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Neutral excitons in strained axially symmetric In(Ga)As/GaAs quantum dots with a ringlike shape are
investigated. Similar to experimental self-assembled quantum rings, the analyzed quantum dots have volcano-like
shapes. The continuum mechanical model is employed to determine the strain distribution, and the single-band
envelope function approach is adopted to compute the electron states. The hole states are determined by the
axially symmetric multiband Luttinger-Kohn Hamiltonian, and the exciton states are obtained from an exact
diagonalization. We found that the presence of the inner layer covering the ring opening enhances the excitonic
Aharonov-Bohm (AB) oscillations. The reason is that the hole becomes mainly localized in the inner part of the
quantum dot due to strain, whereas the electron resides mainly inside the ring-shaped rim. Interestingly, larger
AB oscillations are found in the analyzed quantum dot than in a fully opened quantum ring of the same width.
Comparison with the unstrained ringlike quantum dot shows that the amplitude of the excitonic Aharonov-Bohm
oscillations are almost doubled in the presence of strain. The computed oscillations of the exciton energy levels

are comparable in magnitude to the oscillations measured in recent experiments.
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I. INTRODUCTION

Semiconductor quantum dots (QD) have been widely
investigated in the last decade because of their potential
applications for electronic,' photonic,” spintronic,* and quan-
tum computing devices.>* Different fabrication procedures
were adopted to grow these structures, and quantum dots
of various shapes and dimensions have been realized. A
peculiar example is a quantum ring (QR),>® which has a
doubly connected topology.” Hence, the Aharonov-Bohm
(AB) effect,® which arises from a change of phase of the
particle wave function with magnetic field, takes place in
the scattering-free limit. In circular ringlike structures the
AB effect is manifested by the crossings of energy levels
of different angular momenta in the ground state, which are
referred to as angular momentum transitions, and which lead to
oscillations of the electron ground energy level with magnetic
field.”

In addition to the AB effect for single-particle states,
the ground energy level of the neutral exciton may exhibit
oscillations when the external magnetic field through the QR
varies. This excitonic AB effect was predicted for concentric
one-dimensional (1D) rings,’ where the electron and hole are
found to accumulate different phases in each revolution in
the presence of an external magnetic field. Also, this simple
model predicted that the bright exciton state can be turned into
a dark one. These bright-to-dark exciton transitions produce
peculiar oscillations of the emission intensity with magnetic
field, which are referred to as the optical excitonic ABeffect.’
In a three-dimensional (3D) geometry, however, the overlap
between the electron and hole wave functions are finite, thus
the emission intensity does not exhibit periodic oscillations
as in 1D quantum rings. Rather, due to a small polarization
of the 3D exciton, small oscillations of the exciton ground
energy level, which are of the order of a fraction of meV, were
experimentally observed.'%!!
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Most work on the excitonic AB effect has been focused
on In(Ga)As/GaAs quantum rings, which are self-assembled
by means of the Stranski-Krastanov (SK) growth,* and are
strained because of lattice mismatch between In(Ga)As and
GaAs. Strain is involved in both the initial phase of the self-
assembly of lens-shaped quantum dots, and the subsequent
dewetting procedure which leads to an outward diffusion of
In adatoms from the central part of the InAs islands. As a
result, the formed quantum rings have volcano-like shapes,
and exhibit substantial compositional intermixing between
the dot and the matrix.'”> The redistribution process has
been demonstrated to be strongly temperature dependent,'’
and QR’s of various composition and morphology have
been fabricated.''® For example, self-assembled quantum
rings exhibiting considerable in-plane anisotropy have been
explored in Refs. 14-16. More recently, almost axially sym-
metric In(Ga)As/GaAs quantum rings were fabricated and
analyzed,'! but no height versus radius dependence of these
rings was determined.

When the QR opening is covered by the material of
the ring, the AB oscillations of the single-particle states
are considerably modified.'>!>!""" In view of the recent
experimental discovery of the excitonic AB effect in type-I
quantum rings,'%!! a few issues deserve special attention. First,
increasing the height of the QD rim with respect to the height
of the inner layer [see Fig. 1] enables larger space for both
the electron and hole in the rim, and therefore the exciton
states could exhibit a QR-like behavior.'*!"2! Second, band
mixing could have an important impact on the hole states, and
in turn their dependence of the exciton ground state energy
on the magnetic field.”*?> Third, recent theoretical results
have indicated that the spatial variation of strain in fully
opened quantum rings is beneficial for the appearance and
the magnitude of excitonic AB oscillations.!”?" Strain could
lead to an effective separation of the electron and hole, thereby
increasing the exciton polarization. A similar separation of the
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FIG. 1. (Color online) (a) Profile of the analyzed ringlike
quantum dot (RLQD). (b) The radial dependence of the RLQD height
h for three values of the parameter n that appears in Eq. (5). The
cross section of the quantum ring defined by Eq. (6) is shown by the
dash-dotted line.

electron and hole in type-II quantum dots was previously found
to promote excitonic AB oscillations.?

In this paper, we explore how the layer covering the
quantum ring opening affects the excitonic Aharonov-Bohm
effect. We assume that the analyzed ringlike quantum dot
(RLQD) is axially symmetric, as depicted in Fig. 1(a). The
magnetic field dependence of the electron, hole, and exciton
states are computed for a few values of the rim height and fixed
height of the inner layer, as illustrated in Fig. 1(b). The strain
distribution is obtained within the approximation of isotropic
elasticity in the continuum mechanical model.?*?> The elec-
tron envelope functions are computed within the single-band
effective mass approach, whereas the hole envelope functions
are extracted from both the axial and spherical approximations
of the multiband Luttinger-Kohn model. The exciton states are
calculated using an exact numerical diagonalization. We will
investigate how the size of the rim affects the excitonic AB
effect. Furthermore, we explore effects of band mixing on
the magnetic field dependence of the exciton energy levels.
We especially analyze how strain affects the mixing of the
heavy-hole (HH) and light-hole (LH) states and what are the
consequences of this mixing on the exciton states.

The paper is organized as follows. In Sec. II, we present
the theoretical framework to compute the strain distribution,
the single-particle, and the exciton states. The results of our
numerical calculations are presented and discussed in Sec. III.
Our conclusions are given in Sec. I'V.

II. THEORETICAL MODELS

A. Model of mechanical strain

The analyzed RLQD is composed of In(Ga)As, which is
embedded in an infinite GaAs matrix, and is strained due to the
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lattice mismatch between In(Ga)As and GaAs. An important
theoretical model that allows one to calculate strain was intro-
duced by Dawnes,’* who based his derivations on the Eshelby
inclusion theory.?® The model was subsequently applied to
quantum dots of different shape and composition.?*?’ In this
approach, the elastic behavior of the material is assumed to be
linear and isotropic. Also, the dot is assumed to be embedded
in an infinite matrix, with a lattice constant mismatch

0 = (aa — am) ’ 1)
am
between the dot and the matrix. Here, a,, denotes the lattice
constant of the matrix material, and a, is the lattice constant
in the dot. The following equation is obtained for axially
symmetric quantum dots

19 ax 8%y 1+v
— £ —Z = . 2
pap<"ap)+ T = e @)

Here, ¢,4(r) is equal to g¢ in the dot and is zero in the matrix, x
denotes the Lamé displacement potential, and v is the Poisson

ratio. The displacement vector u = grady = g—ﬁep + ?,X e,
and the components of the strain tensor
ou
Epp = a—p”, (3a)
£y = 2 (3b)
2] 0 )
ou,
€z = a_zv (30)
Epz = Epp — 0, (3d)
1(0u, Odu,
==\ —+—), 3e
” 2< 9z 9p ) o)

are determined from the computed yx = x(p,¢,z), which is
axially symmetric in the analyzed RLQD. To obtain the
total solution for the components of the strain tensor from
Egs. (2) and (3), the term —g,(r) that accounts for the initial
compression, must be added to the tensile strains, while
no correction is needed for the shear strain components.
Furthermore, the hydrostatic strain in an arbitrary shaped
quantum dot is given by?*

1—2v
N £4(r), (€]
—v

Ehyd = Epp t Egg + €22 = —2

and therefore, for a homogenous material it is constant inside
the dot and equals zero in the matrix. To avoid the division by
p in Eq. (3b), &4 is calculated by using Eq. (4).

B. Electron states in the conduction band

Our aim is to analyze nearly cylindrically symmetric
quantum rings which were experimentally explored in Ref. 11.
But their dimensions were not accurately determined, and
therefore we used the cross sections of the quantum rings
explored in Refs. 12 and 16 in the planes (110), (100), and (110)
[see Fig. 1(b)], and revolved them around the [001] direction
to produce axially symmetric shapes. The volcano-like shape
of such a formed RLQD is shown in Fig. 1(a), and following
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Ref. 12 it is described by the function

(hy—ho)[1—(p/R—1)].
ho+ = 2mmper > PSR
h(p) = nhy—heo R (5)
G- R)yel +1° p =

Here, R is the radial position of the rim top, A is the height
of the RLQD at p = 0, h is the wetting layer thickness, /s
is the reference value for the height of the RLQD rim, whereas
the parameters )y and y., determine the inner and outer
slopes of the rim, respectively. The dimensionless parameter
n is the ratio of the RLQD height and h,. For n = 0.8,
n = 1.0, and n = 1.2 the variation of & with n corresponds
to the (ITO), (100), and (110) cross sections of the ring of
Ref. 12, respectively. The values of the parameters used to
generate the curves in Fig. 1(b)are R = 11.5nm, iy = 1.6 nm,
hoo = 0.4nm, hy; = 3.6nm, ¥y = 3nm, and Y, = 5 nm. Note
that the analyzed RLQD is assumed to be axially symmetric,
which is justified by the fact that the very existence of the AB
effect is related to the topology of the structure. The deviations
due to the in-plane anisotropy of the structure shape may only
affect the period of the AB oscillations.'> Furthermore, the
difference of the rim height for three cross sections shown in
Fig. 1(b) is small, and therefore one might infer that the AB
oscillations of the single-particle energy spectra for the three
values of 1 exhibit small mutual differences. Furthermore,
the advantage of adopting the axially symmetric model is its
conceptual simplicity.

We will compare the electronic structure of an RLQD with
the one of a fully opened ring whose cross section is described
by
0; p <R —o,
hM[l — (";—R)z]; R—o<p<R+o, (6

0; R+o <p,

h(p) =

where o is proportional to the full-width at half-maximum [see
dash-dotted curve in Fig. 1(b)].

The electron states are extracted from the single-band
effective-mass Hamiltonian

He = (p + qu);(p + qu) + HZe + Ve(re)~ (7)
2mi(re)

Here, m} is the electron effective mass, ¢ is the elementary
charge, p is the canonical momentum operator, and A, is the
magnetic vector potential which in the Coulomb symmetric
gauge has the form A, =B x r./2. Here, B denotes the
external magnetic field, which is assumed to be uniform and
directed along the z axis. The Zeeman term H, has the form

Hz. = g, usBo, (8)

where wp = gh/(2my) is the Bohr magneton, my is the free-
electron mass, g7 is the effective Landé g factor, and o is the
Pauli spin matrix. The effective confinement potential V, is
given by?

Ve(r) = ac(pp + €p¢ + £22) + Vofr,e (1)
= acghyd(r) + Voff,e(r)s 9

where a. and Vi, are the deformation potential and the
confining potential due to the offset in the conduction band,
respectively. Because the hydrostatic strain is piecewise
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constant in the employed model of isotropic elasticity, the
effective potential of the electron in the conduction band shifts
rigidly inside the dot, and is zero in the matrix.

Because of axial symmetry, the orbital quantum number
l., which represents quantization of the z projection of the
electron orbital momentum L, is a good quantum number for
the electron state. Thus the electron envelope function is given
by

l’I/nehle(re) = eilp% wnf,le(pe’Ze)v (10)

1
V21
where n, denotes the principal quantum number of the electron
state.

C. Hole states

The hole states are described by the Luttinger-Kohn (LK)
Hamiltonian:?%%°

Hix = Higx + Hike + Voirn - Zaxa + € TH,,  (11)

where Hix is the kinetic part of the LK Hamiltonian,
Hik . is the part which describes the influence of mechanical
strain on the valence-band electronic structure, Z4.4 is the
4 x 4 identity matrix, Vg is the confining potential due
to the offset in the valence band, the diagonal matrix 7, =
diag(+3/2, +1/2, —1/2, —3/2) contains projections of the
angular momentum J (J = 3/2) of the zone-center Bloch
electrons in the valence band onto the z axis, « is the
Luttinger parameter, and H, = hw,, where w. = gB/myg
denotes the cyclotron frequency. Note that the effects due to the
piezoelectric field are negligible, and are therefore discarded
in our calculations.'®!? The energies are measured from the
band extrema in the matrix far away from the dot boundary,
and the energy axis for the hole states is directed from the top
of the valence band downward to the top of the split-off band.

The kinetic part of the LK model is given by?%%’
P+0Q -8 R 0
| =St P-0Q 0 R
Hig = R 0 P—0 s . (12)
0 Rf St P+ 0
with the matrix elements
Rl
P = —| s(kyyik— +k_yiky) + ke ik, |, (13a)
2m0 2
n? Il
0 = ——| (ks ok + k_yaky) — 2k; 2k, |, (13b)
2mo 2
hZ
S = >—3(k_ysk. + k.ysko), (13¢)
21’)10
h2
R=——~/3k_Vk_ — kypk.). (13d)
Zmo

Here, y1, y», and y3 denote the position-dependent Luttinger
parameters ¥ = (2 + y3)/2 and w = (y3 — y»)/2. For B
oriented along the z axis, the magnetic vector potential for
the hole states in the cylindrical coordinates is expressed
by A, = ey - Bp,/2. Thus, it is straightforward to derive the
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following expressions for k. and k.:

. 9 1 8 ¢B
ky = et [—i—ii(—i——+—q p")}
pn Pn 0y 2h

= e (k, +iky), (14a)
9

k, = —i—. (14b)
azp

The strain-dependent part of the multiband LK Hamiltonian
Hik . is given by

PE + Qs _Ss Rs 0

g —S8! P.— Q. 0 R,

LK,s = R! 0 P.— O, S,
0 R! St P.+ Q.

s)

Similar to Hix ., the matrix elements of H, are written in
cylindrical coordinates:

Py = —ay(epp + £pp + £22) = —ayEnya, (16a)
0, = b(gu _ W%) = bsy, (16b)
Se = —d(E,oz — i€¢z)e_i¢h, (16¢)
- 3b+d
R. = 321¢"\/_T+(8pp — €g¢p — 2i€pg)
- 3b—d
+e+21¢h T(gpp — Ep¢ —+ 2i8p¢). (16(1)

Here, a,, b, and d are the deformation potentials in the valence
band and ¢, denotes the biaxial strain.

We briefly discuss the symmetry of the different parts of
the LK Hamiltonian in Eq. (11). Even though Vg ; has axial
symmetry, Hix; and Hix . lack axial symmetry due to the
anisotropy of the bulk electronic structure of the constituent
materials and the strain anisotropy, respectively. The difference
between j, and y3 is usually small, and therefore u is a small
number. If u is approximately taken as zero in Eq. (13d), the
Hy x r becomes axially symmetric, which is the well-known
axial approximation of a multiband k - p model.?® In such
a way, the term responsible for the in-plane anisotropy in
the R matrix element of Higj; which is proportional to
e2% is removed from the multiband Hamiltonian. The term
proportional to e*?? also exists in the R, matrix element
of Hix ., and similar to Higy, is responsible for the lack
of axial symmetry in Hix .. Nevertheless, the difference
[v/3b —d| is usually much smaller than |v/3b+ d|. For
example, in Ings5GagsAs we have V3b—d= 0.9, whereas
V3b+d = —1.5 (Ref. 35). If we approximately take d =
V3b, the term proportional to e*2% s eliminated, and
therefore Hik . becomes axially symmetric. Along with the
axial approximation of Hix ; and the axial symmetry of the
confining potential, the approximation +/3b — d ~ 0 makes
the LK model fully axially symmetric.

Therefore, for the axially symmetric RLQD, the application
of this model is justified when |y, — y3| < (2 + 13), |v/3b —
d| « |«/§b+d|. Such a model does not discard mixing
between different hole states due to the off-diagonal matrix
elements of Hik ., and therefore could potentially be more
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accurate than our previous approach,” which discarded this
influence. The application of the later model was based on
the fact that in an axially symmetric quantum dot the off-
diagonal terms of the strain tensor are generally small, except
close to the dot’s lateral boundary.> Also, €,, — £4p ~ 0,
except around the top of the rim of the analyzed axially
symmetric RLQD, therefore the off-diagonal terms of the
strain-dependent Hamiltonian have a small effect on the
effective potentials.>* This model has the form

Hixett = Hig ok + Vet + €« T H:, (17)
which is simpler than Eq. (11). Here,
Vieft = diag(Van eit, Vin,eft Vin,efis Vin,eit)s (18)

where

b 3
Vin,efi(r) = _avghyd(r) - Eghyd(r) + Ebszz(r) + Vot (1),
(19a)

b 3
Vineft(¥) = —ay&pya(r) + Eghyd(r) - Eb‘gzz(r) + Votr,n(r).
(19b)

The splitting between the HH and LH bands is expressed by
the linear combination of the hydrostatic strain epyq and tensile
strain ¢,,. These expressions for the effective potentials of the
heavy- and light-hole states will be subsequently employed to
explain how the localization of the hole depends on the RLQD
geometry and the associated preferential direction of lattice
relaxation.
H x acts on the multiband envelope function spinor

lllnhh,fz/x (rp)
_ h h h h T
= [, 132 Yoy 12 Y 12 %Y fr—32]
(20)

where f,, = I, + j.» is the quantum number of the projection
of the total angular momentum F = L + J onto the z axis,
and ny, is the principal quantum number. Because of the axial
symmetry, each envelope function has the form

1 .
Vi i ) = =" (przi). @D
T

In addition to the multiband LK model given by Eq. (11),
we employed the single-band approach which relies on
the spherical approximation of the multiband model. This
Hamiltonian has the same form as the Hamiltonian for the
electron states given by Eq. (7), with the subscript e replaced
by h, and the sign of charge altered (¢ — —¢q). The states
of the heavy and light holes are separately computed in the
spherical approximation; therefore the respective states of the
HH and LH excitons are separately determined. When band
mixing is taken into account, the HH and LH excitons mix and
produce the multiband exciton.

D. Exciton states: Multiband approach

The exciton Hamiltonian has the form

H.=H,+ H,+ Vc. (22)

085314-4



STRAIN AND BAND-MIXING EFFECTS ON THE . ..

Here, H, and H are the single-particle electron and hole
Hamiltonians, given by Egs. (7) and (11), respectively.
Ve = —q2 /(4meep|r, — ry|) denotes the Coulomb potential
energy of the interacting electron-hole pair, and the relative
permittivity € is assumed to correspond to In(Ga)As, where
the electron and hole are mostly localized. Furthermore,
because the Coulomb interaction is spin independent, the
electron spin s, of the exciton is a good quantum number.
As mentioned above the hole states are classified according
to the z projection of the hole total angular momentum f,
but the Coulomb interaction mixes different f,, hole states
in the exciton. However, the motion of the exciton center
of mass is axially symmetric, therefore the z projection of
the exciton total angular momentum f,, = s, + 1, — f; is the
other good quantum number of the multiband exciton state. For
the given s, and f;,, the multiband envelope-function spinor
of the exciton state is expanded in products of the electron and
hole envelope functions spinors

lll}ixysj(resrh) = Z ch M, n 1 (re) nh SeHle— fox (rh) .

nesny 1,

(23)

The exciton energy levels are extracted from the secular
equation

(Eg + Ene,lf,sz + E”h SeHe—fox T Ex) : 81, [ 871 e 8m,,n;l
+ Z Z n, ]’(r(’)anh S+~ fox (rh)|VC| ne,le (l'e)

Ne Ny e

x gl

8o Hle— fox (rh)) =0. (24)

Here, E, denotes the band-gap energy of the matrix semicon-
ductor. We note that the secular equations of the | f,.,n,, 1)
and |f,. — l,ny, |) exciton states are equal, while their
energies differ by g¥upB. The energy of the lowest optically
active (bright) exciton state is conveniently denoted by E| ;.
For zero magnetic field, due to electron spin degeneracy and
Kramers degeneracy of the hole states, the exciton states are
arranged in quadruplets.

E. Exciton states: Single-band approximation

Because of the larger effective mass of the heavy hole,
the exciton ground state is the HH exciton. The single-band
approximation does not take into account the effects of spin-
orbit coupling on the valence-band states, and therefore the
spins of both the electron and the hole are good quantum
numbers for the HH exciton. Also, the z component of the total
orbital momentum [, = [, + [;, is a good quantum number for
the exciton. For the given /, and either s, or j,, the exciton
envelope function is expanded in products of the electron and
hole envelope functions

lI/[f(rearh) == Z chf,nh

NesNp e

[ (ro) ¥, h[ —l, (rp). (25)

It is straightforward to show that the spin-dependent Zeeman
terms contribute to the exciton energy by E;*; = g% uzB/2,
where g¥ Joxlgr — (= 1)'s ’j’|g*] is the ef-
fective exciton g factor. Hence, E' p“; could be subtracted from
the exciton energy, which simplifies the calculation.

= —sign(s, —
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The expansion of Eq. (25) leads to the secular equation for
the HH exciton energy

(Eg + Eng,lg + Enh -1, — Ex) . 81 AL 8n A 8n;, ny,
+ Yy (e, @y . (re)
ne.ny A,
XUl () = (26)

For zero magnetic field, because of the double spin degeneracy
of the electron and hole, and the orbital degeneracy of
the single-particle states, the exciton states are arranged
in octuplets, except the I, =0 states which are fourfold
degenerate.

F. Exciton radius

We define the average in-plane exciton radius by

Pﬁ = / / U (r,, ) - (02 + ojf — 2pepr cOs(pe — P1))
o Jo,
P (r,,ry)drdr,. 27

Here, ¥*(r,,r;) denotes either the exciton envelope function
spinor in the multiband model or the exciton envelope function
in the single-band approximation. For the case of the multiband
exciton, inserting the expansion of Eq. (23) into Eq. (27) leads
to

IO|| - Z Z Z Cl,,ne,np,s, Cl,,n), NARH (le,l’l |pe|1eane> . nh,n;

le ne, ’1 np, I‘l/x

2
+ ¢, n, . s:Cly,nl,,n),s, (s, + 1, — fzx»n},|ph|sz + L,
- fzxynh : (Sne,n; - cle,ne,nh,sfclgfl,n’e,nl,,xz (le - 1,l’l/€|,0g
X |leane><sz + 1, — fzx -1 n;,|/0hlsz +1, - fzxvnh>

{le + Linglpelle,ne)
— fonn)]. (28)

The expression for p; of the HH exciton state is similarly
derived,

pH = ZZ Z Cl,,n..n;,Cl,, n, nh<lean |pe|leane> . nh,n}l

L, ”en n;,nh

—C, nem,scleln M8
X (Sz +le - fzx + lanhlph|sz +le

2
- leanmph |lx - lea”h) . Sn(,,n/e

— Ln)|pellene)

=+ ¢i,.n,,n, Cl,n,,m), (Lx

— Cl,,n.,n; Cl,—1 .y, <le

X <lx - le + ]»n2|ph|1x - lg,l’lh)
- Cl,,nf,nhclﬁ-l.né,n; <le + Lnélpelle’ne)
X {ly =1, — lan;,|10h|lx - lew”h)]- (29)

We previously found that p; exhibits oscillations with mag-
netic field whose period is similar to oscillations in the exciton
energy.!’?0

We also define the average single-particle radius and
vertical position for the given exciton state

<pe(h)>:[ / W, 10) - Pey - W (X rp)drndr,,  (30)
Q, JQ
and

(Zeny) = / f (e rh) - Zeny - (X rp)drpdr,,  (31)
Q. JQ,
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respectively. For the concentric 1D ring with the radii (p,)
and (pp), the exciton polarization depends on (p.) — (on)
(Ref. 9). Furthermore, these two radii determine the effective
exciton orbital radius A, which is for the HH exciton defined
ble

=

e + i ] (32)

Ay =
[me/(pm2 +my/{pe)?

Together with (p,) — (pp) it determines the effective surface
area (as the one between concentric 1D rings) threaded by
the magnetic flux. Because the hole effective mass is larger,
A, mostly reflects the behavior of (p,) with magnetic field,
as demonstrated in Refs. 10 and 18 for the case where
compositional intermixing between the ring and the matrix is
present. Furthermore, by using a simple analytical argument,’’
it could be shown that the diamagnetic shift coefficient!? is
dominated by a term proportional to )ni /e, Where [, =
memy/(m, + my). The dependence of A, on B describes part
of the variation of the exciton energy around its average
parabolic dependence on magnetic field.

G. Estimation of the oscillations of the exciton energy

To resolve the AB oscillations in the exciton energy, the
authors of Ref. 32 proposed to plot the second derivative
d’E. 1 /dB? as a function of B. We propose here an alternative
way to estimate the period and magnitude of the exciton energy
oscillation. For that purpose, we fit the energy of the lowest
optically active state E, ; as a function of B by a polynomial
of the fourth order

4
(Exi) =Y ciB, (33)
i =0

where ¢;’s are the best-fit parameters. We found that the fourth
order polynomial describes reasonably well the correction
from a purely parabolic dependence that is found for the 1D
model. The exciton energy residual,

8EX,1 = Ex,l - <E.’C,1>7 (34)

is expected to exhibit the AB oscillations.
An additional figure of merit of the exciton state is the
in-plane Coulomb potential energy, which is defined by

2

Vey = (35)

dmeeop;’

It will be demonstrated that for the lowest-energy bright
exciton state V¢ exhibits oscillations around a linear function

(Vey) = do+di B, (36)

where d;’s are the best-fit parameters. The oscillatory behavior
of V¢ is then resolved by computing the residual

Ve = Ve — (Vey)- 37

H. Oscillator strength and photoluminescence intensity

For the fully opened quantum rings, we previously found
that oscillations of the exciton energy levels occur to-
gether with oscillations in the oscillator strength for exciton
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recombination.?’ For the ith exciton state, this oscillator
strength is given by

foi = [(ucole - pluvo)* I M. (38)

mo E X,
Here, & denotes the unit vector of light polarization, u.o and u
are the periodic parts of the Bloch functions of the electron in
the conduction and valence band, respectively, and M denotes
the transition matrix element between the envelope functions??

M = / / 8(r, —rp) - ¥ (r,,rp)dr.dry,. (39)
Q. J

We assume that ¢ is oriented in the xy plane (in-plane polarized

light), thus the matrix element squared between the zone center

Bloch states is given by

m} P?
2h?

where P denotes the Kane interband matrix element.

The exciton recombination is strongly polarization sensi-
tive. By inspecting the spin part of the Bloch functions for
the in-plane light polarization, one may find that the valence
band functions ¥, 1. 43,2 and ¥,, ;. _i are the spin-up
states and therefore can optically couple with conduction-
band spin-up states, whereas ¥, s 112 and ¥, r 3, can
optically couple with spin-down states in the conduction band.
Therefore, the spin selection rule for the exciton recombination
is |s; — j;| = 1. Furthermore, only equal orbital momenta of
the electron and the hole give a nonzero contribution to the
transition matrix element in Eq. (39). Therefore, | f,| = 1 are
the only bright exciton states for the in-plane light polarization.
Similarly, in the single-band model only transitions between
states of the same spin and /, = 0 are optically active.

Even though our main interest are oscillations of the exciton
ground-state energy with magnetic field, at finite temperature
T there exists a finite probability of population of higher
exciton states, which could smear out the oscillations observed
in the ground state. A measurable quantity at finite temperature
is the photoluminescence intensity,** which we define to
be dimensionless, and represent it by the oscillator strength
thermally averaged over all exciton states,

_ Z[ fx,i exp(_Ex,i/kBT)

Ipp = S exp(—Evi/knT) 41

[(ucole - pluvo)* = Slsm il 1 (40)

III. NUMERICAL RESULTS AND DISCUSSION

We assumed that the RLQD, whose shape is shown in
Fig. 1(a), is made of IngsGapsAs which is surrounded by
the GaAs matrix.!*'>!* The values of the parameters of the
function which describe the RLQD shape are extracted from
the measurements in Ref. 12, and are given in Sec. II B. For the
strain computation, the lateral boundary of the wetting layer is
assumed to be circular with radius 100 nm. The calculations
are performed for n = 0.8, 1.0, and 1.2, which are the cases
depicted in Fig. 1(b). As noted in Sec. I, in addition to these
RLQD’s, we compute the exciton states in a quantum ring of
cross section shown in Fig. 1(b), which is described by Eq. (6).
This ring is assumed to have a height & = hy, = 3.6 nm,
whereas the inner and outer radii at half the ring height
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amount to Ry =8 nm and R, = 15 nm, respectively, thus
o = 4.95 nm.

The values of the lattice constants, the deformation po-
tentials, the Luttinger parameters, the energy gaps in InAs
and GaAs, and the bowing parameters for In(Ga)As are all
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extracted from Ref. 35. The HH and LH masses determined
from these values are in good agreement with the results from
measurements.>® Therefore, we employed the following set of
interpolating formulas to compute the values of the Luttinger
parameters in the In(Ga)As alloy

1 ( 1 — X X —1
In(Ga)As
Y = - — — T o ng~|—O.145x(1—x))
1 ) VLG As _ 2]/20 As yll As _ 2)/21 As
1 1-— -1
+5 ( Gahs - Gahs ToAs - s — 0-0202x(1 —x)) ) (42a)
2\ + 2y, yim 2y,
; . 1 ( 1 — X X -1
In(Ga)As
1% = —— - - — - +0.145x(1—x)>
2 4 ylGaA‘ _ 2yzGaA yll As _ 2)/2] As
1 1-— -1
+7 ( GaAs - GaAs InAs > InAs 00202)6(1 - x)> ’ (42b)
4 Y + 27/2 Y + 2V2
V;H(Ga)As — yzln(Ga)As + (y3GaAs _ yzGaAs) (1 —x)
+ (™ — ") x — 0.481x(1 — x). (42¢)

Such determined Luttinger parameters are consistent with
the results for the Gag 47Ing 53As alloy.*’ Furthermore, we note
that |v/3b — d| = 0.9 is much smaller than |v/3b + d| = 7.5,
and |y» — y3| < (32 + y3), thus the use of the approximate
forms of Hyk  and Hyik . is justified for computing the hole
states by the multiband model.

In our calculations, the effective Landé g factor was taken
to be equal g¥ = —0.44, the Luttinger parameter x = 1.72,
which are the values that correspond to the GaAs matrix,?® and
were found to lead to a better agreement with experimental
measurements.>® The heavy-hole states were computed by
using the value of the effective masses as in Ref. 10,
whereas the heavy-hole effective g factor gy = —3.56 was
selected such that the effective exciton g factor g., = —4, as
derived from the recent photoluminescence measurements on
In(Ga)As/GaAs and InAs/InP quantum dots.***! The negative
exciton g factor agrees with the theory of the multiband exciton
states,*>*? and implies that the lowest-energy hole state in the
single-band approximation is a spin-up HH state.

The conduction-band offset in the In(Ga)As/GaAs system
is assumed to amount to 82% of the band-gap difference
between In(Ga)As and GaAs (Ref. 17). The value of the rel-
ative permittivity is determined from e(x) = 15.1 — 2.87x +
0.67x2 (Ref. 10), for the assumed molar fraction value x = 0.5.
The exciton states are computed in the range of B from O to
30 T. The ambient temperature 7 = 4.2 K is assumed.

In addition to the effective potentials, the electron and hole
localization could be related to the band edges, which are
defined by®

Eep(r) = Vo(r) = deenga(r) + Voro(r),  (43a)
Epp(r) = Vg p(r) + Pe + sign(Q,)

X V102 + IS + R 2, (43b)
Enp(r) = Vg n(r) + Pe — sign(Qe)

X V/Qel? + [S:1> + | Re 2, (43c)

for the conduction-band electron, the heavy hole, and the light
hole, respectively.

The band edges in the conduction, HH, and LH bands for
n =1 are shown in the upper panel of Fig. 2 [Figs. 2(a)
to 2(c)]. These diagrams are generated by using the results
from calculations for the strain distribution and Egs. (43a) to
(43c). Hydrostatic strain is constant inside the dot and zero
in the matrix, therefore the conduction band edge, which is
shown in Fig. 2(a), is piecewise constant. Close to the rim
top the dot lateral dimension is much smaller than its vertical
dimension. Thus, the lattice is mainly relaxed in the lateral
plane, whereas closer to the bottom of the RLQD there is
no preferential direction for the lattice relaxation. Also, the
quantum well for the heavy hole is deeper close to the dot
center than in the rim. As a consequence, the heavy hole is
confined in a shallower effective potential well at the top of
the rim than at the bottom [see Fig. 2(b)]. Furthermore, due
to strain, the barrier for the LH states is erected inside the
dot, and the shallow effective potential well for the LH states
is formed outside the dot, which is shown in Fig. 2(c). One
might infer that because of the confinement of the HH and LH
states in the different regions of the strained structure, band
mixing is reduced, which is advantageous for the application
of the single-band approximation when computing the exciton
states.'”

Along with the variations in the band edge, the probability
densities of the ground electron, HH, and LH states for
the cases n =1 and B =0 are displayed in Fig. 2. The
middle panel [Figs. 2(d) to 2(f)] displays the electron and
hole localization in the strained RLQD, whereas the lower
panel [Figs. 2(g) to 2(i)] show the states in the absence of
strain. The localization of the electron in the ground state
does not qualitatively depend on the presence of strain, which
could be inferred from a comparison of Figs. 2(d) and 2(g).
However, strain leads to a deeper effective potential well for
the heavy hole in the crater than in the rim, therefore the HH
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FIG. 2. (Color online) (Upper panel) Contour plots of the band edges in the In(Ga)As/GaAs RLQD for n = 1: (a) E., (b) E;;, and
(c) Ej;. (Middle panel) The probability densities of the ground single-particle states which correspond to the band edges in the upper panel for
B = 0: (d) the electron, (e) the heavy hole, and (f) the light hole. (Lower panel) The probability densities of the ground single-particle states
for B = 0, but with strain discarded: (g) the electron, (h) the heavy hole, and (i) the light hole.

ground state is confined closer to the RLQD center [compare
Figs. 2(d) and 2(e)], i.e., there is an obvious tendency of the
heavy-hole probability density in the strained RLQD to leak
towards the center. On the other hand, the heavy-hole in the
unstrained structure is mainly localized in the rim, like the
electron [compare Figs. 2(g) and 2(h)]. The peculiar effective
potential that confines the light hole shown in Fig. 2(c) favors
the LH localization above and below the dot, as illustrated
in Fig. 2(f). However, when strain is not taken into account,
the LH state becomes mainly localized in the dot, as shown
in Fig. 2(i). Different localization of the LH states implies
that band mixing has considerably different effects on the hole
states in strained and unstrained RLQD’s.

To demonstrate how the effective potential for the heavy
hole varies with the height of the RLQD rim, we plot in
Fig. 3(a) Ej;, as a function of p at height z = 0.8 nm, which
is half the height of the RLQD crater. It is obvious that
when the rim height decreases, the potential well in the inner
layer becomes shallower, and the barrier in the rim becomes
lower. The probability densities of the ground f, = +3/2
states computed by the LK model in both the strained and
unstrained RLQDs, which are displayed in Figs. 3(b) and 3(c),

are similar to the probability densities of the respective HH
states, shown in Figs. 2(e) and 2(h), respectively. However,
due to the peculiar in-plane variation of Ej; shown in
Fig. 3(a), the probability density of the multiband hole state in
the strained structure leaks more effectively to the RLQD
center. Therefore, when the rim height increases the hole
localization inside the rim is reduced when strain is present.
On the other hand, because the electron effective potential
is stepwise, the influence of increasing the rim height on
the electron localization inside the rim is more effective.
Therefore, such a difference is advantageous for increasing the
exciton polarization, and in turn it could increase the excitonic
AB oscillations.

The single-particle energy levels as function of the magnetic
field for n = 0.8 (dotted red lines), n = 1.0 (dashed green
lines), and = 1.2 (solid blue lines) are shown in Fig. 4. For
n = 1.2 the rim of the RLQD is high enough to establish that
the electron is localized mostly in the rim. For this case, the
orbital momentum transitions areat By = 6.44T, B, = 17.2T,
and B3 = 27.3 T. One might note that the orbital momentum
transitions in 1D rings occur when an odd multiple of half
flux quantum threads the ring.” Therefore, they are arranged
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FIG. 3. (Color online) (a) Ej;, variation with p for z = 0.8 nm.
(b) The probability density of the hole ground state when band mixing
is taken into account. (c) The probability density of the hole ground
state when band mixing is taken into account, but strain is discarded.

according to B; /By = (2i — 1),i = 2,3, ..., where Bj is the
magnetic field of the first orbital momentum transition. This
relation is approximate for n = 1.2, whereas for smaller n
deviation from the 1D ring case becomes larger. It is ascribed
to alarger localization in the inner layer when the rim’s volume
decreases. Consequently, the orbital momentum transitions
shift towards higher B values.

Because the effective potential well for the HH states is
deeper inside the inner layer than in the rim [see Fig. 3(a)], the
hole is localized closer to the RLQD center than the electron.
Therefore, the first orbital momentum transition for n = 1.2
is at much larger B than for the electron [compare Figs. 4(a)
and 4(b)]. For RLQDs with a smaller rim, which are the cases
n = 0.8 and n = 1.0, the hole is confined in a smaller volume,
but the effective potential barrier for the heavy hole in the rim
lowers due to strain. A consequence of the later effect is an
increase of the average heavy-hole radius. Therefore, the first
orbital momentum transition between the heavy-hole states
shifts towards smaller B values when n decreases.
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FIG. 4. (Color online) The ground state energy of (a) the electron,
(b) the heavy hole within the single-band approximation, and (c) the
hole with band mixing taken into account in the LK model. The
dotted red lines denote the case n = 0.8, the dashed green lines are
the states in the RLQD for n = 1.0, and the solid blue lines depict
the case n = 1.2. The angular momentum transitions are labeled by
dots, and the orbital (angular) quantum numbers of the electron and
hole ground states are explicitly indicated.

One might note that the ground HH energy level in Fig. 4(b)
lowers below the B = 0 value, which is a consequence of a too
large Zeeman splitting in the single-band approximation of the
hole states. However, mixing between the hole bands due to
the off-diagonal kinetic terms of the LK model opposes effects
of the Zeeman splitting. Furthermore, the off-diagonal strain-
dependent terms affects the angular momentum transition,
as Fig. 4(c) shows. As a matter of fact, the diagrams of
the electron and hole states in Figs. 4(a) and 4(c) appear
qualitatively similar. On the other hand, a comparison between
Figs. 4(b) and 4(c) demonstrates that the single-band and
multiband models of the hole states exhibit considerable
qualitative discrepancy, i.e., band mixing has profound effects
on the Aharonov-Bohm oscillations of the hole ground energy
level. Therefore, the changes of the hole localization due to
the peculiar effective potential variation with the rim height
shown in Fig. 3(a) cannot straightforwardly explain how the
single-particle energy levels in the LK model are affected by
the increase of the RLQD height.

Figure 5 shows how the low exciton energy levels vary
with magnetic field. The HH exciton energies determined
by the single-band approximation are shown in the left
panel, whereas the results of the multiband calculation are
displayed in the right panel. For both models, the presence of
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FIG. 5. (Color online) Variations of the lowest-energy levels of a few orbital (angular) momenta for the electron spin up with magnetic
field. (Left panel.) The HH exciton energy levels for: (a) n = 0.8 (b) n = 1.0 (the exciton energy levels decreased by 45 meV in the fully
opened quantum ring are also shown), and (c) n = 1.2. (Right panel.) The multiband exciton energy levels for: (d) n = 0.8, (e) n = 1.0 (the
exciton energy levels increased by 125 meV in the same RLQD but with strain discarded are also shown), and (f) n = 1.2.

small oscillations of the exciton ground-state energy around
a parabolic function are found in Fig. 5 when 5 increases.
This is similar to experiments'®!! and our previous work on
fully opened quantum rings.!”?* For n = 0.8 and 5 = 1.0, the
exciton ground energy level is optically active (either /, = 0
or f., = —1)in the whole explored range of B from 0 to 30 T.
On the other hand, for n = 1.2 the [, =0 and [, = —1 levels
cross each other at 19.1 T. This crossing is a consequence
of the decreased Coulomb interaction between the electron
and hole due to increased exciton polarization when the rim
height increases, which was previously demonstrated in Figs. 2
and 3. However, the multiband exciton does not exhibit the
angular momentum transitions in the ground state shown
in Fig. 5(f). The difference between the HH and multiband
exciton ground states shown in Figs. 5(c) and 5(f) is related to
both band mixing and locations of the single-particle orbital
(angular) momentum transitions. In the single-band approach,
the electron orbital momentum transitions are misplaced with
respect to the hole orbital momentum transitions. Therefore, a
change of the exciton orbital momentum [, = I, + [, is possi-
ble when B varies. When band mixing is present, however, the
orbital /angular momentum transitions in the conduction and
the valence bands take place at similar magnetic field values.
Thus, no exciton angular momentum transition are found in
Fig. 5(f), but the lowest bright and dark exciton energy levels
approach each other with B, and eventually the two states cross
each other at B = 39.1 T. Yet, they almost appear as a doublet,
with the energy difference not exceeding more than 0.16 meV
in the range from 30 to 50 T.

For comparison, /, = 0 and /, = —1 exciton energy levels
in the fully opened quantum ring of the cross section shown
in Fig. 1(b) are also displayed in Fig. 5(b). For convenience,
these levels are shifted down by 45 meV. One may notice
that the exciton ground state is bright (I, = 0) in the whole
range of B, which is similar to our previous finding for
quantum rings of rectangular cross section.”’ Furthermore,
the energy difference between the lowest optically active and
dark state increases with B, thus no crossing between the two
is observed at even much higher magnetic fields. Also, we
show in Fig. 5(e) f.x = —1 and f;, = —2 energy levels in
the unstrained RLQD, which are increased by 125 meV. The
exciton ground energies of both the fully opened quantum ring
and the unstrained RLQD vary more slowly than in the case of
the strained RLQDs. The smaller diamagnetic shift is due to
smaller mean square of the in-plane electron-hole separation,*3
and therefore it demonstrates that the exciton polarization
increases due to strain, as inferred from Figs. 2 and 3.

The oscillations of the lowest-energy bright exciton level
with magnetic field in Fig. 5 are resolved by plotting
d’E,/dB? as a function of B in Figs. 6(a) and 6(b), for
the cases of the HH and the multiband exciton, respectively.
Similar variations of the exciton energy residual § E, ;, defined
in Eq. (34), with B are displayed in Figs. 6(c) and 6(d), for
the HH and the multiband excitons, respectively. One may
notice that both d>E x.1/d B? and 8E, ; exhibit oscillations of
decreasing magnitude when 7, decreases. This is due to the
peculiar strain distribution which leads to a barrier lowering
inside the rim and raising inside the inner layer, as Fig. 3(a)
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FIG. 6. (Coloronline) d*E, | /d B* as function of B for (a) the HH
exciton (the dash-dotted magenta line shows the result for the fully
opened quantum ring), and (b) the multiband exciton (the dash-dotted
magenta line shows the result for the unstrained RLQD). Variation of

the exciton energy residual 6 E, ; with B for (c) the HH exciton and
(d) the multiband exciton.

illustrates. It in turn leads to a decrease of the exciton
polarization.

The oscillations of the multiband exciton are found to be
larger. In our previous work we found that oscillations of
the exciton ground energy level are established by means of
anticrossings with higher exciton states of the same orbital
momentum.”?’ These anticrossings appear to be more effective
when band mixing is taken into account. Nevertheless, the
amplitudes of both the HH and multiband exciton energy
level oscillations are of the same order of magnitude, which
is 0.1 meV. It agrees well with recent measurements on
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FIG. 7. (Color online) Variations of the parameters of the lowest-
energy bright HH exciton state with B for n = 1.0: (a) (p.) (solid
red line) and (p;,) (dashed blue line) radius, (b) (z.) (solid red line)
and (z;,) (dashed blue line), (c) (p.) — (pon) (solid magenta line) and
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self-assembled type-I quantum rings,'®!" but it is larger than
what we previously computed for cup-shaped islands.!” Fur-
thermore, because the magnitude and period of the oscillations
for different n are close to each other, and three values of n
correspond to three cross sections of the realistic structure, we
deduce that the lack of axial symmetry would indeed have a
small effect on the excitonic AB variations, as inferred in Sec. I.
One might deduce that for the case of the structure in-plane
anisotropy, as one observed in the experiment of Ref. 12, the
variations of both d?E, ;/dB* and §E, ; with B are close to
the average height of the ring, i.e., the case n = 1. The
quantitative estimation of the effects of the in-plane anisotropy
of the shape of the structure is beyond the scope of the present
analysis.

Also, for the geometry of the quantum ring, shown in
Fig. 1(b), the oscillations shown by the dash-dotted lines in
Figs. 6(a) and 6(c) demonstrate that the excitonic AB effect
in the fully opened case is smaller than the oscillations in the
strained RLQD. Larger oscillations in the latter are mainly a
result of the increased exciton polarization as a consequence
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FIG. 8. (Color online) (a) The in-plane Coulomb potential V¢
(solid blue line) oscillates around (V) which is modeled by a linearly
decreasing function of B (dashed green line). (b) Variation of the
residuals of the in-plane Coulomb potential § V¢ (solid blue line)
and the exciton energy § E, ; (dashed green line) with magnetic field.
(c) The oscillator strength for recombination of the lowest-energy
bright exciton state (solid blue line) exhibits oscillations around ( f, 1)
the linear function of B (dashed green line). The results for the
lowest-energy bright HH exciton state for n = 1.0 are displayed.

of the presence of the inner layer and the associated peculiar
strain distribution. Moreover, for n = 1, the unstrained RLQD
exhibits smaller oscillations than the strained RLQD, as shown
by the dash-dotted lines in Figs. 6(b) and 6(d). Therefore,
comparisons between the unstrained and strained cases in
Figs. 6(b) and 6(d) indicate that the presence of strain is not
detrimental for the existence of the excitonic AB effect, but it
leads to an almost double enlargement of this effect.

To explain in more detail the origin and shape of the exciton
energy oscillations with magnetic field, the characteristic
parameters of the lowest-energy bright HH exciton state as
function of B are displayed in Fig. 7 for n = 1.0. We first
note that variation of the average electron radius (p,) shown in
Fig. 7(a) is much smaller than the variation of the average hole
radius (p;), which could be ascribed to the smaller electron
effective mass. Variations of the vertical electron and hole
positions with B shown in Fig. 7(b) are practically negligible,
and also the average vertical positions of the electron and hole
are almost equal. However, (p.) — (o) decreases considerably
with B, which is demonstrated in Fig. 7(c). This decrease is
a result of the increasing Coulomb interaction when magnetic
field increases. Therefore, the exciton polarization decreases,
and consequently the excitonic AB oscillations abate, as
demonstrated in Figs. 5 and 6. Similarly to (p.) — (px), the
average in-plane exciton radius o exhibits oscillations around
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FIG. 9. (Color online) (a) Photoluminescence intensity /p; for
recombination of the HH exciton as function of B (the result for the
fully opened quantum ring is shown by the dash-dotted magenta line).
(b) Ip, for recombination of the multiband exciton (the result for the
unstrained RLQD is shown by the dash-dotted magenta line).

a decreasing function of B, as shown in Fig. 7(d). However,
due to the increase of (p.) with B and the smaller electron
effective mass, the effective exciton radius A, is an increasing
function of B. Furthermore, it oscillates similar to oy, but its
change is much smaller, just 0.3 nm when B increases from 0
to 30 T. Also, in this magnetic field range the increase of A,
is smaller than the decrease of (p,) — (pp), and thus one may
deduce that the effective surface area is diminished.

Because the RLQD’s electron and hole states are better
confined when B increases, the overlap integrals between the
single-particle states increase with B. It leads to the decrease
of p; shown in Fig. 7(d), and in turn V¢ decreases. Also,
it exhibits oscillations around the linear function of B, as
Fig. 8(a) shows. By careful inspection of Figs. 7(d) and 8(a),
one may find that the oscillations of V(| are in phase with the
oscillations of pj. The excitonic Aharonov-Bohm oscillations
are well resolved in Fig. 8(b), where the plots of § V¢ (B)
and §E ;(B) are both shown. These two quantities oscillate
opposite to each other, illustrating the fact that the Coulomb
interaction tends to suppress the excitonic Aharonov-Bohm
oscillations. As a consequence, the oscillations of §E, ;(B)
have a smaller amplitude than the oscillations of §V¢(B).
Figure 8(c) displays that opposite to the variation of V¢ with
B, enlarged confinement of the single-particle states causes
the oscillator strength for recombination of the lowest-energy
bright exciton state f, ; with B to increase. Furthermore, f ;
exhibits oscillations around a linear function of B which are
opposite to the oscillations of V. Those oscillations are nicely
correlated with the oscillations of p; shown in Fig. 7(d). For
example, whenever p| exceeds the linear fitting function of B,
fx.1 drops below the similar linear dependence on B.
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Figures 9(a) and 9(b) show how the photoluminescence
intensity varies with B for the cases of the HH and multiband
exciton, respectively. Because the exciton is dominantly
localized in the bright exciton ground state for small B, the
Ip; dependence on B is similar to the variation of f, ; shown
in Fig. 8(c). However, Ip; decreases for n = 1.2, because
of a finite population of higher exciton dark states at finite
temperature and the smaller energy difference with the bright
exciton states. Also, all cases shown in Fig. 9, including
the RLQD where strain is discarded, exhibit an oscillatory
variation of /p; with B.

IV. SUMMARY AND CONCLUSION

We explored how the geometry affects the neutral exciton
states in quantum dots whose shape resembles rings but have
a layer inside the nominal ring opening. Our calculations
reveal that such an inner layer enhances the excitonic AB
oscillations for the In(Ga)As/GaAs system, and are larger
than in the case of fully opened quantum rings. We show
that an increase of the height of the quantum-dot rim has the
opposite effect on the orbital (angular) momentum transitions,
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which is ascribed to effects due to strain. As a matter of
fact, we found that strain leads to an increased separation
between the electron and hole, and also it reduces the mixing
between the HH and LH states. The results of the single-band
approximation are found to compare favorably well with the
multiband calculations, except that slightly larger oscillations
of the exciton energy levels are found if band mixing is
taken into account. Even a small increase of the rim height
is found to bring about a considerable shift of the angular
momentum transition between the exciton states. The magnetic
field dependence of the photoluminescence intensity is also
affected by the presence of the inner layer and the variation
of the rim height. The magnitude of the computed excitonic
AB oscillations are found to be comparable to those measured
experimentally.
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