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Numerical toolkit for electronic quantum transport at finite frequency
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Building on the many existing algorithms for calculating the dc transport properties of quantum tight-binding
models, we develop a systematic approach that expresses finite-frequency observables in terms of the stationary
Green’s function of the system, i.e., the natural output of most dc numerical codes. Our framework allows one
to extend the simulation capabilities of existing codes to a large class of observables including, for instance, ac
conductance, quantum capacitance, quantum pumping, spin pumping, or photoassisted shot noise. The theory is
developed within the framework of Keldysh formalism and we provide explicit links with the alternative (and
equivalent) scattering approach. We illustrate the formalism with a study of the ac conductance in a quantum
point contact and an electronic Mach-Zehnder interferometer in the quantum Hall regime.
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I. INTRODUCTION

Numerical simulations of the transport properties of
quantum tight-biding models are now a mature field and
are routinely used either alone or in conjunction with ab
initio simulations and/or electrostatic simulations. Examples
include a wide variety of systems ranging from graphene
devices,'"® quantum Hall effect,”'* or spintronic devices''~'?
to topological insulators,'4!7 semiconducting nanowires, '8~
or hybrid superconducting systems.>!>*

These simulations are based on two equivalent approaches,
the scattering (or Landauer-Biittiker) formalism®~° and the
nonequilibrium Green’s function formalism30-33 (NEGTE, itself
based on the Keldysh formalism). The development of the
numerical methods for simulating quantum transport is per-
haps as old as those formalisms.**~*” One of the most popular
algorithms is the recursive Green’s function method***" and
its generalizations for tackling larger systems, complex geome-
tries, and multiterminal measurements.*' Typical observables
accessible with those techniques are the conductance and the
noise, as well as local properties such as electronic density,
current density, or spin currents.

In recent years, it has become clear that probing quantum
systems at finite frequencies can provide entirely new physical
insights, and finite-frequency mesoscopic physics is emerging
as a field on its own. Among the pioneer works, the extension
of the scattering approach to finite frequency initiated in
Refs. 42-48 has led to many interesting predictions including
the quantum capacitance, finite-frequency shot noise,
quantum pumping, spin pumping, etc. On the experimental
level, apart from the huge corpus of work with quantum
bits (semiconductor or superconducting based), one observes
an increasing interest in high-frequency physics, including
several striking experiments on quantum capacitance,**!
quantum inductance,’>> or electronic quantum optics.’* %4

On the numerical side, finite-frequency physics has
attracted comparatively limited interest so far. Pioneer works
include some calculations by Guo et al..%~%% as well as a few
others.*8:69-77

The aim of this paper is to provide a comprehensive
approach to numerical simulations of quantum transport at
finite frequency, bridging the gap between the output of the

1098-0121/2013/87(8)/085304(17)

085304-1

PACS number(s): 73.23.—b, 73.63.—b, 73.43.—f

existing numerical codes (typically the retarded Green’s func-
tion of a subpart of the system) and the actual ac observables.
We shall provide a systematic way to derive formulas that
express those ac quantities (say, the ac conductance) as the
trace of a product of a few easily accessible Green’s functions.
More specifically, in the presence of a perturbation of the form
Vac cos wt we provide two complementary approaches. The
first one is a diagrammatic technique for a systematic expan-
sion of the retarded Green’s function in powers of V. It allows
one to easily recover the (mostly known) lowest order expres-
sions but also to go beyond linear response or the wide-band
limit using a simple set of Feynman-like rules. The second
method allows one to access the opposite adiabatic limit (& —
0) and systematically expand any observable in powers of w.
The paper is organized as follows. Section II contains an
introduction to numerical simulations of stationary (dc) quan-
tum transport. We focus in particular on the output of the
dc codes that will be the input for the calculations of the
finite-frequency (ac) quantities. We are then ready, in Sec. III,
to present a rather long list of ac expressions that relate one ac
quantity (such as ac conductance or photocurrent) to the inte-
gral (over energy) of the trace of a product of dc Green’s func-
tions. For simplicity we give these expressions in the so-called
wide-band limit and defer the full expressions (that should be
used in the numerics) to the Appendix. In the beginning of
Sec. IV we provide some technical details explaining how to
evaluate the energy integrals in practice. Further in this section
we consider two applications of increasing complexity. In the
first one, we consider the ac conductance in a point-contact
geometry and show that such a measurement would allow one
to extract the time of flight of the electrons through the device.
In the second, we consider the full-scale simulation of an
electronic Mach-Zehnder interferometer made out of the edge
states of a two-dimensional gas in the quantum Hall regime.
The full machinery used to derive the expressions of
Sec. III (and the Appendix) is developed in Secs. V-VIIL
It provides a set of simple rules allowing us to derive the
expressions given in Sec. III as well as any other similar
expression beyond those given explicitly here. Section V
briefly introduces the necessary notations and main results of
the Keldysh formalism. Section VI focuses on the particular
case where the perturbation is periodic in time. We then
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proceed with developing systematic perturbative expansions
around two distinct limits: First we provide a diagrammatic
technique to expand the results in powers of the amplitude
of the perturbation. Second, we expand around the adiabatic
limit where the frequency of the ac perturbation is very small.
These expansions are presented in Sec. VII (perturbation
applied inside the system) and Sec. VIII (perturbation in the
electrodes).

II. BUILDING BLOCK FOR AC TRANSPORT:
THE GREEN’S FUNCTIONS OF THE
STATIONARY PROBLEM

We begin this paper with a brief account of the numerical
methods used for simulating the stationary (dc) transport prop-
erties of quantum systems. We focus on tight-binding models
within the NEGF formalism’® which has become, perhaps, the
standard approach for this problem thanks to the development
of recursive®®*” and other advanced algorithms.*!"*30 The
basic objects obtained as the output of those numerical tools
are the retarded Green’s functions of the system which will
be the input of the expressions for the ac observables derived
later in this paper.

We consider a generic quadratic discrete Hamiltonian of an
open system written as

H=> Hyclcn, (1)

n,m

where cl (cp,) are the usual creation (destruction) operator on
site n. The site index n is very generic and includes all the
degrees of freedom present in the system (spatial, momentum,
spin, electron/hole, orbital). In terms of the (infinite) H matrix,
the retarded Green’s function is defined as

G(E)=(E +ie—H)™", @

where € is an infinitely small positive number. We now focus
on the particular geometry of our mesoscopic system: a finite
region, referred to as 0, connected to M semi-infinite electrodes
1...M; see Fig. 1. In the rest of this paper, notations such
as Ay always refer to the corresponding subblock of the
full infinite matrix A. Each electrode is kept at equilibrium
with chemical potential u,, and temperature 7,,. The first
step in the NEGF formalism consists in integrating out the
electrodes’ degrees of freedom. One obtains for the retarded

FIG. 1. Sketch of a multiterminal mesoscopic system connected
to M = 4 leads. Numbers with a bar on top denote the parts of our
system, i.e., O for the device region and 1...4 for the leads.
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Green function inside the device region Gg5(E):

o -1

Goo(E) = (E —H =Y X(m; E)) : 3)
m=1

where H = Hpy; is the Hamiltonian matrix projected inside

the device region (see Fig. 1) and X" (m; E) is the (retarded)

self-energy due to the presence of the lead m. The latter is

given by

X' (m; E) = Hg(E + i€ — Hyp) " 'Hg. 4)

Equations (3) and (4) are the typical raw output of, say,
recursive techniques®®*#17*80 from which one can calculate
various physical observables such as conductance or current
noise. For instance, the celebrated Landauer formula for the
current flowing from lead m reads in this context>’8

e

I
h

M
/ dE Y (fu— fuw) THGoTw Gl (5)
m'=1

where we have introduced the Fermi function f,(E) =
1/(eE=#n)/KTn 4 1), the standard broadening matrix

T,(E) = i[Z"(m; E) — X" (m; E)], (©6)
and the shortcut
hol
GI(E) = Qoa(E + %) 7

In what follows, our aim is to extend expressions such as
Eq. (5) to ac quantities. Those expressions will involve photon
absorption and emission processes and therefore will require
the calculation of G;(E) for [ # 0.

III. COOKBOOK FOR CALCULATING AC OBSERVABLES

This section is intended as a sort of dictionary where
we provide expressions for various finite-frequency response
functions. Those expressions allow us to extend directly dc nu-
merical codes to the ac regime. They are given without deriva-
tion and we refer to Secs. V-VIII for the proofs and/or the rules
for deriving other observables not included in this section.

The generic perturbation we consider takes the form

W = cos wt Z anc};cm, (8)

where W is arather arbitrary (Hermitian) matrix to be specified
below. This form of perturbation is suitable for ac electric field,
ac magnetic field, or lattice deformation.

A. External ac perturbation

We first consider the situation where a uniform ac voltage
is applied to one of the contacting electrodes, say contact m’.
The perturbation takes the form

W= evaclrh/a (9)

where 1; is the identity matrix inside region r’. The
expressions below are given in the so-called wide-band
limit (WBL) where the energy dependance of the electrodes

085304-2



NUMERICAL TOOLKIT FOR ELECTRONIC QUANTUM ...

(retarded self-energies) is neglected. The most general (but
also cumbersome) expressions without this approximation are
given in the Appendix.

The first important observable is the current /,,(¢) flowing
through contact m. It can be decomposed according to the
different harmonics of the perturbation,

o0
I1,,(t) = Re Z Ly(lw)e ", (10)
1=0
The ac conductance matrix®' (in the absence of dc bias) reads®®

dl,(1w)
T (@) = ———
' dVye
&2
= Z / dETr[FmQZFm’gg - i8m,m’(g2 - gg)rm]

o« f(E) — f(E +hw)
ho ’

Y

At small frequency, it simply reduces to the Landauer
formula (5).
In the WBL, we find an absence of rectification:

2

d“I1,,(0w) _ (12)

dvz
However this is not the case in general, as seen in Eq. (A4)
in the Appendix. Let us briefly discuss what the above result
implies on the modeling of the electrodes, i.e., on the effect
of the position of the dashed line in Fig. 1 (where the
electrodes end and the system starts). Suppose that a real
system is made of a small mesoscopic region connected to
contacts. The contacts themselves are made of two parts: a
very wide metallic part (energy independent, connected to the
measuring apparatus) followed by a narrower region (energy
dependent) which is itself connected to the mesoscopic region.
From the modeling point of view, one must decide where
the electrodes start (in the wide or narrow region). At the
quantum mechanical level, the position of the electrodes is
totally arbitrary and simply corresponds to which degrees of
freedom are integrated out. Therefore at this level, the physics
is unaffected by the position where one chooses to define
the electrodes (in the wide region or in the narrower one).
The fact that Eq. (A4) gives a nonzero result (lead in the
narrower region) or a vanishing one [lead in the wide region
where Eq. (A4) reduces to Eq. (12)] therefore indicates that the
difference between the two cases takes place at the statistical
physics level, i.e., upon assuming that each electrode always
remains at its thermal equilibrium. The correct choice between
the two above-mentioned possibilities depends on the inelastic
mean-free path: When almost no inelastic collisions take place
in the narrower region, the electrodes should be considered to
be in the wide region and the rectification effect vanishes. At
higher temperature, the inelastic mean-free path decreases, and
the narrower region eventually becomes thermalized, which
leads to a nonzero rectification effect.

Another interesting limit is the adiabatic limit when
the frequency w is very small while the amplitude of the
perturbation V,. can remain arbitrary large. To zeroth order
in iw, the current (for m # m’) is simply given by a trivial
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extension of the dc result,

I;lld(t) = %/dE <—§—]EC) Tr[gol"m/ggl"m]evac cos wt.
(13)

This expression is linear in V,. in the WBL. However, in
general [see Eq. (A5)] adiabatic current contains all higher
orders in amplitude as well. More interestingly, the first
correction to adiabaticity reads

j 3
5199ty = 2 [ dE _r
4 0E
aG! 9 .
&Fm — ﬁrm/ggrm}evac sin wt.

T 1—‘m’
x r[go OE OE

(14)

Note that while the adiabatic current follows exactly the slow
changes of voltage, this correction is out of phase.

Another important observable is the electronic density
n(i,t) = (cj(t)c,-(t)) on site { whose decomposition in har-
monics reads

o0
n(i,t) = neq(i) + Rezn(i,lw,m’)e*”w’, (15)
1=0
where n,,(i) is the stationary density in the absence of the
time-dependent potential. We refer to the response function
dn(i,lw,m")/dV,. as the generalized injectivity. It is a straight-
forward generalization of the injectivity defined in Refs. 43
and 47 at small frequency and it reads’®
dn(i,lo,m’) e

T - .G
dVac ha) /dE[f(E) f(E +h€0)][gzrm g()]u.
(16)

B. Internal ac perturbation

Let us now turn to the case where the ac perturbation is
applied inside the device region,

W = eV, Wss, (17)

where the matrix block Wgg can take an arbitrary form inside
the device region, allowing one to include many types of
perturbation such as electric gates or time-dependent magnetic
field.

In the WBL the linear in V,. current response is
dl,(lw) ié?

Ve = 7/dE [f(E) — f(E +hw)] Tr[FszWQS].
(18)

76

The dc (rectified) current contains only even orders in V.
[because sign of V. is just a phase shift in Eq. (8)]. Thus, the
leading-order contribution (in the absence of dc bias) reads’?%3
d*1,,(0w)

dv2

3
e

=3 | AEUS(E) = f(E +ha) TG WG T GIWGT,)

—[f(E —ho)— f(E)]Tr[gongzl"QT_Zngl“m]}, (19)

where ' =" T
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Similarly, the second harmonics of the current is given by

d*1,Qw)
dvz
ie
~ o
+f(E —ho) — F(E)NTHGWG WG ,T,1).  (20)

A particularly interesting case is the current generated
upon perturbing the on-site potential on site i (i.e., Wy =
eViidiréir). The ac response function is the (generalized)
emissivity*>*7 and it reads’®

dl,(1w) _ ie?

- _ f )
AV Y /dE[f(E) F(E +ho)l[GoT'mGalii-
(21

dE{[f(E) — f(E +ho)TH{GWGI WG T,

Note that the emissivity defined by Biittiker has a meaning
of the number of particles (rather than the current) being
emitted into the lead m as a consequence of an internal
perturbation. Thus, to come back to the original definition
one has to multiply Eq. (21) on both sides by 1/(iew). Then
its relation to the introduced above injectivity, Eq. (16), will
become obvious.

Last, we introduce the frequency-dependent Lindhard
function** that relates a change of density on site j to the
perturbation on site j’ as’®

dn(j,1
N(w.j.j) = 20012
de/jr

= —%/dE{[f(E) — f(E +ho)][Ga];;

x [G + f(E +ho)[G1,1G11;
— ()G (G011, (22)

where we implied an expansion similar to Eq. (15) for the
electronic density on site j. We note that this expression does
not assume the WBL.

C. Coulomb interactions: Screening

The expressions given so far do not take electron-electron
interaction into account. Besides missing potentially relevant
correlated physics, the noninteracting expressions violate two
important laws: conservation of current (some finite ac charge
may pile up in the device region) and “gauge invariance”
(raising the ac voltages of all leads simultaneously may
produce some finite ac current),

D Yo #0 D Lo #0. (23)

However, at a scale large enough, some screening will
eventually take place to restore the global electric neutrality
of the system (and these two laws). A minimum treatment
of electron-electron interactions therefore implies solving
the transport equations together with the Poisson equation,
following the general framework developed in the group of
Biittiker.*>*” In practice, one has to solve the Poisson equation
for the ac electric potential V (7,t) (we use spatial notations 7
instead of general coordinates i in this subsection) which for
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the first ac harmonics reads

AdV(?,la),m/) e dn(r,1w,m")
dV,e € dV,

o AV 1w,m')

di'l(lw,7, 24
—i—/ r'll(lw,r,r’) Ve ]( )

(e: dielectric constant). In a second step, one calculates the full

ac current response in the leads as

dl,(lw)
dVaC

dL,1w)dV(F 1o,m’
=Y, w(w) + / dr ( qw) v, lo,m ).
’ dv(r) dVye

(25)

We therefore find that the full knowledge of the injectivity
Eq. (16), emissivity Eq. (21), and Lindhard function Eq. (22)
is needed to complete a fully self-consistent calculation.”*76"7

D. Relation to the scattering matrix formalism

The Green’s function approach taken here can be equiva-
lently recast into the scattering approach developed in Refs. 44,
46, and 81. In particular, the scattering matrix S(E) is
connected to the retarded Green’s function G(E) through
the Fisher-Lee relation.?®* In the WBL, the equivalent
expressions in the scattering formalism are simply obtained
by using the formal substitution,

/anﬂm - _iSnm(E) - 117 (26)

where S,,,(E) is the scattering submatrix between the elec-
trodes m and n. For instance, for the ac conductance, Eq. (11),
the substitution provides

e (dE
T (@) = 7 / ™ [f(E)— f(E +how)]

X Tt 8 = Sh (E)Sum(E + h)], (27)
which is precisely the expression derived in Ref. §1. Note that
the trace in Eq. (27) is taken over the open channels in the
lead.

In general (not in the WBL) mapping between the two
formalisms requires solving the scattering problem in the
presence of the oscillating field via the Floquet approach. For
more details on this approach and its relation to the NEGF see
Ref. 83.

IV. APPLICATIONS

In this section, we apply the formalism on three practical
examples: the ac conductance of a simple one-dimensional
chain, a quantum point contact (QPC), and an electronic
Mach-Zehnder (MZ) interferometer in the quantum Hall
regime. These examples, of increasing complexity, are chosen
to illustrate how the numerical calculations can be performed
in practice and how the ac physics can provide insights absent
in dc. The stationary Green’s functions G, at the root of
the ac expressions were obtained with the knitting algorithm
described in Ref. 41.

The ac observable we consider is the ac conductance, which
is given by Eq. (A1). Equation (A1) can be written as the sum
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of three terms,

e’ [ dE ar
o) =~ / ET[(f(B) ~ F(E +honAg,

—f(E)AY + f(E +hw)A5]], (28)
with
ASL = Tr[AY (E; E + ha)Ga A(E + hws E)GY], (29)

5 = Te[ AV (E: E + ha)Ga Ay (E +hox E)do], (30)
A% = TH[AS(ES E +ho)GIAL(E +1ws EXGL]. (D)

where
AL(E,E') = £(m; E) — £°(m; E') (32)

(here c,b € {a,r} stands for the retarded or advanced self-
energy). The three terms (29)—(31) are direct outputs of
recursive Green’s function-like techniques so that the main
numerical difficulty lies in the evaluation of the integral over
energies.

A. Technical details on the numerical integration

We start with the ac conductance of a simple one-
dimensional chain described by the Hamiltonian,

H =1 {2 = > e+ H.c.)j| (33)

n=—0o0

(the constant 2 serves to offset the bottom of the band to
E = 0). In what follows we choose fy (hopping constant), ag
(lattice constant), and 71/#y as our working units of energy,
length, and time, respectively. The device region is of size L
so that we suppose that the system stays in thermal equilibrium
forn < 0 (left lead, region 1) and n > L (right lead, region 2).

For asingle site L = 1 device, the (on-site) Green’s function
of the system can be easily obtained,®

1 <
= for E <0,
1
SEY=% Tras: T for |E| <4, (34)
1 for E > 4.

J(E-22-4

We find that it contains square root singularities 1//E — Ej
which appear on the edges of the band (or more generally
in a quasi-1D system, whenever there is an opening/closing
of a new conducting channel). Typical plots of the integrands
are shown in Fig. 2. These singularities are integrable but may
require a very fine discretization mesh. In practice, we find that
advanced integration routines, such as QUAD which is used in
this work®® (based on an adaptative mesh and Gauss quadrature
formula), can handle these singularities properly and provide
precise results within a reasonable computing time. A faster
convergence is often obtained when one provides the routine
with a precise location of the position of the singularities.
This location can be found by simple calculations of the dc
transmission of perfect wires as a function of energy using
a dichotomy algorithm (the singularities occur at the energy
where the transmission has a steplike increase). An alternative
route is to remove the singularities using a local change of
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H
w

FIG. 2. (Color online) Real (left panels) and imaginary (right
panels) parts of the integrands appearing in Eq. (28) as a function
of energy close to the band edge E = 0. The frequency was chosen
to be iw = 0.1. There are pronounced peaks at energies £ = 0 and
E = —hw. Upper panels: AS]. Lower panels: A%} (black solid line)
and A4{ (red dashed line).

variable. One starts by locating the singularities and dividing
the integration range in small segments with (at most) one
singularity on one boundary of the segment. The integration
/, gu dEf(E) on one segment (all those integrations can be
done in parallel) is then performed using the local change
of variable E = /E — E; which removes the singularity;

i.e., one integrates fo‘/‘?E" 2d Eg(E) with the nondiverging
function g(E) = E f(E?> + Ey) (see also Ref. 87 and the
straightforward improvement to include two singularities in
one segment).

The ac conductance of the one-dimensional wire is shown

in Fig. 3 for two lengths L = 40 and L = 200. We find that

[Y21] (e¥h)

FIG. 3. (Color online) Absolute value of the ac left-to-right
conductance for the one-dimensional wire of length L = 40 (black
cirles) and L = 200 (red rectangles). Symbols: numerical calculation
with the Green’s function formalism, Eq. (28) (keeping only the A%}
term), lines: scattering approach Eq. (27) (see text for details). We
find a visible difference between the two approaches for the small size
L = 40that disappears when L increases. Fermi energy is Er = 0.17.
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the calculation performed keeping only the “WBL-like” term
A7} (this is the only surviving term in the WBL) in Eq. (28)
is equivalent to using Eq. (27), derived within the scattering
approach,3! in the large L limit. In order to compare the two ap-
proaches, we integrated numerically (assuming zero tempera-
ture) Eq. (27) using the actual dispersion relation of the Hamil-
tonian (33), E(k) =2 — 2cosk, and Sp; = exp(ikL) (perfect
transmission). To understand why both formalisms coincide
when L — oo, note that terms A%} and Af%{ typically oscillate
asexp [£i(k(E + hw) + k(E))L] o exp [+2ikp L] (kp: Fermi
momentum) so their integrals quickly vanish when kgL > 1
and only the (WBL) term A4] o< exp [i(k(E + hw) — k(E))L]
remains (in agreement with Refs. 81 and 88 where the
fast-oscillating terms are neglected in the derivation of the
current operator).

B. Quantum point contact

We continue with a quasi-one-dimensional wire of width
W and length L connected to two reservoirs. The ac bias is
applied to the source lead (S) and we are interested in the
current response in the drain (D); see Fig. 4. The Hamiltonian
is the direct extension of Eq. (33) to the quasi-1D geometry:

oo

w
H=2-Y"3"(cl 1 nnm+chuicom+He). (39

n=—00m=1

The dispersion relation for this discrete model is

E,(k)=¢€,+2 —2cosk, (36)

which corresponds, in the continuum limit, K — 0, to
E,(k) = €, + k7, 37
where the transverse energy €, =2 — 2cos[nm/

(W+1D],n=1...W, and k is the longitudinal momentum.

FIG. 4. (Color online) Rescaled amplitude and phase (upper in-
set) of the two-terminal ac conductance Yps = | Yps|e'® for a quasi-
one-dimensional wire of width W = 10. Lower inset: Schematic
picture of the setup. Fermi energy is chosen to have only one
propagating mode. The parameters are E = 0.68¢,, L = 100 (black
circles), Er = 0.79¢,, L = 150 (blue rectangles), Er = 0.79¢,, L =
200 (green triangles), where €, is the energy of the second mode
opening [see Eq. (36)]. Different symbols correspond to the numerical
integration of Eq. (28), while the lines are calculated with the help
of Eq. (38) exploiting the full tight-binding dispersion relation (36).
Red dashed line is the analytical fit using Eq. (39). All the lengths are
in units of the lattice constant.
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The integer n defines the quantized values of the transverse
momentum and thereby enumerates the conducting channels.
We focus on the regime where only the first (n = 1) channel
is open and use the corresponding transverse energy €; as our
reference energy. In this limit the system is described by a
unique velocity; hence the time of flight through the system
is well defined. In the scattering matrix approach, the system
is described by its transmission matrix Sps(E) = exp(ikL): A
wave packet is entirely transmitted and only acquires a (energy
dependent) phase. Then, Eq. (27) reads
ez (B JdE .
YTps = — — exp{i L[k(E +hw) — k(E)]}. (38)
h Er—hw hw
In the continuum limit, when hw < Ef it can be further
simplified using Eq. (37) into

& o sin (557)
Yps = Z_ it — F , (39)
e ()

where t = L/vp is the time of flight from the source lead
to the drain (see lower inset on Fig. 4). From this simple
calculation we notice that the ac conductance gives access to
two characteristic time (or energy) scales of the system. Indeed,
the numerical results of Fig. 4 indicate that the absolute value
of the ac conductance and its phase can be very well described
by this simple scaling law up to moderately large frequencies.
The scaling parameters arising in this case allow for the
extraction of the time of flight and the longitudinal Fermi
energy. We note that, as the Fermi energy Er and thus the
velocity vp that enter the previous expression are counted
from €, (i.e., they are in fact the longitudinal Fermi energy and
velocity), one can actually slow down the electrons to bring
these times and energy scales into an experimentally accessible
window (GHz range).

A practical way to implement an effective quasi-one-
dimensional wire is through a quantum point contact (QPC)
formed by confining an electron gas with electrostatic gates
placed on top of a semiconducting heterostructure. We
add an electric potential to our quasi-one-dimensional wire
Hamiltonian,

[ee) w
V=V, Y > ®un—ng)y(m — mo)c] ,com.  (40)

n=—00 m=1

where we have used the following confining “saddle point”
potential [see the lower inset of Fig. 5(a) for a color plot of the
potential],

®.(n) = %[tanh <” ;r '7") —Hanh(— ! ; ")] 1)
Py (m) = %[Z—tanh (m;ny> — tanh <—m ; 77y>i|’
Y y

(42)

where the parameters £,,£, control the steepness of the

potential (they are chosen big enough so that the potential rises
essentially in an adiabatic way), and (xg,yo) determines the
position of the center of the QPC. The effective length (width)
of the QPC is 21, (2n,). In this case the dispersion relation in
the gated region may be considered similar to Eq. (38) except
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FIG. 5. (Color online) Quantum point contact. (a) Absolute value
of the ac conductance as a function of driving frequency for different
values of V, depicted on the upper inset. Upper inset: dc conductance
as a function of V,. The lower inset represents actual potential profile
in the device forming the QPC. (b), (c) Extracted time of flight as a
function of QPClength, 21, [see Eq. (41)] and V, respectively. Fermi
energy in the calculations was Er = 1.2 providing 4 open channels
in the leads, while only one being transmitted through the QPC. Other
parameters: W = 11, L =124, &, =1,/2,§, = 35,/2,and n, = 2.

that now the transverse energy ¢, is determined not only by
the width, but also depends on the parameters of the QPC
(ny,&,, Vg, etc.). In our calculations we controlled the value
of V, (keeping other parameters fixed) to have only one open
channel (at a given E) in the gated region [see upper inset on
Fig. 5(a)]. The results of the numerical simulations of the ac
conductance for this system are given in Fig. 5.

Figure 5(a) shows the absolute value of the ac conductance
as a function of the driving frequency. Different symbols
correspond to the numerical results [Eq. (28)] for different
values of the gate voltage V,, hence for different effective
longitudinal velocities, as shown in the upper inset. The
fitting lines are obtained from the scattering matrix formalism,
Eq. (38), making use of the dispersion relation (36). Again,
the transverse energy of the open mode, €(n,,&,,V,,...),
was chosen as the energy reference. Comparing the two
approaches, we see that the closer we are to the edge of
the propagating mode [various symbols on the upper inset
of Fig. 5(a)], the worse is the fit given by Eq. (38). This is
due to the fact that the scattering matrix formula is applicable
when the Fermi velocity is a smooth slowly varying function
of energy,%® which breaks down near the band edge (Er ~ €).

From the slope of the phase of the ac conductance (¢ =
wt; curves similar to the inset of Fig. 4, not shown) we can
extract the effective time of flight 7 of the electrons through
the QPC; see Figs. 5(b) and 5(c). We find that t scales linearly
with the QPC length 27, (ballistic transport) while it increases
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as we tune V, towards the closing of the propagating mode
(the velocity vanishes when the mode becomes evanescent,
Er < €;1). The above calculations did not take screening into
account. However, as all the calculations were performed on
perfectly transmitting channels there is no “Landauer dipole”
in the problem. Calculations done assuming perfect screening
(enforcing current and gauge conservation**% suggest that the
above physical signatures remain observable in presence of
screening, and in particular should allow for the measurement
of the time of flight.

C. Mach-Zehnder interferometer

We close this section with a discussion of the ac
response of an electronic MZ interferometer in the quantum
Hall regime.’*®' The setup consists of the two-dimensional
electron gas confined in a finite geometry, connected to three
reservoirs: source (S), drain (D), and internal drain (D’). Fig-
ure 6(a) presents the sample together with a schematic of the
two interfering edge states. The corresponding Hamiltonian of
the system is

H=2- Z eim(bcjlﬂ’mcn,m

n,mes

el iCam FHC A Vil Com,  (43)

where ¢ is a Peierls phase?” in the Landau gauge (magnetic flux
through a lattice plaquette in units of e /%) and S the list of sites
in the system [orange region in Fig. 6(a) plus the semi-infinite
leads]. The system is put in a strong magnetic field driving the
system into the quantum Hall regime. We focused on the case
with afilling factor v = 1 (single edge channel). The additional
electrode (D’) is necessary to avoid the paths to make multiple
loops (that would turn the interferometer into a Fabry-Perot).
The electric potential V,, ,, defines the two QPCs in the lower
arm of the interferometer (see the previous section). The two
QPC:s play the role of beam splitters for the quantum Hall edge
state. The interfering paths are shown by the solid and dashed
lines in Fig. 6(a). We put an additional Aharonov-Bohm (AB)
flux @4p through the hole of the interferometer that allows
us to change the relative phase between the paths without
changing the edge states. We calculated the ac conductance as
a function of the AB flux ¢4p and frequency w as shown in
Fig. 6. A similar setup was studied in dc in Ref. 41.

We start with simple analytical considerations using the
scattering matrix approach for the edge states. Let us
assume, for simplicity, that both QPCs are characterized
by energy-independent transmission probabilities 77, (and
corresponding reflection probabilities are R;, =1 — T1).
We describe the QPCs by their scattering matrices, which can
be parametrized as follows:

(i‘/R_" m) k=12 (44)

VT iVRe

The source-to-drain transmission amplitude Sps then consists
of the contributions from two paths, path a [solid line
on Fig. 6(a)], which is a consequence of two sequential
transmissions through the QPCs, and path b (dashed line),
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FIG. 6. (Color online) Mach-Zender interferometer. (a) Cartoon
of the system with the interfering paths represented by the solid
and dashed white lines. Length of the sample L = 80; width of
the system W = W, + 22, where W,, is the width of the hole. The
system is in the quantum Hall regime at filling factor v = 1. The two
QPCs were chosen to be semitransparent 7}, = % (b) Transmission
characteristics of the QPCs. The blue dot corresponds to the Fermi
energy at which QPC is half transparent. (c) AB oscillations of
ac conductance as a function of magnetic flux through the hole.
Black circles, red rectangles, and blue diamonds correspond to the
driving frequency hw = 0.003,0.007,0.01, respectively. Width of
the hole W), = 45. (d) w¥ as a function of frequency for different
values of W, extracted with Eq. (50) (see text for details). From
bottom up W), = 30,35,40,45. (e) Function | E(w)|, see Eq. (52), as a
function of frequency. Black circles and red diamonds correspond to
W, = 35,45, respectively. (f) Respective phase of the ac conductance
¢, = wt as a function of frequency. In plots (c) and (e) all
the symbols were calculated with the Green’s function formalism,
Eq. (28), modeling the QPCs with Eq. (41). The connecting lines are
the corresponding analytical fits, Eq. (50), with parameters calculated
from the Green’s function—based numerics.

arising from sequential reflections

Sps(E) =/ Ti e’ V"5 — /R Rye' "), (45)

Traversing either path, an electron acquires a phase ¥, . The
phase itself contains two contributions, the AB phase caused
by the magnetic flux through the hole and a dynamical phase
of the propagating plain wave along the path

Vx(E) = k(E)Lx + ¢x, x ={a,b}, (46)

YAB = Qb — Pa; 47
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where k is the longitudinal wave number of the edge state
and L, is a length of the corresponding path. In order to
calculate the ac conductance we need to specify the energy
dependence of the phase factors in Eq. (45). We note that by
varying energy we modify only the dynamical part of the phase,
while the AB flux is unaffected. Thus, we make the following
ansatz:

Vi(E) = Yo (Ep) + A(E — Ep), (48)
ak
Ay = Lxﬁ(EF), x = {a,b}. (49)

The actual value of ¢ (Ef) and A, depends on the boundary
conditions defining the geometry of the setup. Assuming we
know the edge-state dispersion relation, we can relate the latter
to the group velocity of the edge state v, at the Fermi level via
Ay = Ly /(hvg).

Atthis stage we are prepared to calculate the ac conductance
with Egs. (27), (45), and (48). The scattering formula is valid
whenZiw < Er and we will use it to carry out the integration in
energy. Let us assume, for simplicity, that the QPCs are tuned
to half-transparency 7, = 1/2. Then, after a straightforward
calculation, we obtain

Yos(w,9aB)
1 e wy  sing
=3¢ COS ==~ g cos[Vp(EF) — Ya(EF)] |, (50)
2
L,+ L, L,— L,
T = sz 9= e (51)
Vg Vg

We have two time scales naturally appeared, namely the
average time of flight t and the relative time ¥, coming from
the asymmetry between the paths.

Now we turn to our numerical results (see Fig. 6) and
compare them to the simple formula (50). In Fig. 6(b) we
plot the dc characteristics of the QPCs considered in our
modeling. The Fermi level is fixed at a half-transparency value.
We remind the reader that in order to obtain Eq. (50) we
assumed that the transmission characteristics of the QPCs are
energy independent. However, as one can see from Fig. 6(b),
in our sample detuning from the assumed value becomes
important for iw >~ 0.01 and is of the order AT, ~ 0.15.
Next, Fig. 6(c) represents the plots of the AB oscillations of
the ac conductance as a function of flux for three different
values of driving frequency. Symbols of different types in
the figure represent the Green’s function—based calculation,
Eq. (28), while the solid lines are corresponding fits according
to Eq. (50). This fit is obtained as follows: (i) We perform a
dc calculation [which corresponds to w — 0 in Eq. (50)] and
find ¢9 = arccos[Yps(0,7) — Yps(0,0)], which corresponds
to the phase offset at zero flux @45 = 0; see Fig. 6(c). (ii) We
compute the phase w* = 2 arccos | Yps(w,m) + Yps(w,0)| at
small w. (iii) Finally, we plot Eq. (50) using the extracted ¥
and ¥, (Er) — Y. (Er) = ¢o + @ap. We see that this formula
describes quite well the numerical data, especially at low
frequencies. However when the driving frequency is increased
deviation of the numerical data from the fit becomes more pro-
nounced. A more detailed analysis shows that these deviations
can be accounted for by including the quadratic term in energy,
which we have neglected in Eq. (48). In Fig. 6(d) we plot the
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extracted w?t as a function of driving frequency. Various plots
correspond to the samples with a different width of the hole in
the interferometer. Varying this width, we modify the length
of the upper path [dashed line in Fig. 6(a)]. Extracting the
corresponding slopes, i.e., ¥, for each sample, we are able to
calculate the velocity of the edge state v, owing to Eq. (51).
For the parameters chosen in our calculation, B >~ 20 T and
the lattice constant @y >~ 1 nm, we have obtained the velocity
Vg 0.7aptoh " (which corresponds to v, >~ 10° m/s), where
o =h%/ (2ma}) is a hopping parameter of the tight-binding
model? used to simulate the setup; m is effective mass.

In Figs. 6(e) and 6(f) we present the ac conductance
calculations as a function of frequency. In Fig. 6(e), using the
source-to-drain conductance Yps(w, @4 ), we plot the function

_ Tps(w,m) — Tps(w,0)
Yps(0,7) — Yps(0,0) |

E(w) (52)

which for a simple case of Eq. (50) reduces to
sin(w/2)/(w?¥/2). Again, the symbols correspond to the
Green’s function calculations, while the lines are given by
the analytical fit, Eq. (50), using the calculated before values
of wv [see Fig. 6(d)]. Black circles and red diamonds represent
calculations with various values of the hole width (allowing
us to change the length difference between the paths). We
notice that for the frequencies fiw < 0.02, the numerical data
are very well fitted by Eq. (50), while at higher values of
hw this is no longer true. There are two reasons for this.
First, at high enough frequencies detuning of the QPCs
from the half-transparency value becomes significant [see
Fig. 6(b)] and we cannot neglect the energy dependence of
the transmission/reflection amplitudes. Second, due to the
dispersion of the edge state, there is always a contribution
from the quadratic term neglected in the expansion (48), which
becomes important at high frequencies.

Finally, we plot the frequency dependence of the phase
of the ac conductance [see Fig. 6(f)] varying the hole width
in order to extract the second time scale t according to
Eq. (50). We find again the value of the group velocity
Vg 0.72aptoh ™", which is consistent with the previous result.

To conclude, we have analyzed the ac response of the MZ
electronic interferometer and found that the nonequilibrium
dynamics makes it possible to address the internal time scales
of the setup via transport measurements.

V. TIME-DEPENDENT NEGF FORMALISM
IN A NUTSHELL

The rest of this paper is devoted to the derivation of the
expressions given in Sec. III and the Appendix as well as
systematic tools to derive other observables. The formalism
developed in the paper is based on the nonequilibrium
Green’s function formalism (NEGF). While the application
of NEGF to stationary quantum transport is now standard, we
quickly review below the main features of its time-dependent
version.%>%7071 Our starting point is a general time-dependent
quadratic Hamiltonian for our system:

ﬁ(t) = Z Hnm(t)clcm' (53)

n,m
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We do not include electron-electron interactions besides some
mean field treatment as was discussed in Sec. III C.

The basic objects that will be manipulated in this paper
are various sorts of Green’s functions (GFs). The retarded
&) (t,t"), advanced & (z,t"), lesser & (r,1'), and greater
&, (t,t") Green’s functions are defined as

&, (1) = — %9(; — "){en(0).ch ), (54)
0, (1.1) = %e(t’ — Di{eal),ch (1)), (55)
851 = £ (el (e (1), (56)
&, (1) = —%(cn(t)ci,,(t’», (57)

where c,Tl(t) (cu(t)) corresponds to c,i (cy) in the Heisenberg
representation.
The retarded and lesser/greater GFs satisfy the following

equations of motion:3>33
d
(ihg — H(t)) ®"(t,t) =81t —1), (58)
a
<ih§ - H(t))@'((t,t/) =0, k=<, >. 59)

Table I summarizes the various Green’s functions introduced
so far, as well as the one needed later for the ac formalism.

A. Dyson equation

It is often convenient to split the full Hamiltonian (53) into
a sum of an “unperturbed part” H and a perturbation V(¢):

H=H+V(@). (60)

This splitting can (and will) be done in several different
ways, dictated by convenience. For instance, V can be a
time-dependent potential, or a hopping element between the
device and the leads, or a sum of the previous two, etc.
Introducing g¢"(¢,#’) and g=(¢,#’), the unperturbed Green’s
functions associated with H, one can derive the Dyson

TABLE I. Summary of notations.

Type of GF* Description

ge(t,t) GF of the system when the leads and the
scattering region are decoupled; see Eq. (60).

(N GF of the device subblock for a system with
decoupled leads. g“(¢,t") = g5 (,1).

&“(t,1) GF of the system described by the full
Hamiltonian (53).

G*(t,t") GF of the device subblock; see Eq. (68).
G*(t,1") = & (t,1").

G/ (E) GF of the device subblock with / photons
emitted/absorbed; see Eq. (81).

G/"(E) nth order in V,. of the device subblock GF
with [/ photons emitted/absorbed; see Eq. (90).

GI(E) Retarded equilibrium GF of the system at

energy E + %; see Egs. (3) and (7).

Y =ra, <, >
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equations,’!=3378 which relate the full GFs to the unperturbed
ones. They read,

& =g +g *xVx®, 61)
& =g +& xVxg, (62)
B =g +g xVxB +gxVxB k=<,>, (63
B =g +6" xVxg"+8" xVxg', k=<,>, (64

where the symbol * stands for convolution with respect to time
and matrix product with respect to the site indices:

(A*B)(t,t) =Y / dt" Au(t,1")By(t",1)  (65)
k
and V should be understood as §(t — #'))(¢) in a convolution.

B. Integrating out the electrodes

From now on we restrict V(¢) to the matrix elements that
couple the leads to the system plus (possibly) a time-dependent
potential in the device region. Then from Eqs. (61) and (63)
one arrives at

G =g +g*X +V)*G" (66)
and
G =g+ *VxG +¢ *% %G+ g T x G
+8* VG + g xX %G Kk =<,>, (67)

where we have introduced special notations for the (00) device
subblock (see Sec. II),
H=MHyp, V=Vin G =6y g =g5 ... (68)
and also the self-energies £* defined as

Z5(m) = Vo * G * Vinos
(69)

M
E":ZEK(m), K=ra, <,>.

m=1
Utilizing Eq. (58), Eq. (66) can be rewritten in terms of an
effective equation of motion,
d
(ihg — H) Gith— (X" +V)xG =8 —1t), (70)
while the lesser and greater GFs (67) with the help of Egs. (58),
(59), and (70) are simplified to
G =G *XxG% «k={). 71

In the absence of time-dependent perturbations in the
Hamiltonian (60), the Fourier transforms of the self-energies
¥<(m) and X~ (m) are given by fluctuation-dissipation theo-
rem which results in>-32-33

L=(m; E) = ifm(E)Tyu(E), (72)
I"(mE) = —i(1 — fu(E)NTw(E), (73)
with I',,, defined in Eq. (6).
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C. Expression for the current

The current associated with the mth lead is found using
the approach of Refs. 31, 70, 71, and 78, i.e., calculating the
change of the number of particles in the lead due to connection
with the device region and thereby with other leads too. So,
the expression for the current reads

e <de>, Ry = > clteq (). (74)

dt

aEo),
Taking into account the definition (56), Eq. (74) transforms
into

iy=e Y Vu)S5t.1) = VeSS t.1). (75

iEO’o,
o € oy

Let us introduce auxiliary quantity,
Tty =e Y Vui B (1.1) = Vie()E5(1,1)

i € o0y,
o € oy

= eTr (85, * Vao — Vom * 655). (76)
Exploiting Egs. (63) and (64), one can get

G55 = G * Vind * G55 + G * Vino * Ep (77)
B = Bk * Vou * G + G55 % Vo * 8- (78)

Substituting expressions (77) and (78) into Eq. (76), we come
to

J(m;t,t') = eTt[G”" % £=<(m) + G= % 3%(m)
— ¥ (m)xG= — X (m)* G°l.  (79)

Having this, we can easily find our expression for the current,
since

1,(t) = J(m;t,t). (80)

VI. EFFECT OF A PERIODIC POTENTIAL

We now use explicitly the fact that the perturbation (8) is
periodic in time. We introduce the Wigner coordinates {t =
t —t',T = (¢t +t')/2} and notice that the GF is periodic in T,
G’ (t,T) - G'(z,T + 27 /w). Thus it is possible to expand
the GF into a Fourier series with respect to 7 and into a

Fourier integral with respect to 7:%73-%

dE N _; .
Gr(r,T)=fﬁ Y e UMEreiT GI(E).  (81)
[=—00

We will use extensively the fact that when C(¢,t') = A * B is
a convolution of two quantities, one gets”

CUE)= > A, (E + h%lz)&z <E - 7%) (82)

Li+hL=I

For instance, the current reads,

dE <
I — —iwlt . E
m(t) / o 1300 e " Ji(m; E), (83)
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where using Eq. (82) for each term in Eq. (79) we arrive at

PHYSICAL REVIEW B 87, 085304 (2013)

r hw12 < ha)ll - ha)12 a h(,()l]
J;(m,E):eZTr GZ] E+T le m,E—T +G]1 E+T 212 m,E—T

Li+1=I

r ha)lz - ha)ll
= (mE+ == )G E-—-

2

- ha)lz a ha)h
)—z,l (m;E—i——z )G,2<E——2 )] (84)

This is the main starting point of all the subsequent derivations. We still have to supplement it by three equations. First, using

Egs. (71) and (82) it is straightforward to find

5 M . hol,  holy\ _ _
GI(E)=Z Z Gl] E+T+T 212

m'=11+l+3=l

Second, if we consider the definition of the advanced and the
retarded GFs and a symmetry of the transformation (81), we
easily get

GHE) =[G (B)]'. (86)

Finally, with the two previous expressions and Eq. (84) one
can deduce

Ji(m; E) = [J_y(m; E)]T. (87)

In the next sections we develop a systematic way to
calculate the current (83), i.e., to express the GF elements
G/ (E) in terms of known quantities. We consider two type of
perturbations: internal perturbation (in the device region) and
external perturbation (in the contacts).

VII. PERTURBATION IN THE DEVICE REGION

In this section we consider the case when the perturbation
is applied inside the scattering region. Therefore we assume
that the leads are at local thermal equilibrium and unaffected
by the perturbation. This implies that V in Eq. (70) is given
by Egs. (8) and (17). Performing the transformation (81) in
Eq. (70) we get

hwl , hwl w
E+T—H—Z E+T Glr(E)—eVaC?

p ho w ., ho
XGl—l E—T —eVaC7 1+1 E+7 281,()
(88)
or equivalently
w ho
G/(E) — eVacgl(E)? [Gl’_, (E - 7)
, hw

+ Gl+l E + 7 = 51,0g0(E)- (89)

In the two following paragraphs we explore two complemen-
tary limits: small perturbation amplitude (eV,.) and adiabatic
limit (w — 0).

A. Limit of a small perturbation amplitude

Let us assume that the perturbation amplitude is much
smaller than all characteristic energy scales in the system, e.g.,

m E — —

ha)l]

hwls hwl, hwl,
— G E - — ——=). 85
2 T3 ) 13( 2 2 ) (85)

hopping constant between sites. Then we can solve Eq. (88)
iteratively in powers of e V.. The solution takes the form

GJ(E) =) (eVae)"G{"(E). (90)

n=0
6" e =aue g | 6t (-5 i (e + ) |
1)

forn > 1, and
G(E) = 8,0GI(E). (92)

This equation can be solved iteratively. It is instructive to write
down explicitly the first- and second-order contributions,

w w
GW(E) = 31,1g1(E)7971(E) + 51,71gf1(E)?g1(E),

©3)
GP(E) = 81262(E) 5 Go(E)S G +(E)
48120 2(E) 5 Go(E)S-GalE)
+31,0(g0(E)¥g—2(E)ggo(E)
+ gam%%m%%m)). (94)

The structure of the two previous equations suggests the
following simple diagrammatic representation of an arbitrary
order contribution (see Fig. 7). The diagrams are made by
horizontal propagating lines [G;(E)] separated by “photon
absorption/mission” vertical wavy lines [W/2]. In order to
build G;") (E) one has to remember the following “Feynman
rules”:

(1) To get the contributions of order n, draw n wavy lines
pointing up or down in all possible configurations (there are
2" diagrams).

(2) Each diagram of order n gives a contribution to GE")(E )
where [ is the difference between the number of up wavy lines
and down wavy lines.

(3) Read the diagram from left to right. Starting from G;(E),
each wavy line correspond to a factor W/2 followed by another
Gr(E) with I’ decreased by 2 (up wavy line, a “photon”
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1-st order:

+1g-1 S B

2-nd order:

+2g0g-2 2 0 +2 0 -2?0 0?+2 0
R

FIG. 7. First- and second-order diagrams. Numbers over the
straight lines correspond to the index / for G;. Direction of the wavy
line tells us whether the absorbtion or emission of a photon takes
place. Each diagram corresponds directly to one term in Egs. (93)
and (94).

is emitted) or increased by 2 (down wavy line, “photon”
absorbed). Repeat until the end of the diagram.

B. Adiabatic limit and beyond

We now turn to a very different limit where the driving
frequency (and not the amplitude) is the small parameter of
the problem. When the perturbation varies slowly the system
follows adiabatically. We introduce the generating function F
as

[e¢]

hol
F@E)= ) G (E + 7). 95)
I=—00
A closed equation for F can be obtained by expanding the
self-energy,

=1 L
Y (E+hwl)=Y(E —(hwl)' —. 96
(E +hol) = £'( >+;m< o' == (96)
Assuming that we work around the wide-band limit and using
Eq. (88) (evaluated at energy E + hwl /2), we obtain up to first
order in the derivative of " (E)

F +hwzFyl 1 oL |oF =F, 97)
W Iy 9E | oz = Lgq
with
1
Fua (93)

T E-H-3(E)— eV X2+ 1)

Note that F,; corresponds to the adiabatic limit: When one
evaluates F for a given time T [see Eq. (81)], Fuu(e™'“7 ,E)
corresponds to the stationary retarded Green’s function at
energy E for the potential at time T, i.e., assuming that at
a given time T, the potential varies so slowly that it can be
considered as constant. Higher order terms can be obtained
straightforwardly and correspond to higher derivatives of F.
For instance, to second order, one should add the following to
the left-hand side of Eq. (97):

(fiw)?
- Fud(Z)m

—+z (99)

025’ [ ,9°F  OF
‘ 972 az |

Equation (97) allows for a systematic calculation of F (and
therefore the G;), for instance by expanding it in powers of
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hw. To first order we get

. . . 0L " 10F,4
F —ioTy _ Fu —iwTy __ -hFu —ioT 1— —— _a.
(e™) a(e™") —ihFyq(e )[ Yo ] 3T
(100)

And higher orders are obtained straightforwardly. We em-
phasize that in the adiabatic limit the processes contain a
(arbitrary) large number of absorbed/emitted photons, hence
the role of the generating functions which correspond to an
instantaneous basis. The resulting observables are given in the
cookbook Sec. I1I and in Appendix.

VIII. PERTURBATION IN THE LEADS

The formalism developed above can be extended to homo-
geneous perturbations in the leads. The algebra is very similar
with one notable exception: Multiple absorption/emission
processes are now allowed. We suppose (for definiteness) that
a bias voltage V. cos wt is applied to lead /’; see Eq. (9).

A. Equation of motion

It is convenient to change the basis in the lead affected
by the perturbation in order to move to a frame where the
lead is stationary. The ac voltage then gives rise to a time-
dependent phase factor in the coupling matrix between the
lead and the device. This is easily seen with the help of the
unitary transformation

- ot
U = exp [% f dt'eVi cos(wt’)N], K=Y cle. (101
0

i€oy,

The Hamiltonian after the transformation refers to the old one,

A

A N1
H =UHU —in UW.

Then, it consists of

H(t) = H + V), (102)

where H is the Hamiltonian of the leads and device (when they
are decoupled) and

M
V(t) — Z Z (Vaie(ievﬂc/ha)) sina)tclci

m=1 a€o,,,i€0)

+ Viae—(ievac/hw) sin wtClTCa) (]03)

is the new coupling between them. By doing this change
of basis we are back to the situation where the leads are
kept at (local) thermal equilibrium, whereas the effect of the
perturbation is completely transferred to the coupling matrix
between the latter and the scattering region. As a result, the
self-energies of lead /' now acquire an additional phase factor,

EK(m/; l,t/) — Z'((m/;t _ t/)e—(ie\/mc/hw)(sinwt—sinwﬂ)y

K =ra, <,

(104)

where I“(m’;t —t') is the equilibrium self-energy (in the
absence of the ac field). Expanding the phase factor in Eq. (104)
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in terms of Bessel functions,

+00 eV
—(ieVye /hw) sinwt — T ac —iwnt
e > (G e
n=—00
the transformation (81) applied to the (perturbed) self-
energy (104) gives
o0
eV, eV,
e /;E - J] n —= Jn =
Km'sEy= )" Jiy (hw) (m)

n=—00

hwl
XZ( E—T—hwn) (105)

Finally, the equation of motion has the form

hol wl
<E+ﬁ—H Zy< E+—))G,’(E)
m#m’

= ho , hol,

- Y 3 miE+—0-1))G_ (E-—
! 2 ! 2
Z]:—OO
=510 (106)

This equation is the starting point for the approximation
schemes considered below.

B. Limit of a small perturbation amplitude

Let us now expand Gj(E) in powers of eV,./hw K 1,

> Vac " n
Gj(E)=Y" <"’hw ) G"(E).

n=0

(107)

The first-order result can be obtained by a direct expansion of
Eq. (105),

X (m'; E)
=X"(m';E)

eV hw hw
— | X E—— ) —X(m;E+— )18
+2hw[ ( 2) (’" +2)]“
eV hw , hw

X« E— — ) = X" JE+— ) |8 =
+2hw|: ( 2> (m T )

+0(eVy). (108)
where we used the power series representation of Bessel

functions. Utilizing the notation introduced in Eq. (32), we
obtain

K=ra, <,

1 0
G(E) = (5) 51050, (109)
1\ hw ho
G(E) = (5> [81,_1g_1A:,:,<E ~SE+ 7)@
ho nh
+a,,1g1A;:,< > E+7“’>gl], (110)

which is similar to expressions (92) and (93).

In analogy with the case of internal perturbations, a
systematic diagrammatic expansion can be constructed. The
set of rules to obtain all the contributions to G;")(E ) is given
by the following:

PHYSICAL REVIEW B 87, 085304 (2013)

P
A

FIG. 8. Example of a diagram that contributes to Gilz)(E ). Each
diagram is characterized by the set of upper and lower numbers
which correspond respectively to the number of emitted and absorbed
photons. The numbers along the horizontal line are calculated from
the diagrammatic rules.

(1) Draw all diagrams with 1 < p < n wavy lines. Contrary
to the previous case, the wavy lines now point both up and
down, reflecting the possibility of multiple absorption and
emission processes. Each wavy line i is associated with two
positive integers n¢ and n{ (n{ +n¢ > 1) that correspond to
the two types of processes. We have

p
=" (nf +nf),

=1

i=1

(111)

(112)

(2) Read the diagram from left to right. Starting from

Gi(E), each wavy line corresponds to a factor T,f e (see

below) followed by another Gy (E) with I’ =1+ 2(n —ny)
(n{ “photons” are emitted and n{ are absorbed). Repeat until
the end of the diagram.

(3) The “vertex” is given by

1 1 ey pa )

i ng—+n{

Thos = g s (£ 50t =)
1 1

(113)

with the matrix A? (E) given by

g—1
ifg—1
Al(E) = ;(—1)< l. )

. how . ho
x A E 4+ (2i —q)T;E—i—(Zt +2—q)7 ,
(114)

where (‘{) is the binomial coefficient.
As an example, Fig. 8 corresponds to one contribution to

the 12th order with [ = 4, namely Gilz)(E ). Using the above
rules, this diagram gives

= GuT{3G0 Ty 0Ga T} sG-a,
where, according to Eq. (113),

G\?(E) (115)

Ti; = Yy = [A(E —ho; E) = 3A,(E; E + ho)
+3A0(E 4 ho; E + 2ho)
— A (E 4 2ho; E + 3ho)), (116)
To= 2271 ——[A(E; E +how) — Aj(E + ho; E + 2ho)],

(117)
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T}s = A" (E — 3hw; E — 2hw)

265| [ m
—5A)(E = 2hw; E —hw) + 10A](E —hw; E)
—10A”(E; E + ho) + SA”(E + ho; E + 2ho)
— AV (E + 2ho; E 4 3ho)]. (118)

We see that in contrast to the case when the perturbation
was inside the scattering region, multiple-photon absorp-
tion/emission processes are allowed. This fact can be also
understood from the concept of the sidebands (with energy
shifted with respect to the Fermi level by an amount £nhw)
which has been introduced in the context of ac scattering
theory. #7391

C. Adiabatic limit and beyond

Finally, we consider the adiabatic limit following a similar
procedure to the one presented in Sec. VII B. The procedure is
very similar except for the expansion of the self-energy of the
lead under ac perturbation. The general expansion of Eq. (105)
reads,

r ’ h(l)
P (m E + —(1—11)>

oo

1 (Ao \ 3L (m'; E) f
kX_:k—<—> ) Z(l— 20, — 2n)

n=—0oQ

\% V.
X Jll+n (%) Jn (eh(;c> )

which, using the following two identities for Bessel functions,

(119)

Y IO (x) = 810, (120)

n=—00

2n
TJn(-x) = Ju1(x) + Jur1(x), (121)
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allows us to obtain the self-energy to any value of k. Restricting
to first order, we get

n
ol (m E+ (- 11))

oY (m';, E)
~ 8,0 (m' E) — Zlc(51, 1+ 6, —1)T
hol 3L (m'; E)
WOTTTTE
This expansion corresponds to the wide-band limit (k = 0)°%-7°

and its first correction (k = 1). Itis expected to be very accurate
in metallic leads, for instance. At this level, we introduce again
the generating function for F(z), Eq. (95), and obtain the same
Eq. (97) as for the internal perturbation case provided one
replaces W by [—dX"(m’; E)/d E]. The corresponding results
can hence be adapted to this case straightforwardly. Note that
beyond this first order closed equation can also be obtained,
but this simple replacement rule does not apply anymore.

IX. CONCLUSIONS

Numerical simulations of quantum transport have become
a ubiquitous tool for mesoscopic physics and are more and
more commonly used to help the design of nanoelectronic
devices. On the other hand there is a general trend of
mesoscopic physics and microelectronics towards GHz or even
higher frequencies, so that developing a general framework
to tackle finite-frequency transport is becoming of increasing
importance. In this paper we have developed the corresponding
formalism allowing us to derive a large set of formulas that
express ac observables in terms of numerically accessible
quantities. We provide systematic rules to construct other
expressions that we did not give explicitly. Hence, this paper
can be used either as a recipe book for extending dc numerical
tools to ac or as a starting point for further developments.

APPENDIX A: GENERAL RESULTS FOR AC OBSERVABLES GIVEN IN SECTION III

In this Appendix we present the formulas for ac observables beyond the WBL; see Sec. III. Just as before we will split them
in two parts: response to the internal and external perturbations.

1. External perturbation

First, we consider the situation when the ac voltage is applied to one of the contacts, say m’. Below we present various system
response functions to such a perturbation assuming there is no dc bias in the system.
The ac conductance matrix is given by

2

dE ,
Lop (@) = % f %{[f(E) — f(E +ho)Tt[ A/ (E; E + hw)Ga Api(E + iw; E)Gg |

— f(E)TI[ A} (E; E + heo)Go A (E + ha; E)Go| + f(E + heo)Tr[AY(E; E +ha))Q2A““(E + ho; E)QO]

m

—Tr[ f(E)Dy — f(E + h) D218 .m }.- (AD)

Functions D; ; in the diagonal part are defined as
Dy = i(Gy — GOT(m's E) + (Go — GO A(E; E + ho), (A2)
Dy = i(Gy — GHT(m's E + hw) + (Go — GHA“(E; E + hov). (A3)
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The stationary (dc) component of the current to leading order in perturbation amplitude reads (m # m’)
d*I1,,(0w) _ ie?
dvi  4nle?
— Go A (E; E +ha)GoNg(E + o EYGIT(E)] + [f(E — hw) — f(E)]
X Tr[Go A" (E; E — heo)G-o2 ALA(E — liw; E)GITw(E) — GoAI%(E; E — )G, A%(E — ha; EYGIT,(E)]
— i f(E)TH[Gy(Tw (E + hw) + Ty (E — i) — 2T, (E)GITm(E)1}. (A4)

Adiabatic current. Assuming that the frequency of the perturbation is very small, to zeroth order in Ziw the current is (m # m’)

dE
/ ﬁ{[f(E) — f(E +ho)Ti[GoAI4(E; E + )G AY(E + hiw; E)GTw(E)

14() = %/dE{f(E)Tr[i(F(O)(t,E) — FOY¢  ENWCL(E) — FO@, EYT(E)FO 1 (¢, EYT(E)]

+Tr[F(°)(t,E)<w f(E)+ ir (E)) F(O)'J‘(t,E)Fm(E)]eVaC cos a)t}, (A5)

where the definition of the functions F©©()(¢, E) are given by
1

FO@,E)= - , (A6)
E—H—-Y(E)+ %evac cos wt
9" (m’ 9z’ 9z’ 9" (m’ v,
FO@ E) = iF(O)[#F(O’(I - ﬁ) — (1 - ﬁ) F(O)%]F(O)% sinwr. (A7)

Correction to the adiabatic current. It is the leading order correction of the order ~ fiw to Eq. (A5). Note that it contains all
orders in Vg,

SIN(t) = 8Ly (1) + 815 (t) + 8L (1) + 8L (1) + 81 (1), (A8)
where separate parts read,

SINt) =e / 2“”:;_1{ FET[i(FO(t,E) — FV1 (e, EDE,W(E) — FO(t, EYT(E)FO (¢, E)T,(E)

Lo (E)f(E)+ o S5 (E)) FOl(t, EYT,(E)

FO@ EYC(E)FY (¢, E)T(E)] + Tr[F“)(t,E)(

+ F(o)(t,E)<aFglgE)f(E) + 2, (E)) F“”(r,E)rm(E)“, (A9)
SI2(1) = eh/ dE a[F(O)(t,E)—i—F(O)’T(t,E)](aFm(E) (E)+%F (E)) (AL0)
= 2mh ot oE
SI3(1) = ezh 2‘1 Eh aat{ [ FOu,Eyr(E)FO i, E) F1Z0m3 E) + 2 (m; E)]]f(E)
—Tr[F“’)(t,E)(aF (E)f(E)+ fr (E))F“’)T(z E) [Z’(m E)+ %m; E)]:|eVaCcosa)t} (A11)
s deh [ dE [ [IFO@E)  3F”1(@,E) _AFOwE) | 8F V1, E)
S0 =2 / 2nh{Tr[ B () (8 - e T ) | )
0)
Tr[aF a(t”E)(aF(E)f(EH o F(E))F“)”(r EYT(E)
(OB
- FOq, E)(£f(E) + %r(m) WW(E)} } (A12)
5 ieh [ dE BF(O)(t,E)<8Fmr(E) of )[3 O }
81 ()— B fZHhTr{ 3E 9E f(E)+ Fm (E) at(F (taE)eVacCOSQ)t) Fm(E)

Al (E) of )aFW(t,E)
dF

—[%(F(O)(I,E)evaccoswt)}< f(E)+—F (E) °F Fm(E)}. (A13)
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The generalized injectivity,*>*776

oscillating electrochemical potential in it, is
dn(i,1w,m’) ie

d Ve hw

— F(E)Ga Al (E +haw; E)Go + f(E +ha)Gy AL(E + ha; E)G)]

PHYSICAL REVIEW B 87, 085304 (2013)

which is the density of particles on site i injected from the lead m’ as a consequence of the

< f dE[[f(E) — f(E +ha)IG AS(E + h; EYG,|

(Al4)

i’

2. Internal perturbation

Now we will present the results for the response to an internal potential. Again, we assume that there is no dc bias applied to

the system.
Current response linear in V, is given by
dl,(lo) ¢ ar t -
v = dE{[f(E) — f(E + ho)ITt[AY(E; E + he)GoWG) | — f(E)Tt[A]/(E; E + hw)G WG|
ac
+ f(E + ho)Tr[ A%(E; E + ha)Gi WG]} (A15)
The dc component of the current caused by the rectification effect can be written (to leading order in V) as
d*I,(0w e
IO _ [ 4B T F(B) — £(E +halGoWGT(E +he)GWG{T(E)
dvz 4h
—[f(E —Tw) — f(E)GoWG 2T (E — )G, WGITu(E)]. (A16)

Similarly, the second harmonics of the current is given by
d*1,,Qw) _ e
avi  2h

— f dETI[[f(E) — f(E + 1) GWGIWG A (E — hew; E + hiw)

+[f(E —hw) — f(E)GWGoWG ,AY(E —fiw; E +hiw) + f(E +ho)G WG WG A“(E — hoo; E + ho)

—f(E —he)GWGWG_, Al (E — hew; E + ho)].

The response function to perturbing the on-site potential on site i is the (generalized) emissivity

(A17)

434776 and it reads [note that

it differs from the original definition by Biittiker, where one has to multiply it by 1/(iew)]

dly(lo) e?
avi

+f(E +hw)G)A“(E; E +hiw)Gl]

£ / dE[LF(E) — f(E +ha)] GIA (E: E +ha)Ga — F(EYGAL(E: E +ha)Ga

(A18)
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