obvious that opening the vacuum between bilayers should so
much affect their localization.

Of the higher-lying antibonding states, inside the con-
duction band, shown in Fig. 7, three states near −0.6 eV
seem nearly degenerate, and two of them show anomalous
kz broadening. These two are actually a quartet of p states,
localized (according to contour plots) on top and bottom
surfaces. They are antibonding counterparts to the in-gap
surface state quartet discussed above. The third state with
the smaller kz distribution is quite different. It is a single
delocalized state of s character, a member of the rapidly
upward-dispersing band of antibonding s states. The localized
quartet cannot be true surface states, since they do not occur
within an energy window where bulk states with �k = (0,0,kz)
are missing. They are degenerate with the rapidly dispersing
band, and are therefore surface resonances. Only a larger
cell (more than 18 double layers) could reveal the resonant
aspect. Of course, none of these appear in actual experimental
silicon (111) surfaces. There is an easy route to a “2 × 1”

reconstruction,17 and a more difficult route to the ground-state
7 × 7 reconstruction.18

VI. SUMMARY AND CONCLUSIONS

This paper has done two things. The notion of unfolding
has been given a more general interpretation. A candidate
general definition is made that uses only the states under
direct consideration, needing in principle no basis of Bloch
states of the simpler primitive cell. Only the properties of the
complicated states under partial translation are used.

The idea of unfolding is then generalized to systems that are
finite in one direction. Specifically, we consider a slab, which
“remembers” or “inherits” the intrinsic periodicity c that would
have been exact in bulk. The vacuum part of the slab is ignored,
and the occupied part regarded as a piece of a periodic medium
with N + 1 (rather than the nominal N ) vertical repetitions of
the bulk structure, the last repetition being vacant of atoms. To
accommodate the half size kz quantization of standing waves,
the slab is then mirrored to a 2N + 2-layered slab with periodic
boundary conditions. Wave functions on the mirror image are
negatives of their mirror counterparts. Finally, these modified
states are unfolded in the normal way, revealing the hidden kz

character of the states. Localized surface states, and partially
localized surface resonances, are revealed. Not all of these
properties were expected or discovered from the conventional
dispersion plot (Fig. 6), but were uncovered by the unfolding
algorithm.
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APPENDIX: 1D PHONONS

The Hamiltonian of the diatomic chain of vibrating atoms
is Eq. (16). According to Eq. (7), the weights that we want for
this system are

WK,±(B) = 1
2 [1 + 〈K, ± |T̂ (a)|K,±〉e−i(K+B)a]. (A1)

The chain has periodicity 2a. The translation T̂ (a) gives the
“inherited” approximate translational symmetry. The factor
exp(−iBa) is either +1 (when K is unfolded onto itself by
B = 0) or −1 (when K is unfolded onto K + B = K + π/a

in the “second” BZ).
First, make the standard SBZ Bloch-wave (Fourier) trans-

form for displacements, un,i → ui(K). Looking for normal
modes that oscillate sinusoidally with frequency ωK , Newton’s
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laws become

ω2
KM̂|u〉 = F̂|u〉 |u〉 =

(
u1(K)

u2(K)

)
. (A2)

The mass matrix M̂ is diagonal with elements Mij = Miδi,j .
It is convenient to make the mass-weighting transform |s〉 =
M̂1/2|u〉, which converts Eq. (A2) to the standard Hermitian
problem

ω2
K |s〉 = D̂|s〉, (A3)

where the mass-weighted force matrix D̂ is

D̂ = F

( 2
M1

− 2 cos(Ka)√
M1M2

e−iKa

− 2 cos(Ka)√
M1M2

e+iKa 2
M2

)
. (A4)

It is convenient to rewrite this as done in Sec. III [Eqs. (17)–
(20)]. The eigenvectors of the dynamical matrix [Eq. (17)] are

|s−〉 =
(

sin
(

θ
2

)
e−iKa/2

cos
(

θ
2

)
e+iKa/2

)
|s+〉 =

(
cos

(
θ
2

)
e−iKa/2

− sin
(

θ
2

)
e+iKa/2

)
.

(A5)

We now need to translate an eigenvector. To find the form
of T̂ (a)|si〉, it is helpful to display the full coordinate-space
vector |s〉 of mass-weighted displacements for a Bloch wave

with wave vector K ,

|s〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...

s1e
2iK(n−1)a

s2e
2iK(n−1)a

s1e
2iKna

s2e
2iKna

s1e
2i(n+1)Ka

s2e
2iK(n+1)a

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A6)

This tells us that the rule for translation is

T̂ (a)

(
s1(K)

s2(K)

)
=

(
s2(K)

s1(K)e+2iKa

)
. (A7)

The diagonal matrix elements of the translation by a are then

〈s ± |T̂ (a)|s±〉 = ∓ sin θe+iKa. (A8)

We can now evaluate the unfolding weights, Eq. (A4). Note
that in doing so by use of Eq. (A8), we make a somewhat
arbitrary choice, that the eigenvectors needed in Eq. (7) are
the mass-weighted displacements |s〉, rather than the simple
displacements |u〉. This has an advantage of simplicity, but
more than that, the |s〉 states are orthonormal by virtue
of the ordinary Hermitian nature of Eq. (A3). The states
|u〉 have instead the generalized orthonormality relations,
〈u,α|M̂|u,β〉 = δα,β . This would have altered the sum rule
on the weights. Rather than adding to 1, they would add to a
mass and K-dependent number. The answers for the simpler
|s〉 eigenvectors is given in Eq. (21) and Fig. 1.
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Rev. B 50, 17054 (1994).

12C. Kittel, Introduction to Solid State Physics, 8th ed. (Wiley,
New York, 2005).

13A related discussion is in Chap. 4 of S. G. Davidson and
M. Steslicka, Basic Theory of Surface States (Clarendon, Oxford,
1992).

14W. Shockley, Phys. Rev. 56, 317 (1939).
15J. M. Soler, E. Artacho, J. D. Gale, A. Garca, J. Junquera, P.

Ordejón, and D. Sánchez-Portal, J. Phys.: Condens. Matter 14, 2745
(2002).

16J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865
(1996).

17J. A. Stroscio, R. M. Feenstra, and A. P. Fein, Phys. Rev. Lett. 57,
2579 (1986).

18K. Takayanagi, Y. Tanishiro, M. Takahashi, and S. Takahashi, J.
Vac. Sci. Technol. A 3, 1502 (1985).

085322-10

http://dx.doi.org/10.1016/0079-6786(95)00007-0
http://dx.doi.org/10.1103/PhysRevB.43.11330
http://dx.doi.org/10.1103/PhysRevLett.104.216401
http://dx.doi.org/10.1103/PhysRevLett.104.216401
http://dx.doi.org/10.1103/PhysRevLett.104.236403
http://dx.doi.org/10.1103/PhysRevB.85.085201
http://dx.doi.org/10.1103/PhysRevLett.98.047005
http://dx.doi.org/10.1103/PhysRevLett.65.84
http://dx.doi.org/10.1103/PhysRevLett.65.84
http://arXiv.org/abs/1109.4036
http://dx.doi.org/10.1103/PhysRevB.46.7296
http://dx.doi.org/10.1103/PhysRevB.46.7296
http://dx.doi.org/10.1103/PhysRev.173.787
http://dx.doi.org/10.1103/PhysRev.173.787
http://dx.doi.org/10.1103/PhysRevB.50.17054
http://dx.doi.org/10.1103/PhysRevB.50.17054
http://dx.doi.org/10.1103/PhysRev.56.317
http://dx.doi.org/10.1088/0953-8984/14/11/302
http://dx.doi.org/10.1088/0953-8984/14/11/302
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.57.2579
http://dx.doi.org/10.1103/PhysRevLett.57.2579
http://dx.doi.org/10.1116/1.573160
http://dx.doi.org/10.1116/1.573160



