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Schrödinger-Poisson calculations for scanning gate microscopy of quantum rings based
on etched two-dimensional electron gas
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We present a systematic numerical simulation of the scanning gate microscopy experiment as performed on
a quantum ring etched out of InGaAs/InAlAs heterostructure containing two-dimensional electron gas (2DEG).
The present simulation accounts for 2DEG deformation under the presence of the tip, for modification of the
electron charge trapped at the semiconductor/vacuum interface, for polarization effects at the interface, for the
image charges related to the presence of the metal tip and for the three-dimensional character of the confinement.
Once the potential is established by self-consistence of the Schrödinger-Poisson scheme, the linear conductance
is evaluated by solution of the quantum scattering problem with several subbands at the Fermi level. We find that
the conductance is a slowly varying function of the tip position in accordance with the experimental data. We
study the high-pass-filtered conductance maps, which generally exhibit concentric patterns outside the ring area,
and radial features inside the ring for negative charge at the tip. Influence of the surface charge and potential
imperfections on conductance maps are also discussed.
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I. INTRODUCTION

In semiconductor heterostructures with two-dimensional
electron gas (2DEG), the electron mean-free path and phase
coherence lengths are comparable to the size of studied
systems.1 In these conditions, the linear conductance G is
determined by the scattering properties of Fermi electron
wave functions, which makes these systems an attractive
playground for phase-coherent quantum transport studies. The
potential landscape for the Fermi electrons results from a rather
complex electrostatics and localization of charge carriers.
Since relatively recently2,3 local perturbation of this potential
can be introduced intentionally by a charged probe of a floating
gate. The technique known as scanning gate conductance
microscopy2,3 allows for tracing the electron trajectories
in unconfined systems visualizing the magnetic focusing,4,5

interference due to the elastic scattering,6 semiclassical scarred
orbits of quantum billiards,7,8 charged islands in the quantum
Hall effect regime,9 branching of the electron flow,10–12 the
flow dynamics in quantum point contacts,13–15 and Aharonov-
Bohm interference in quantum rings.3,16–19

The present paper is inspired by scanning gate conduc-
tance mapping experiments3,16–19 on etched InGaAs/InAlAs
quantum rings. The raw experimental G maps3,16–19 of the
rings are dominated by slowly varying background in contrast
to the experiments on less strongly confined systems.4,5,10–15

In general, the details of scattered wave function10–12 can be
resolved from the experimental G maps only provided that
the effective width of the potential perturbation introduced to
2DEG by the electron gas is small as compared to the Fermi
wavelength λF . The InGaAs/InAlAs quantum rings3,16–19 have
a high 2DEG density of the order of 1012 cm−2 and the
Fermi wavelength (λF ) of the order of 20 nm, which is
smaller than the width of the effective potential of the tip.
The range of the effective tip potential can be deduced
from measurements on closed Coulomb blockaded quantum
dots.20–23 An experiment23 on quantum dots tailored from
2DEG indicated that the tip potential is close to a Lorentzian of
width 280 nm for the tip floating about 230 nm above the gas.

Calculations of Ref. 24 indicated that the Lorentzian form of
the effective potential is also found for etched channels—for
the tip above the axis of the channel—and that the potential
width is independent of the electron density and close to the
tip-gas distance. In the experiments on quantum rings,3,16–19

this distance corresponds to 50 nm,18 which largely exceeds
λF . Nevertheless, the experimental G maps3,16–19 exhibit
universal features upon high-pass filtering with the radial
fringes within the ring and concentric ones outside. The latter
result from the electrostatic Aharonov-Bohm (AB) effect and
evolve in the external magnetic field due to contribution from
the magnetic AB phase shift.16 The radial features can be
attributed to the elastic scattering within the ring.24

The actual form of the tip potential is of a crucial importance
for interpretation of experimentally accessed conductance
maps. Usually the tip potential is taken in a form of closed
formulas of Lorentzian,17,19 Gaussian,7,17,18 or generalized
Coulomb5,21 profiles. The latter well approximates the solution
of the Poisson equation for free-standing nanowires placed
between the tip and the conducting backgate.21 The original
potential of the tip charge as seen by 2DEG is of the Coulomb
form. The charges present within the sample react to this
potential and screen it leaving only a short range component.
For unconfined 2DEG, the screening response of the sample
follows the tip as it scans the surface, so the form of the
effective potential is preserved when the tip floats above
the structure. This is not necessarily the case for samples
containing the lateral confinement.7,8,10–12,22,23 For etched
rings3,16–19 when G signal is gathered from outside of the
channels, the screening starts only at the edge of the sample,
so a closed form of the tip potential independent of the tip
position is evidently excluded. There is probably no alternative
solution of the Schrödinger-Poisson problem to determine the
actual current flow conditions. The first step was made in
Ref. 24, where the conductance was determined based on a
DFT solution for a strictly two-dimensional electron sheet
with the tip assumed in a form of a fixed point charge. The
present calculation includes possibly all the details of the
sample that are of an importance for the effective potential of
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the tip: (1) the presence of the surface charge, which is—as we
show below—an effective source of screening, (2) polarization
effects at the semiconductor/vacuum/metal interface, and
(3) a constant voltage (and not constant charge) applied to
the tip. Moreover, as a progress with respect to Ref. 24,
(4) the actual three-dimensional confinement of the electron
gas is accounted for, (5) the experimental range of the surface
charge density is reached, and (6) the effects of perturbed
symmetry of the device are described. All these steps taken,
the modeling becomes relatively close to the experimental
conditions and the results can be compared to the experimental
ones at the quantitative level. For that purpose, we proceed to
high-pass filtering16,18 (7) of the conductance maps reaching a
close correspondence to the experimental data.

II. THEORY

A. Model structure and electrostatics

The model structure contained within the computational
box is depicted in Fig. 1 (see the caption for the structure
details). The current flows within the In0.7Ga0.3As quan-
tum well sandwiched between In0.52Al0.48As barriers. The
upper InAlAs barrier is δ-doped with donors. The conduc-
tion band offset between the In0.7Ga0.3As quantum well
and In0.52Al0.48As barrier materials is as large as �Ec =
680 meV,25 hence all the donors of the barrier are ionized.
For the dopant density ρd = 2 × 1012 cm−2, the ionized
donors release about 7000 electrons to the structure contained
within the computational box. The freed electrons go to two
locations: (1) the InGaAs quantum well forming the 2DEG and
(ii) the semiconductor/vacuum interface where they localize
at the surface. The tip of the probe is assumed in a form of a
sphere of radius Rtip that floats at a distance h above the upper
edge of the quantum well.

The tip influences the charge and potential distribution
of the sample near the semiconductor/vacuum interface and
deeper inside the 2DEG area. The dielectric constant mismatch
at the semiconductor surface and the surface charge are crucial
for realistic modeling of the structure. Nevertheless, for the
evaluation of the conductance, we are in fact interested in the
potential distribution within the semiconductor. In order to
determine this distribution, account is taken for the presence
of vacuum and the metal tip and we proceed using a standard
approach:26 we treat the entire space as filled by a semicon-
ductor and the effects of the dielectric constant discontinuities
in the semiconductor/vacuum/metal interfaces are described
using the image charge technique. The dielectric constant dis-
continuity between InAlAs/InGaAs is small and we neglect it.

In the experiment, the channels and the ring are formed
by etching a layer structure. In this paper, we assume that
the etched area is filled with a material that is dielectrically
matched to InGaAs and does not contain any charge densities.
This assumption allows us to use a simple form of the image
charge technique for the planar surface between the dielectric
and vacuum. We assume that the filling material has the bottom
of the conduction band aligned with the InAlAs barrier to
describe the electron confinement within the channels.

The surface of the structure is charged with electrons. The
properties of the surface states at a clean InGaAs/vacuum
interface are relatively well known.27–29 We use the empirical

FIG. 1. (Color online) Schematics of the structure. The colored
layers show the spatial distribution of charges included in the
simulation. The computational box starts at z = 0 at the interface
of heavily n-doped InP substrate and a thick layer of In0.52Al0.48As
(barrier material). The latter corresponds to the lowest layer within
the box [z ∈ (0,z1 = 110 nm)] and is followed by a 13-nm-wide
In0.7Ga0.3As quantum well [z ∈ (z1,z2 = 123 nm)]. On the quantum
well layer, there is a 25-nm-thick barrier [z ∈ (z2,zsv = 148 nm)] that
tops the semiconductor structure. Inside this layer, 11 nm above the
upper edge of the quantum well (z3 = 134 nm), there is a monolayer
δ-doped with Si donors of concentration ρd = 2 × 1012 cm−2. The
surface charge is confined at the semiconductor/vacuum interface.
The structure is etched leaving a 120-nm-wide channel and a ring of
inner radius of rin = 140 nm and the outer one with rout = 280 nm. In
the model, the etched area is filled by the barrier material and deprived
of any charges. The length of the channels inside the computational
box is 700 nm. The computational box covers also the vacuum area
up to 255 nm above the semiconductor structure. The scanning tip is
assumed in a form of a sphere of a radius Rtip placed at a distance h

above the upper edge of the quantum well.

parametrization27–29 of the surface charge density to account
for the screening of the tip by the surface charge, which occurs
when the electron states are filled or emptied in reaction
to the potential of the tip. Moreover, the electron charge is
also accumulated at etched lateral trenches, which leads to a
significant depletion of the 2DEG at the edges.18 Here, we
account for this effect according to the previous modeling16–18

by reduction of the width of the channels with respect to the
nominal (lithographic) geometry of the sample.

The density of states localized at the lateral etched edges
of the sample is unknown. We demonstrate below, that
application of density states of (001) InAlAs/vacuum surface
to the lateral edges drastically reduces the amplitude of the
signal gathered when the tip is not right over the quantum ring,
which is in an evident contradiction with the experimental data.
Our calculation suggests, therefore, that the charge at the edged
trenches is rigid and not very sensitive to the potential of the
tip, and does not participate very effectively in the screening of
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FIG. 2. (Color online) (a) Layers of the real charge present within
the system. The surface charge is assumed at the semiconductor side
of the solid/vacuum interface. (b) Model system applied for solution
of the electrostatics within the semiconductor, extending the solid area
to the entire space and including the image charges of the electron
gas ρ ′

2DEG, the dopant layer ρ ′
δ , and the surface charge ρ ′

sv.

the tip. Therefore the plain reduction of the area accessible to
2DEG near the edges due to the electrostatic repulsion by this
charge seems quite a reasonable idea. According to Ref. 18
the lithographic width of the rings is up to nearly 200 nm,
and the lateral gas depletion width is 35 nm. We study here
mostly systems with channel widths of 120 (input and output
channels) to 140 nm (ring channel).

The electrostatic potential on the semiconductor side is
calculated from the Poisson equation

∇2V = − 4π

ε0ε
ρtot, (1)

where ε = 12.4 is the applied semiconductor dielectric con-
stant and ρtot stands for all the real and image charges present
within the semiconductor structure and in the vacuum region.
The real charges include [see Fig. 2(a)] the electron gas within
the channel, the ionized dopants, the surface charge, and the
charge localized at the tip. The treatment of the surface and
image charges [see Fig. 2(b)] is explained in detail below. The
Poisson equation is solved with a finite difference technique
with the mesh spacings of �x = �y = 3 nm and �z = 1 nm,
using a fast Fourier transform technique.

1. Surface charge

The experimental structure is based on materials lattice
matched to InP substrate that have been under intensive
studies for the last two decades. In particular, the experimental
analysis27 of the In0.52Al0.48As surface states indicated that

they are distributed within two separate regions within the
energy gap. The density of the surface states was parameterized
in Refs. 28 and 29 and we use this parameterization in the
present work. The surface electron density is evaluated as

ρsv = N0

2∑
i=1

niriFi, (2)

where N0 is the surface atom density, ni is the electric charge
on a single surface state, ri is the geometry factor, and
Fi is the filling of the given surface state by the electrons
given by

Fi =
∫ Vs

−Eg+Vs

dE
exp

(−{E−[Vs (r)−V i
s ]}2

2σ 2
i

)
√

2πσi

1

exp
(

E−EF

kT

) , (3)

where the last term in the integrand is the Fermi-Dirac
distribution (T = 4.2 K), V i

s is the center of the ith surface
state, and σi is its dispersion. The integration goes over the
energy gap of the InAlAs barrier material. The energy shift
Vs(r) = �Ec − eV (r) + S accounts for the conduction band
offset between the InGaAs and InAlAs and the electrostatic
potential energy at the given position at the surface. The
value of S is a potential shift that gives the position of
InGaAs conduction band with respect to the Fermi energy
of the leads, determined by the charge neutrality condition
(see below).

For most of the calculations, we adopted model parameters
for the surface states density of Ref. 28, with n1 = n2 =
1, N0 = 5.8 × 1014 cm−2, V 1

s = 1000 meV, σ1 = 80 meV,
r1 = 0.002, V 2

s = 690 meV, σ2 = 30 meV, and r2 = 0.001.
We refer to this sets of values as parameterization I, and we
use it throughout the paper unless explicitly stated otherwise.
For the sake of discussion we also performed calculations
with another set of parameters adopted of Ref. 29. Accord-
ing to parameterization II,29 we use, r1 = 0.000794, r2 =
0.000605, V 1

s = 1000 meV, and V 2
s = 620 meV (other values

as in I).
Figure 3 shows the surface states densities obtained with

the parameterization I (black line, grey area) and II (red lines,
red area). According to the second parameterization, the
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FIG. 3. (Color online) The surface states density with respect to
In0.52Al0.48As conduction band for applied parameterizations I (black
line) and II (red line), see text. The filled areas correspond to the
occupied electron states for the Fermi energy near the center of the
higher surface state.
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surface confines smaller electron charge. We find that for the
first (second) parameterization, most of the electrons freed by
the donor impurity go to the surface (2DEG).

The extent to which the surface charge density reacts to the
tip varies strongly with the local potential energy. In particular,
for parameterization I, the reaction of the surface charge and
this screening is strongest in region “A” and weakest in region
“B.” For the studied structure, we find that in parameterization
I, the electrostatic potential at the surface in the absence of the
tip is established rather within the B area with fully filled first
level. For the parameterization II, also the second level tends
to be filled.

2. Image charges and tip charge

The studied structure contains media (semiconductor/
vacuum/metal) of very different dielectric properties. The
dielectric constant discontinuities are accounted for by intro-
ducing the images of charges present within the semiconductor
(1) at the vacuum side and (2) on the metal tip [see Fig. 2(b)].

(1) The image of charges present within the semiconductor
ρs(x,y,z) appear at the vacuum side in point (x,y,2zsv − z), in
the scaled form ρ ′

s(x,y,2zsv − z) = ε−1
ε+1ρs(x,y,z). The surface

charge ρsv is assumed totally on the semiconductor side but
close to the surface, hence its image appears within the vacuum
area.

(2) The charges from the semiconductor area ρs(r) with
r = (x,y,z) produce images in the metal tip which is assumed
of a spherical shape. The image charge is26 ρ1 = −Rtip

u
2

ε+1ρ,
where rt is the center of the tip and u = r − rt . This image

charge is localized at r1 = rt + u
R2

tip

u2 .
The original charge accumulated at the tip—modeled as a

metal sphere of a radius Rtip—is determined as q0 = UtRtip,
where Ut is the potential applied to the tip. The actual charge
accumulated on the surface produce the same potential outside
the tip as the point charge localized in rt . For finite difference
mesh, the point charge is equivalent to the charge distribution
ρ0 = q0

�x�y�z
contained within a single mesh cell.

The charge of the tip, ρ1
tip = ρ0 + ρ1 (the original one plus

the image of the semiconductor charges), generates an image
in the semiconductor given by ρ ′′

1 = − ε−1
ε+1ρtip. The position

of this image is r′′
1 = (x1,y1,2zsv − z1). The image of the

tip within the semiconductor generates on its turn the image
within the spherical tip ρ2 = −ρ ′′

1
Rtip

u′′ , where u′′ = r′′
1 − rt .

The charge of the tip is therefore a sum26 of three components
ρtip = ρ0 + ρ1 + ρ2. Calculation of ρ1 and ρ2 is done by a
self-consistent iteration with convergence reached after about
20 iterative steps.

The entire charge density as seen from the semiconductor
area including the image charges is given by ρtot = ρs + ρ ′

s +
2ε

ε+1ρtip and this density appears in Poisson equation (1) to be
solved.

3. Boundary conditions

The boundary conditions for the Poisson equation seen
in the extended semiconductor area [see Fig. 2(b)] are
calculated in the following manner. The computational box
is assumed charge neutral. At the sides of the computational
box [see Fig. 1] that are crossed by the leads we assume

∂V
∂y

|y=±yb
= 0, where ±yb are the coordinates of two sides

of the computational box. On the remaining four sides of
the computational box the electrostatic potential is calculated
from the charge density present within the computational
box and introduced to the Poisson equation via Dirichlet
type boundary condition. The values of the potential are
calculated using the multipole expansion technique.26 For
that purpose, we extended the computational box by 700 nm
of both sides including the leads. The extended region
was filled with charge density of the edges of the original
computational box. Then the extended computational box
was divided into subdomains of size lx × ly × lz with lx =
ly = lz = 20 mesh points. Within each subdomain the charge,
the dipole and quadrupole moments were calculated. The
results for the charge moments in each subdomain are next
used for establishing the potential distribution on the sides of
the box.

B. The electron gas

We solve the Schrödinger equation for the electrons
localized within the InGaAs channels to establish the electron
charge density, which enters the Poisson equation for the
device, and to solve the scattering problem for the electron
at the Fermi surface in order to evaluate the conductance. The
single-electron Hamiltonian is of the form

Ĥ = P̂xy + T̂z + W (r), (4)

where P̂xy and T̂z are the kinetic energy operators within the
(x,y) and z directions, respectively, and W is the confine-
ment potential, with W (x,y,z) = V (x,y,z) + Vxc(x,y,z) +
Vwell(z) + S, where V is the electrostatic potential cal-
culated from the Poisson equation (1), Vxc is the DFT
exchange-correlation potential (we apply Perdew and Zunger
parameterization30), Vwell = 0 inside the InGaAs quantum
well and Vwell = �Ec outside, and S is the constant en-
ergy shift mentioned above in the context of the surface
states.

The kinetic energy component in the growth direction T̂z =
− h̄2

2
∂
∂z

1
m∗(z)

∂
∂z

accounts for the discontinuity of the electron
effective mass, which is significant with m0 = 0.04m0 for
InGaAs the quantum well and m0 = 0.085m0 for InAlAs
barrier. In order to account for the magnetic field B = (0,0,B),
we apply the gauge A = (0,Bx,0), which gives

P̂xy = [
p̂2

x + (p̂y + eBx)2
]
/2m∗. (5)

Since the vertical confinement of the InGaAs channel
(13 nm) is much stronger than the in-plane one (channel
width of 120 nm), we apply an approximation of a frozen
wave function within the z direction. For all the electrons,
the three-dimensional wave function is then 
μ(x,y,z) =
ψμ(x,y)f0(z), where the same function f0 is applied for all
μ. With this assumption one can integrate out the z degree of
freedom from the eigenproblem Ĥ
 = E
. For that purpose,
we multiply the eigenequation by f0(z) and integrate over z

and obtain an effective two-dimensional problem:

[P̂xy + W̃ (x,y) − Ẽ]ψ(x,y) = 0, (6)

where W̃ (x,y) = 〈f0(z)|W (x,y,z)|f0(z)〉, Ẽ = E − Tz, and
Tz = 〈f0|T̂z|f0〉. We do not make any further assumptions on
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FIG. 4. (Color online) Potential W (z) (black line) and the electron
density ρ2DEG (red line) in the asymptotic region along the line passing
through the center of the channel (x = 0,y = yb,z).

the specific form of f0(z), which is determined by a specific
potential distribution within the self-consistent loop of the
principal Schrödinger-Poisson calculation. For that purpose,
we consider the potential along the z direction determined far
away from the ring in the center of the lead, i.e., along the line
(0,yb,z), see Fig. 4.

The eigenproblem (6) was solved in a basis of Gaussian
functions with centers distributed on a mesh:31

ϕm(x,y) =
Mg∑
i=1

cm,i gi(x,y), (7)

where

gi(x,y) = exp

[
− (x − xi)2 + (y − yi)2

2σ 2
g

− ieB

h̄
(y − yi)xi

]
.

(8)

Gaussians gi(x,y) are centers in nodes of a square mesh (ri =
[xi,yi]), with the nearest-neighbor distance of �g = √

2σg .
For σg = 6.56 nm, the value of �g is 9.28 nm.

In order to determine the expansion coefficients cm,i for
Eq. (7), one solves the matrix eigenequation

Hcm = EmP, (9)

in which H is the Hamiltonian matrix (6), with elements hij =
〈gi |̂h|gj 〉, P is the overlap matrix of elements pij = 〈gi |gj 〉,
and cm is the vector whose elements are the coefficients cm,i

appearing in formula (7).
We evaluate the linear conductance G which defines the

current at low bias: I = GVbias. The linear conductance
is by definition independent of Vbias and is experimentally
determined in the limit of residual bias (in Refs. 16–18
	25μV). In order to determine the charge density across
the structure, we neglect this small difference between the
voltages applied to the leads, which allows us to apply periodic
boundary conditions for the wave functions 
(x,y + 2yb) =

(x,y), where 2yb is the length of the computational box. The
periodic boundary conditions are applied by a modification
of matrix elements Hij and Pij in a way to imply that the
centers near the low-y end of the computational box are

neighbors of those at the high-y end. This is done at the matrix
element calculation stage by a virtual shift of the centers near
the high (low) end of the channel by R = [0, − (Ym + �g)]
by (R = [0,(Ym + �g)]), where Ym = maxi,j=1,Mg

|yi − yj | is
the maximal y-direction distance between the centers of the
basis. This procedure is applied for those functions, which are
localized at a distance equal or lower to 10�g from the ends
of the computational box.

Upon solution of the single-electron eigenequation, one
determines the density of the electron gas

ρ2DEG(r) = −eνs

∑
μ

|
μ(r)|2 1

exp
(Eμ−EF

kT

) , (10)

where the factor νs = 2 accounts for the spin degeneracy (the
Zeeman effect is neglected).

In 2DEG, the maximal electron kinetic energy determines
the carrier density. We treat the Fermi energy as the reference
energy level EF = 0. For all the donors of the doped ionized
layer, the Fermi energy is pinned by the electron reservoirs.
The parameter S defining the potential W in Eq. (4) fixes
the position of the bottom of the InGaAs quantum well with
respect to the Fermi energy. For the calculation, we choose a
value of S for which the entire computational box is charge
neutral—for parameterization I, we obtain S = −60.4 meV
and for parameterization II, S = −110 meV.

C. Conductance from transmission (Landauer approach)

Once the self-consistence of the Schrödinger and Pois-
son schemes as well as the charge neutrality are obtained,
we proceed to the calculation of the scattering problem
to determine the Fermi level electron transfer probability
across the structure. For that purpose, we take the potential
W̃ (x,y) as calculated within the channels far away from the
ring, where it only depends on the x coordinate W̃1(x) =
W̃ (x,y → ∞). For the adopted gauge, the single-electron
wave functions in potential W̃1(x) have a separable form
ψkp,p(x,y) = φin

p,kp
(x)eikpy , where φin

p,kp
(x) is the pth subband

wave function across the channel and kp is the wave vector.
Solutions of the Schrödinger equation for this form of wave
functions in potential W̃1(x) give the dispersion relation, which
is depicted in Fig. 5. For parameterization I as many as
eight subbands are present at the Fermi level, and the values
of the Fermi wave vectors kp are determined by crossing
of the subband with the Fermi energy Ep,kp

= EF = 0
condition.

In order to calculate the linear conductance, we apply the
Landauer-Büttiker formula,

G = −2e2

h

∑
p

∫ EF +�E

EF −�E

dE Tp(E)
df

dE
, (11)

which employs the transfer probability Tp for the electron
incident from the subband p for the thermal spread of the
Fermi level accounted in the integration limits of �E =
6kT for which

∫ EF +�E

EF −�E
(− df

dE
)dE 	 0.995. The procedure of

evaluation of Tp(E) is based on a 2D finite-difference real-
space scheme employing the gauge invariant kinetic energy
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FIG. 5. (Color online) Dispersion relation for the electrons within
the channel at B = 0. Eight subbands appear at the Fermi level, Ekm

is the kinetic energy of the Fermi electron motion along the wire in
the lowest subband.

discretization32 accounting for the multiband scattering and
evanescent modes, which was described in detail in Ref. 24.

D. Calculation sequence

We first determine the equilibrium conditions for the
electron flow solving the coupled Poisson and Schrödinger
problems in the absence of the tip using the steps described
above. The perturbation introduced by the tip to the potential
and charge distribution within the 2DEG is weak—of the order
of a few milli-electron-volts at maximum—compared to the
kinetic energy of the progressive motion of Fermi electrons
along the channels, which is of the order of 50–80 meV
(depending on the parameterization of the surface states). For
that reason, in order to determine the 2DEG charge density,
we use the wave functions and the energy spectrum for the
confined gas as calculated in the absence of the tip. The
influence of the tip is introduced through the Fermi-Dirac
distribution function,

ρ2DEG(r) = −eνs

∑
μ

|
μ(r)|2 1

exp
[Eμ−EF +�W (r)

kT

] , (12)

where the local perturbation introduced by the tip is �W (r) =
Wtip(r) − Wnotip(r), with Wtip and Wnotip being the total poten-
tial energies in point r as calculated with and without the tip,
respectively. In other words, the present scheme uses the
solutions of the Schrödinger equation obtained in the absence
of the tip for evaluation of the potential landscape for the
Fermi level electrons that carry the current. The reaction of the
electron gas to the tip is calculated as due to the variation of the
local occupation of energy levels via the quantum statistics.

III. RESULTS AND DISCUSSION

A. Potential profile without the perturbation

For the parameterization I, the self-consistence is reached
(without the tip) when 63% of the electrons provided by the
donors go to the surface states and only 37% to the electron
gas. Other properties of the 2DEG are listed in Table I. The

TABLE I. The kinetic energy of the lowest subband, its Fermi
wavelength and wave vector for parameterization I. G stands for the
calculated conductance of the ring.

B(T) Ekm
(meV) kF (nm−1) λF (nm) G( e2

h
)

0 45.91 0.224 28.1 5.36
0.5 45.55 0.248 25.4 5.02
0.515 45.52 0.2485 25.3 4.79

average density of 2DEG inside the channel is then n2DEG =
0.735 × 1012 cm−2 with eight subbands appearing at the Fermi
level. For parameterization II, the surface adsorbs electrons
less effectively. As much as 59.4% of the electron charge goes
to 2DEG (n2DEG = 1.19 × 1012 cm−2). In consequence, the
kinetic energy of the highest occupied energy level grows to
76.1 meV, and as many as 11 subbands participate in the charge
flow.

The self-consistent 2DEG charge and potential energy
distribution W obtained in the absence of the tip for B = 0 T at
2 nm below the upper edge of the quantum well are displayed in
Fig. 6. The total potential [see Fig. 6(d)] is rather flat inside the
channels and takes minimal values at its edges. In consequence,
the electron density [see Figs. 6(a)–6(c)] is the largest at the
edges of the structure. The electron density is rippled across
the channels which is a result of the superposition of eight
lowest subbands wave functions. The ripples are averaged out
in the potential energy W . We note that on average the electron
density is nearly equal within the ring and the channels.
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FIG. 6. (Color online) 2DEG charge distribution (a)–(c) and the
total potential W at 2 nm below the upper edge of the quantum well.
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FIG. 7. (Color online) Potential distribution change �W =
Wtip − Wnotip (in milli-electron-volts) induced by the tip for
Rtip = 20 nm and Ut = 1 V plotted 2 nm below the upper edge of the
quantum well. The position of the tip is marked by the red dot.

Figure 7 shows the potential modification �W due to the
tip (Rtip = 20 nm, Ut = 1 V, h = 50 nm, parameterization I)
within the quantum well layer. For the tip outside the ring [see
Figs. 7(a) and 7(c)], the potential change is limited to the edge
of the channels. The potential within the channels is strongly
affected only when the tip floats above them, see Figs. 7(b)
and 7(d).

B. Radius of the tip versus G maps

Columns marked by G in Fig. 8 show the raw conductance
maps for various radii of the tip Rtip and tip voltages Ut

for h = 50 nm and B = 0.5 T. As a general rule, we notice

that the raw conductance maps G are smooth functions of
the tip position in agreement with the experimental data
of Ref. 16. The columns denoted by δG in Fig. 8 show
the high-pass Fourier filtered conductance—according to the
technique used in postprocessing of the experimental data.16,18

We calculate the Fourier transform of the conductance as
a function of the tip position G(x,y), obtaining its trans-
form in the frequency domain F [G(x,y)] = G(ωx,ωy). Then,
G(ωx,ωy) = G1(ωx,ωy) + G2(ωx,ωy), where G1 covers the
low frequencies

√
ω2

x + ω2
y < 4.2 nm−1 and G2 the rest of the

higher frequencies. The columns marked in Fig. 8 as δG(x,y)
are calculated as the inverse Fourier transform of the high
frequency part, i.e., δG(x,y) = F−1[G2(ωx,ωy)].

In δG maps of Fig. 8, we notice that the ratio of the signal
for the tip outside the channels to the signal for the tip inside
the channels distinctly decreases with decreasing Rtip. An
increased original charge ρ0 is needed to maintain the same
voltage for larger Rtip. For instance, at Ut = −1 V and for the
tip localized above the axis of the channel far away from the
ring, the total charge at the tip is ρtot = −16.8e and −41.7e for
Rtip = 20 and 60 nm, respectively. For larger Rtip, the larger
charge at the floating gate is placed at a larger distance from
the electron gas. From the previous study,24 we know that the
effective width of the tip potential grows with the tip-electron
gas distance, which explains the stronger signal from outside
the ring for larger Rtip. In Fig. 8, we also notice that for larger
Rtip the concentric fringes in the area outside the ring—a
characteristic feature of the experimental data16,18—are well
pronounced. In our data, radial features of δG inside the
ring are usually observed for negative tip voltage, although
occasionally they can be noticed also for positive voltage
(see the result for Rtip = 100 nm and Ut = +0.5 V). As a
general rule oscillations of the δG signal inside the ring are
more abrupt for strong negative tip voltages. The presence
of the repulsive potential of the tip enhances the electron
backscattering.24

C. Screening induced by the surface charge

In order to demonstrate the role of the surface charge for
screening and conductance maps, we performed calculations
with the surface charge distribution established and fixed in
the absence of the tip. The screening of the tip by the surface
charge is in this way excluded. The results with frozen surface
charge are plotted in Fig. 9 and should be compared to Fig. 8
with Rtip = 20 nm for Ut = ±1 V. As long as the background
conductance G is concerned, no distinct change of the map is
observed. However, the amplitude of δG variation when the
surface charge is fixed increases more or less twice particularly
for the tip above the channels.

Let us return to the results obtained with the surface charge
reacting to the presence of the tip. The surface and 2DEG
charge redistribution for the data of Fig. 8 for Rtip = 20 nm
and Ut = 1 V is plotted in Fig. 10. Both the charges have the
same sign, and react qualitatively similar to the presence of
the tip. A positive potential of the tip is considered. We can
see that the 2DEG charge is more distinctly increased along
the edges of the channel. When the tip is above the channels
the change of the surface charge density is about twice larger
than the 2DEG charge density. This is related to the adopted
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FIG. 8. (Color online) Raw conductance maps (G) and high-pass Fourier filtered signal δG for various radii of the tip Rtip for h = 50 nm
and B = 0.5 T.

parameterization (I) of the density of surface states for which
we find more electrons at the surface than in the 2DEG.
Remarkably, when the tip is localized outside the channel in
Fig. 10, we find that the maximal local change of the charge
distribution is larger for 2DEG.
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FIG. 9. (Color online) Same as Fig. 8 (Rtip = 20 nm) only for
switched off screening of the tip by the surface states (for the electron
surface density fixed in the absence of the tip).

D. Charge at the lateral edges

In the bulk of this work, we neglect the charges accumulated
at the lateral etched edges accounting for their presence by a
limited width of the channels. In this section, we present the
results which are obtained for the electrons adsorbed by the
etched trenches. Due to lack of established density of states
for the lateral surface, we used the parameterization I, which
describes a clean (001) InAlAs/vacuum interface. We assumed
that the lateral charge is localized up to the level of 50 nm below
the surface of the structure. The electrostatic potential of the
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FIG. 10. (Color online) (Top) Surface electron density modifica-
tion �ρ = ρtip − ρnotip for Rtip = 20 nm and Ut = 1 V. The maximal
value of �ρ is 2 × 1014, 7 × 1014, and 2.5 × 1014 (in cm−2), for the
tip at xt = −500, −210, and 0, respectively. (Bottom) Results for the
2DEG density 2 nm below the upper edge of the quantum well.
The maximal value of �ρ is 3.8 × 1014, 3.8 × 1014, and 4.9 ×
1014 (in cm−2), respectively.
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FIG. 11. (Color online) Same as Fig. 8 (Rtip = 60 nm) only
with charge localized at the etched lateral edges of the structure
with the density of states adapted from the surface of the system
(parameterization I).

electrons at the lateral surface reduces the effective width of
the channel and thus drastically increases the maximal kinetic
energy of the electrons forming the Fermi gas. In order to keep
the maximal kinetic energy unchanged with respect to the
previous results, we increased the widths of the channels from
120 to 200 nm, with inner radii rin = 120 nm and the outer
one rout = 320 nm. The results for Rtip = 60 nm are displayed
in Fig. 11. As compared to the result of Fig. 8, we notice that
the amplitude of the signal from outside the ring is drastically
reduced. Moreover, the distinct concentric features of δG from
outside the ring disappear. The present results in the context
of the experimental data16,18 suggest that the screening of the
tip potential by the charges of the lateral trenches should not
be very strong. This would be the case for large density of
lateral surface states deep below the InGaAs conduction band,
for which the lateral electron distribution will not significantly
react to the tip potential.

E. Increased density of the electron gas

In this section, we applied the second parameterization
of the surface states (see Sec. II A1) for which the electron
density within 2DEG is nearly doubled. The results are given in
Fig. 12. The data of Fig. 12(a), for Rtip = 60 nm, can be
compared with the results of Fig. 8. We notice an increased
amplitude of the signal and its stronger variation inside the
ring.

Reference 18 reported on a presence of a region of linear
dependence of the amplitude δG variation on Ut , for which
the pattern of the map was essentially unchanged by Ut . In the
present results, we notice a trend toward linearity understood
in this way for increased (i) density of the 2DEG, (ii) tip-2DEG
distance, and (iii) Rtip. An example is given in Fig. 12(b) for
Rtip = 100 nm and h = 70 nm. Although the slowly varying
background G changes strongly with Ut , the character of the
δG map both inside and outside the ring retains much of its
overall pattern, which was not the case in the data presented
above.
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FIG. 12. (Color online) Same as in Fig. 8 only with parameteri-
zation II of the surface density with 59.4% electrons forming 2DEG,
with (a) h = 50 nm, Rtip = 60 nm, and (b) h = 70 nm, Rtip = 100 nm.

F. Inhomogeneity of the ionized donor distribution

The results presented so far were obtained under an
assumption that the structure has an ideal axial symmetry
with respect to both x = 0 and y = 0 axes. The deviation
of the actual structure from the perfect symmetry is inevitable.
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FIG. 13. (Color online) �W introduced by six negative charge
centers 2 nm below the upper edge of the quantum well for
B = 0.5 T.

In order to simulate the effects of the symmetry deviation,
we performed calculations for inhomogeneity of the doping
within xy plane. For 2 × 1012 impurities per cm2, about 3000
donors are present above the ring area, and in the present
model, we assume that their charge is uniformly smeared
above the ring. Let us now assume that 0.2% of the dopants are
missing, i.e., there are six donor impurities missing in the donor
layer. The missing donors are accounted for by introduction
of six negative charges localized at random within the doped
layer. The potential perturbation introduced by the charges is
depicted in Fig. 13, and the conductance map for this case is
given in Fig. 14 for Rtip = 20 nm at B = 0.5 [cf. the perfect
ring results as given in Fig. 8]. Note that (1) the potential of
the impurities is short range due to the screening by the rest
of the charges and that (2) the actual positions of the charges
are not visible in the conductance map of Fig. 14. Instead,
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FIG. 14. (Color online) Same as Fig. 8 (Rtip = 20 nm) only for
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FIG. 15. (Color online) �W introduced by the tip as calculated
along the axis of a straight channel for Rtip = 20 nm. The numbers
indicate the assumed density of donor centers [in 1012 cm−2 units]
for Ut = −1 V (a) and Ut = +1 V (b). The dopant densities in units
of 1012 cm−2 are given in the inset to (a).

all the plotted quantities are slightly deformed and rotated
with respect to the unperturbed case. The overall character
of the map for the perfectly symmetric potential is kept
unchanged.

G. Effective potential of the tip

For the purpose of conductance maps modeling, it would
be useful to use a simple effective potential instead of the
actual potential induced by the tip by massive numerical
calculations. In order to inspect the form of the potential
perturbation introduced by the tip, we calculated �W for
a straight channel (without the ring) with the tip localized
above the axis of the channel (Rtip = 20 nm, Ut = ±1 V).
The results are given in Fig. 15 for the quantum well layer.
In Fig. 15, beside the nominal dopant concentration (2.0 ×
1012 cm−2), we considered also lower dopant concentrations.
We see that the effective potential is close to a Lorentzian,
�V = VL/[1 + (r/σL)2] whose width is largely indepen-
dent on the dopant concentration. However, the maximal
value of the Lorentzian increases quite fast with decreasing
dopant concentration. For the donor concentration σ = 2.0 ×
1012 cm−2, the hight/width of the Lorentzian is VL =
−2.71 meV, σL = 44.7 nm for Ut = 1 V and VL = 3 meV
σL = 44.17 nm for Ut = −1 V. The width of the Lorentzian
perturbation introduced thus exceeds the Fermi wavelength by
a factor of 10 (see Table I).

We used the Lorentzian form of the effective potential to
simulate the conductance maps calculated within the Poisson-
Schrödinger scheme with the results presented in Fig. 16. We
notice that the G maps obtained in this way for the tip outside
the channels do not reproduce the features of the main simu-
lation: the signal due to the tip vanishes quite fast. In the main
simulation, the screening of the tip starts only at the edge of
the channel, hence the signal has a long-range character due
to the Coulomb interaction. The variation of δG and G inside
the ring for the Lorentzian ansatz agree in amplitude with the
results of the main simulation [see Fig. 8 for Rtip = 20 nm and
Ut = ±1 V]. Naturally, there is no correspondence between
the results in the area outside the channels. Also, the relation
of the G map inside the ring area as obtained by the ansatz
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potential to the ones obtained by the full procedure is rather
unclear.

IV. SUMMARY AND CONCLUSIONS

In summary, we have solved the Schrödinger-Poisson
problem for a model semiconductor structure simulating the
conditions present in the experiments of conductance mapping
by a floating gate. The present model accounts for the charge
distribution within the two-dimensional electron gas, the
spatial charge of the ionized donors, the surface charge and
the dielectric constant discontinuities with metal, vacuum and
semiconductor present within the computational box and the
interactions between all the spatial charges. The solution of
the self-consistent scheme produces the potential landscape
for the Fermi electrons which determines the conditions for
the electron transfer problem, which was solved by a direct

approach to the Schrödinger equation with a full account
taken for interband scattering. We discussed the charge
(2DEG and surface charge) and potential distributions, and
the conductance maps including its high-pass filtered part.

We have found that both the bare conductance and the
high-pass filtered conductance exhibit rather circular features
for the tip outside the ring, and the high-pass filtered part
contains interlaced fringes of increased and decreased values
in accordance with the experimentally stated tendency. The
radial fringes, which are observed in the experiment, are found
in the calculation when the tip is above the arms of the ring
and when the tip charge is large and negative.

We have considered the potential disturbed by rigid charged
point defects. The floating charges: the surface charge and
the charge of the electron gas mask the presence of the
point defects in the conductance maps, which keep their
characteristic features with exception to some rotation and
a deformation.

We have discussed the effective potential of the tip which
turns out to be Lorentzian when the tip is above the axis of the
channels. The Lorentzian width is independent of the electron
gas density, which only influences the depth of the potential.
The Lorentzian ansatz potential is not applicable when the tip
is outside the ring and the channels. The Coulomb potential of
the tip is screened only at their edges.
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