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Fluctuation properties of acoustic phonons generated by ultrafast optical excitation
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We study theoretically the fluctuation properties of acoustic phonons created in a semiconductor quantum dot
after ultrafast optical excitation. An excitation with a single ultrafast pulse creates an exciton confined to the
quantum dot, which is coupled to longitudinal acoustic phonons. This leads to the formation of a polaron in the
quantum dot accompanied by the emission of a phonon wave packet. We show that the fluctuations of the lattice
displacement associated with the wave packet after a single laser pulse excitation in resonance with the exciton
transition are always larger than their respective vacuum values. Manipulation of the exciton with a second pulse
can result in a reduction of the fluctuations below their vacuum limit, which means that the phonons are squeezed.
We show that the squeezing properties of the wave packet strongly depend on the relative phase and the time
delay between the two laser pulses.
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I. INTRODUCTION

The creation and manipulation of nonclassical quantum
states of bosonic systems continue to attract great interest.
Prominent examples of such nonclassical states are squeezed
states. In a squeezed state the fluctuations of a given variable
fall below their corresponding vacuum value at the cost of
increased fluctuations of its conjugate variable in order to sat-
isfy Heisenberg’s uncertainty relation. A well-established field
for many years is squeezed light, which can be generated in
nonlinear optical processes like parametric down-conversion1

and which has applications in optical communication and
measurements.2,3

Phonons are another type of boson where nonclassical states
have become of growing interest in recent years. Squeezed
phonons have been the subject of many experimental4–8 and
theoretical9–15 studies. In most cases the considered phonons
had a fixed frequency, because either they were optical
phonons4–6,9–14 or a Van Hove singularity appeared in the
spectrum of acoustic phonons.7 An indication for squeezing
is then the appearance of an oscillation with twice the phonon
frequency; however, this alone is not yet an unambiguous proof
of squeezing.8,11

Phonons with a fixed frequency do not travel in a crystal
because they have a vanishing group velocity. Therefore,
squeezing produced in this kind of phonon system remains
in the region where it has been generated. In contrast, in the
case of photons squeezing can be transported at the speed of
light from the place where it is generated to other places. Such
transport of squeezing could also occur for squeezed states
of acoustic phonons which, due to their approximately linear
dispersion relation, travel through a crystal at the speed of
sound. An example of squeezing of acoustic phonons, which
has been studied in the past, is the phonon analog of parametric
down-conversion, i.e., the decay of a coherent optical phonon
into a pair of acoustic phonons.9,15 Interestingly, however,
it turned out that, while indeed squeezing of the lattice
displacement can be achieved in this case, the squeezing
again remains where it has been generated and does not
travel even though the generated phonons lead to a finite

transport of energy away from the dot. The reason is that here
the squeezing is strongly related to the quantum correlations
between phonons with opposite wave vectors generated in the
decay process. In this paper we will study a different process,
the generation of acoustic phonons associated with ultrafast
optical excitation and manipulation of an exciton in a quantum
dot (QD) structure.

Quantum dots with their discrete level structure of elec-
tronic excitations are often referred to as artificial atoms.
Due to their embedding in a surrounding semiconductor
matrix, however, they are much more strongly coupled to
the environment than are real atoms. Most important for
the dynamics of the QD exciton is in many cases the
coupling to longitudinal acoustic (LA) phonons via the
deformation potential interaction, leading to various, often
undesired, phenomena, like a phononic background in ab-
sorption or luminescence spectra16,17 or a damping of Rabi
oscillations.18–20 However, this coupling also gives rise to
interesting spatiotemporal dynamics of the generated phonons,
which typically consist of a localized part remaining in the
region of the QD and a traveling part leaving the QD. This
latter part may be reflected at a surface and reenter the QD,21 or
may travel to another QD influencing its optical properties.22

Also bolometric measurements can be used to monitor the
spatiotemporal dynamics of phonon wave packets.23,24

In previous studies we have analyzed the possibility of
generating phonon squeezing in the case of a QD coupled to
longitudinal optical (LO) phonons.11,12 We have shown that a
single ultrafast excitation resonant with the exciton transition
cannot create squeezing, while a resonant two-pulse excitation
can lead to squeezed phonons. For LO phonons with a single
frequency it is possible to transform the coupling to a coupling
with a single effective phonon mode. The dynamics can then
be well illustrated by means of the Wigner function.12 Such
a reduction is not possible in the case of acoustic phonons
with their continuum of phonon frequencies. It is the aim of
this paper to analyze the fluctuation properties of LA phonons
generated after ultrafast resonant excitation of the lowest QD
exciton. In particular, we will show that indeed squeezed LA
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phonons may be created and that squeezed phonons can be
emitted from the QD in the form of a phonon wave packet.

The paper is organized as follows. In Sec. II we introduce
the theoretical model of the QD interacting with light pulses
and LA phonons and we define the relevant variables for the
study of phonon squeezing. Section III is then devoted to the
results of our calculations, where we first consider the case of
excitation by a single pulse, which turns out not to produce
squeezing, and then turn to a two-pulse excitation, where under
suitable conditions squeezing is found. Finally, in Sec. IV we
finish with some concluding remarks.

II. MODEL SYSTEM

We consider a QD in the strong-confinement limit. Assum-
ing excitations by circularly polarized light, we can restrict
the electronic states to a two-level system consisting of the
ground state |g〉 and the lowest exciton state |x〉. These states
are coupled to a classical light field as well as to LA phonons.
The Hamiltonian of the system then reads

Ĥ = h̄

[
� +

∑
q

(gq b̂q + g∗
q b̂†q)

]
|x〉〈x|

+ h̄
∑

q

ωqb̂
†
qb̂q − P̂ · E , (1)

where h̄� is the exciton energy, b̂
†
q (b̂q) denotes the creation

(annihilation) operator of a LA phonon with wave vector q,
ωq = cq is the phonon dispersion relation with the longitudinal
sound velocity c, and gq is the electron-phonon-coupling ma-
trix element. We restrict ourselves to the case of deformation
potential interaction, which for typical InAs/GaAs quantum
dots has been found to be the dominant interaction mechanism
on a picosecond time scale.25 Assuming for simplicity a
spherical QD geometry and a harmonic oscillator confinement,
the coupling matrix element reads

gq =
√

1

2�h̄V ωq

q
(
Dee−(1/4)q2a2

e − Dhe−(1/4)q2a2
h

)
, (2)

with � being the crystal density and V the normalization
volume of the crystal. De (Dh) are the deformation potentials
of electrons (holes) and ae (ah) the spatial widths of the electron
(hole) wave functions. The classical laser field E is coupled
to the polarization P̂ = M0|x〉〈g| + M∗

0|g〉〈x| with the dipole
matrix element M0. We consider ultrafast laser pulses that
are, however, spectrally narrow enough to realize a selective
resonant excitation of the exciton. Once the selectivity has
been accounted for by keeping only the resonantly coupled
electronic levels the pulse duration is the shortest time scale
in the problem and we can safely model E(t) as a series of δ

functions. We take GaAs material parameters and a QD with
L = ae2

√
ln 2 = 5 nm diameter.26

A basic quantity for the lattice dynamics is the lattice
displacement associated with LA phonons,

û(r) = −i
∑

q

√
h̄

2�V ωq
(b̂qe

iq·r − b̂†qe
−iq·r)

q
q

. (3)

In this paper we are particularly interested in the squared
fluctuations of the lattice displacement, [�u(r)]2 = 〈û(r)2〉 −
〈û(r)〉2. Assuming a spherical QD, all quantities depend only
on the distance r from the QD center. For the interpretation of
the results we introduce the relative excitation-induced squared
fluctuations

Du(r,t) = [�u(r,t)]2 − (�uvac)2

(�uvac)2
, (4)

where (�uvac)2 are the squared fluctuations of the lattice
displacement in the phonon vacuum state. For simplicity we
will refer to Du just as fluctuations in the following. We
call a state “squeezed” if (�u)2 < (�uvac)2. Thus squeezing
manifests itself directly by fluctuations Du(r) < 0. For LA
phonons the vacuum fluctuation (�uvac)2 is calculated by
taking the definition according to Eq. (3) and integrating over
the whole Brillouin zone, assumed as spherical as in the Debye
model, i.e., up to the maximal wave vector qmax = (24π2)1/3/a

for a zinc-blende structure with the lattice constant a. One finds

(�uvac)2 = h̄

2�ca2

(
3

π

)2/3

≈ 5.83 × 10−6 nm2. (5)

For completeness we mention that the vacuum uncertainty of
the lattice momentum (�πvac)2 for LA phonons is given by

(�πvac)2 = h̄�cπ2a2

16

(
3

π

)4/3

≈ 2.09 × 104

(
meV ps

nm

)2

,

(6)

showing that for LA phonons the uncertainty product is

(�uvac)2(�πvac)2 = 9

8

h̄2

4
(7)

and thus exceeds the Heisenberg limit already in the ground
state.

To calculate the expectation values of the lattice displace-
ment and its fluctuations, we need expectation values of the
types 〈bq〉, 〈bqbq ′ 〉, and 〈b†qbq ′ 〉. For the case of excitation by
ultrafast laser pulses, analytical results for these quantities can
be found within a generating function formalism,27 which will
form the basis for the analytical expressions given in Sec. III.

III. RESULTS

A. Single-pulse excitation

Let us start by looking at the phonon dynamics after
excitation by a single ultrafast laser pulse. In our previous
study of the fluctuation dynamics of LO phonons12 we have
seen that the most interesting phenomena appear in the case of
excitation by pulses with a pulse area of π/2. It turns out that
the same holds for LA phonons. Therefore, in this paper we
will restrict our analysis to such pulses. We want to mention
that analytical results for the phonon dynamics like the ones
shown here can be derived for any pulse area.

An excitation with a single laser pulse of pulse area π/2
creates an equal superposition of ground state |g〉 and exciton
|x〉 in the electronic part of the system. The creation of the
exciton causes a change in the charge carrier distributions in
the QD. Due to the deformation potential interaction, this gives
rise to a local deformation of the lattice corresponding to a shift
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of the equilibrium positions of the lattice ions. In the case of
acoustic phonons, this instantaneous shift in the equilibrium
positions leads to the creation of a localized polaron in the QD
and a wave packet leaving the QD.26 The expectation value of
the lattice displacement after the pulse reads

〈û(r,t)〉 = u0U (r,t) = u0[W (r,t) + P (r)] (8)

with u0 = 1
8�c2π2 . U (r,t) denotes the normalized lattice dis-

placement created by a single-pulse excitation, which can be
decomposed into the part W (r,t) describing the wave packet
leaving the QD given by

W (r,t) = −1

r

[
De

√
π

ae

e−(r−ct)2/a2
e − Dh

√
π

ah

e−(r−ct)2/a2
h

]

+ 2

πr2

[
De erf

(
r − ct

ae

)
− Dh erf

(
r − ct

ah

)]

− 1

r

[
De

√
π

ae

e−(r+ct)2/a2
e − Dh

√
π

ah

e−(r+ct)2/a2
h

]

+ 2

πr2

[
De erf

(
r + ct

ae

)
− Dh erf

(
r + ct

ah

)]
(9)

and P (r) = −W (r,t = 0) describing the localized polaron in
the QD. Here, erf(x) denotes the error function. For the wave
packet the dominant part for t � L/c is the first line in Eq. (9),
which is a Gaussian centered around r = ct and decaying
∼1/r . The other terms are decaying with 1/r2 or describe
an incoming wave packet that contributes only for small t .
For small t , however, and thus also for the calculation of the
polaron part P (r), all terms of Eq. (9) must be taken into
account, because the divergences in front of the Gaussians and
the error functions compensate each other, resulting in a finite
value at r = 0.

Figure 1(a) shows the expectation value of the lattice
displacement 〈û〉 multiplied by r plotted as a function of time
t after the laser pulse and distance r from the QD center. In
this figure the polaron can be identified as the horizontal line
at r ≈ 4 nm. The phonon wave packet that leaves the QD with
the sound velocity c ≈ 5 nm/ps is seen as diagonal line. The
amplitudes of both polaron and wave packet are negative.
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FIG. 1. (Color online) (a) Expectation value 〈û〉r and (b) fluctu-
ations Dur

2 as functions of time t and distance r from the QD center
after the excitation with a single ultrafast laser pulse of pulse area
π/2 at t = 0.

In Fig. 1(b) the corresponding fluctuations Du multiplied
by r2 are plotted as a function of time t and position r . It
is clearly seen that Du is restricted to the same space-time
regions where the displacement is also nonvanishing. Thus,
the two lines in the plot can be identified as fluctuations of the
polaron and of the traveling-wave packet. The corresponding
Du has the same shape as the displacement. This is confirmed
by the calculations showing that for a single-pulse excitation
there is always Du ∼ 〈û〉2. Because Du is positive all the time
we find that, as in the case of LO phonons, a single ultrafast,
resonant excitation of the QD never creates squeezed phonons
in this system.

B. Two-pulse excitation

In the next step we consider an excitation with two laser
pulses each with a pulse area of π/2. The first pulse arrives at
time t = −τ (with τ � 0). The second pulse arrives at t = 0
and has a relative phase of φ with respect to the first pulse.
The expectation value of the displacement for t > 0 after this
two-pulse excitation can be written as

〈û(r,t)〉 = u0{U (r,t + τ ) + Re[B−(τ )eiφ]U (r,t)}, (10)

where U (r,t) is the normalized lattice displacement after a
single pulse [see Eqs. (8) and (9)]. The first pulse exciting the
system at t = −τ gives rise to the displacement U (r,t + τ );
the second pulse arriving at t = 0 then creates U (r,t). The two
terms are connected via the interference amplitude

B−(τ ) = exp

[∑
q

∣∣∣∣ gq

ωq

∣∣∣∣
2

(e−iωqτ − 1)

]
(11)

and the phase factor eiφ . For the coupling of Eq. (2) the sum
in Eq. (11) may be performed analytically (cf. the Appendix).

The real and imaginary parts of B− as functions of τ are
shown in Fig. 2. The real part exhibits an initial decay on the
time scale of about 1 ps and then saturates at a value slightly
above 0.9. The imaginary part is nonzero only during the initial
decay of the real part. The interference amplitude is the same
function that describes the decay of the optical polarization
induced by the first laser pulse.17 This decay is caused by the
traveling-wave packet, which after about 1 ps has left the QD,
resulting in an entanglement of the QD with its environment
and thus to a decoherence in the QD degrees of freedom. Since
the second pulse couples to the polarization of the QD resulting
from the first pulse, this decoherence reduces the coupling and
therefore also reduces the generation of phonons by this second
pulse.
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FIG. 2. (Color online) Real and imaginary parts of the interaction
amplitude B− as a function of the delay time τ .
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FIG. 3. (Color online) As Fig. 1, but after the excitation with
two laser pulses with pulse areas π/2 at t = −3 ps and t = 0 with a
relative phase of φ = 0.

We want to mention that the saturation value of roughly 0.9
is also in good agreement with experimental results obtained
from time-integrated four-wave-mixing signals on ensembles
of QDs,25 where an initial decay of the signals of about 20% at
a temperature of 4 K has been found. According to the theory
of four-wave-mixing signals for the present type of models,28

this initial decay is given by 1 − |B−(∞)|2. This confirms the
choice of the parameters used in our present calculations as
realistic ones.

Figure 3(a) shows the lattice displacement created after
excitation with a pair of π/2 pulses arriving at times t = −3 ps
and t = 0 with a relative phase of φ = 0. We clearly see two
emitted wave packets, one starting at t = −3 ps and the other
at t = 0. At the time of the second excitation the polaron
amplitude is essentially doubled. For a better interpretation of
the results we note that for delay times longer than 2 ps the
interference amplitude B− is essentially real and its value is
larger than 0.9. Therefore the amplitude of the displacement
created by the second pulse is not much smaller than the one
created by the first pulse. To simplify the discussion we set
in the following B− ≈ 1, which corresponds to neglecting
the dephasing of the polarization after the first pulse. Note,
however, that all the results shown in the figures have been
calculated with the correct value of B−.

Using B− ≈ 1, Eq. (10) becomes

〈û(r,t)〉 � u0[U (r,t + τ ) + cos(φ)U (r,t)]. (12)

In the case of a phase difference φ = 0 as taken in Fig. 3 the
expectation value then evaluates to

〈û(r,t)〉|φ=0 � u0[2P (r) + W (r,t + τ ) + W (r,t)], (13)

where P (r) and W (r,t) are defined in Eqs. (8) and (9). This can
be understood when we look at the dynamics of the electronic
system. The second pulse excites the system from the equal
superposition of |g〉 and |x〉 to the exciton state |x〉. This
doubling of the exciton occupation causes a doubling of the
polaron amplitude in the QD. Because this process is similar
to that induced by the first pulse, an identical wave packet is
emitted.

The fluctuations after a two-pulse excitation with a large
delay assuming B− ≈ 1 read

Du(r,t) � u2
0

2
{[W (r,t + τ ) − W (r,t)]2

+U (r,t)[sin2(φ)U (r,t) + 2 sin(φ)C(r,t ; τ )]}.
(14)

In the fluctuations interferences between the single-excitation
processes take place. They are summarized in the term
C(r,t ; τ ). Its detailed form is given in the Appendix.

In Fig. 3(b) we have plotted the corresponding fluctuations
Dur

2. Positive values are seen at the positions of the two wave
packets. The horizontal line of the polaron, however, is almost
missing after the second pulse. These two features can directly
be seen from the fluctuations, which in this case read

Du(r,t)|φ=0 � u2
0

2
[W (r,t + τ )2 + W (r,t)2]. (15)

Here we also assumed that W (r,t + τ )W (r,t) ≈ 0, because
the overlap of the two wave packets is negligible. The physical
reason for the absence of additional fluctuations in the QD
beyond the vacuum fluctuations is the fact that for a QD that
is completely in the exciton state the polaron corresponds to
a multimode shifted vacuum which has the same fluctuation
properties as the phonon ground state. So in the present case
the polaron has fluctuations Du of almost zero and the positive
fluctuations corresponding to the two emitted wave packets
remain. No squeezed states are thus created by this laser pulse
sequence.

From Eq. (14) one can see that squeezing can occur only
if sin(φ)U (r,t)C(r,t ; τ ) < 0. For φ = nπ this term vanishes.
Thus, if squeezing occurs at all, we expect it to happen
most prominently at phase differences around odd multiples
of π/2. In particular we will now study the case φ = 3π/2
where sin(φ) = −1. Calculating the expectation value of the
displacement for this case, the outcome of Eq. (12) is

〈û〉|φ=3π/2 = u0U (r,t + τ ), (16)

because cos(3π/2) = 0. In other words, the second excitation
of the system does not change the mean lattice displacement
at all. Again looking at the electronic system, the second pulse
does not act on the occupation in the electronic part of the
system, and we note that it just changes the relative phase in
the equal superposition of |g〉 and |x〉. This case is shown in
Fig. 4(a), and indeed the expectation value looks exactly like
that of a single-pulse excitation in Fig. 1(a).

It is interesting to note that according to the exact result
for the displacement given in Eq. (10), even in the case of
arbitrarily strong dephasing there is always a value of the
relative phase given by

tan(φ) = Re(B−)

Im(B−)
, (17)

where the second pulse does not modify the mean displace-
ment.

In contrast, the fluctuations are strongly affected by the
second pulse, as can be seen in Fig. 4(b). Dur

2 clearly shows
fluctuations where the second wave packet would be expected.
Thus our analysis shows that there is an emission of a phonon
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FIG. 4. (Color online) (a), (b) as in Fig. 3, but for a relative phase
φ = 3π/2. (c) Energy density ρE(r,t)r2.

wave packet also in this case, but with a vanishing mean
displacement. We observe that in the leading part of this wave
packet clear negative parts build up in Du. So a squeezed
phonon state is created under these excitation conditions.

Due to the nonzero fluctuations energy transport should
occur even where the expectation value 〈û〉 is zero. This energy
can in principle be detected in bolometric measurements.23,24

To quantify this, we calculate the energy density of the LA
phonons given by29

ρE(r,t) = h̄

2V

∑
q,q′

√
ωqωq ′

(
1 + q

q

q′

q

)

× Re(〈b̂†qb̂q′ 〉ei(q−q′)·r + 〈b̂qb̂q′ 〉ei(q+q′)·r), (18)

where the vacuum energy density has already been subtracted.
Again, after integrating over the Brillouin zone, the energy
density depends only on the distance r from the QD. We
present ρE(r,t)r2 in Fig. 4(c). Corresponding to the emission of
the first wave packet, the energy density is nonzero around the
diagonal line (−3,0) → (3,30). Where the second wave packet
is expected, namely, at the diagonal line (0,0) → (6,30), the
energy density is also nonzero. Here it is mainly positive, and
a small negative value appears, corresponding to an energy
below the vacuum energy.

So far we have considered excitations where the emitted
wave packets are well separated. When we reduce the delay to
τ = 0.5 ps, the wave packets created by the two laser pulses
are overlapping in space. We take again a relative phase of
φ = 3π/2 which results in the appearance of squeezing in the
emitted wave packet. For this case Du is shown in Fig. 5(b).
The mean displacement field is shown in Fig. 5(a); it again does
not exhibit much difference compared to the single-pulse case.
This can be understood from the fact that here also Im(B−) is
much less than Re(B−) and thus Eq. (17) is still well satisfied
for φ = 3π/2.
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FIG. 5. (Color online) As in Fig. 4, but with the first excitation at
t = −0.5 ps.

In the fluctuations Du we now find a broad wave packet
with positive values in the leading and the trailing parts and
pronounced negative values in between. The interaction of the
phonons created by the second pulse with the wave packet
resulting from the first pulse, which has not yet left the
QD region, enhances the squeezing almost by a factor of 2
compared to the case of separated wave packets.

The reduction of the delay time has a similar effect on the
energy density, as is shown in Fig. 5(c). Here two significantly
negative parts build up between the positive parts at the leading
and trailing edges as well as at the centers of the wave
packets.

In order to obtain a complete picture of the squeezing
behavior, when varying either the delay time τ or the relative
phase φ between the two laser pulses, Fig. 6 shows the
minimum value of Dur

2 in the emitted wave packets plotted
as functions of τ and φ. We find that only relative phases
in the range π < φ < 2π lead to remarkable squeezing. For
0 < φ < π the achievable squeezing values are much smaller.
When looking at the τ dependence of the plot, the largest
fluctuations Du are obtained for delay times between 0.5 and
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FIG. 6. (Color online) Minimum values of Dur
2 at t = 6 ps and

20 < r < 50 nm as functions of phase φ and delay τ .
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1 ps. In this range the wave packets generated by the two
laser pulses exhibit a spatial overlap which obviously favors
the buildup of squeezing. For delays τ ≈ 1 ps the two wave
packets have a spatial distance of r = cτ ≈ 5 nm, which is
approximately the size of a single wave packet. For larger
delays the spatial overlap is small and the squeezing values
are reduced.

IV. CONCLUSIONS

In conclusion, we have analyzed the fluctuation properties
of LA phonons after ultrafast excitation of a QD in resonance
with the lowest exciton transition. As in the case of LO
phonons,11,12 for LA phonons also we have found that a
single pulse never gives rise to squeezing, but a sequence
of two such excitations can create squeezed phonons. In
contrast to the optical phonons, which due to their vanishing
group velocity remain confined in the QD, the excitation
of LA phonons leads to the formation of wave packets
that leave the QD. We have shown that the phononic wave
packet emitted after the excitation by the second pulse can
be squeezed. In contrast to the squeezing found for LA
phonons generated from the decay of LO phonons,15 here
also the phonon wave packets that leave the dot exhibit
squeezing. The appearance of squeezing depends crucially on
the relative phase φ between the two pulses. Sizable squeezing
is found only in the range π < φ < 2π . For short delay
times, when there is an overlap between the wave packets
generated by the two pulses, the interaction between these
wave packets has a significant impact on the strength of the
fluctuations.

Let us finally comment on the achieved values of the
squeezing, which at first seem to be rather small. However, it
should be noted that vacuum fluctuations at a given point result
from all phonon modes in the first Brillouin zone. Excitation-
induced fluctuations, on the other hand, occur only for those
phonon modes which couple to the QD exciton. According to
the coupling matrix element of Eq. (2) these are only phonons
with vectors up to about the inverse size of the QD. If we were
to consider in the calculation of Du only those phonon modes
which couple to the QD exciton, a rather pronounced squeezing
would emerge. Such a reduction of the effective range of
phonon modes occurs also in an experiment if the measurement
of the fluctuations is performed with a finite spatial resolution,
which again eliminates the fluctuations resulting from phonons
with wave vectors larger than the inverse spatial measurement
resolution.14

APPENDIX

For completeness here we show the full analytical forms
of some quantities introduced in the main text. First the
fluctuations for the two-pulse excitation from Eq. (14) without
approximation read

Du(r,t) = u2
0

2
{[W (r,t + τ ) − W (r,t)]2

+U (r,t)[(1 − R2)U (r,t) + 2IC(r,t ; τ )]} (A1)

with R = Re(B−eiφ) and I = Im(B−eiφ). Here and in Eq. (11)
the interference amplitude appears; its full form is

B− = exp

[
V

2π2

∫ ∞

0
q2

∣∣∣∣ gq

ωq

∣∣∣∣
2

(e−iωqτ − 1) dq

]
(A2)

= exp

⎛
⎝ − τ

4π3/2�h̄c2

⎧⎨
⎩De2

2a3
e

[
i + erfi

(
cτ

ae

)]

+ Dh2

2a3
h

[
i + erfi

(
cτ

ah

)]

− 2
DeDh

(a2
e + a2

h)3/2

⎡
⎣i + erfi

⎛
⎝ cτ√

a2
e + a2

h

⎞
⎠

⎤
⎦

⎫⎬
⎭

⎞
⎠ (A3)

with the complex error function erfi(x) = i erf(ix). The inter-
ference term itself from Eqs. (A1) and (14) is

C(r,t ; τ ) = C̃(r − ct) + C̃(r + ct)

−{C̃(r − c(t + τ )) + C̃(r + c(t + τ ))}
with

C̃(r − ct) =
√

π

r

[
De

ae

erfi

(
r − ct

ae

)
e−(r−ct)2/a2

e

− Dh

ah

erfi

(
r − ct

ah

)
e−(r−ct)2/a2

h

]

+ 1

2r2

[
De

a2
e

H

(
− (r − ct)2

a2
e

)

− Dh

a2
h

H

(
− (r − ct)2

a2
h

)]
(r − ct)2

and

H (x) = 2F2

(
1,1 ;

3

2
,2 ; x

)
=

∞∑
n=0

2xn

(2n + 1)!!(n + 1)

is a generalized hypergeometric function.
The complete analytical form of the energy density after

integration over q and q ′ is

ρE(r,t) = 1

64π4�c2
{E(r,t)2 + E(r,t + τ )2

+ E(r,t)[(R − 1)E(r,t + τ ) − I Ẽ(r,t ; τ )]},
E(r,t) = E1(r − ct) + E1(r + ct) − 2E1(r)

+E2(r − ct) − E2(r + ct),

Ẽ(r,t) = Ẽ1(r,t ; τ ) + Ẽ2(r,t ; τ ),

Ẽ1(r,t ; τ ) = Ẽ1(r − ct) + Ẽ1(r + ct)

− Ẽ1(r − c(t + τ )) − Ẽ1(r + c(t + τ )),

Ẽ2(r,t ; τ ) = Ẽ2(r − ct) + Ẽ2(r + ct)

− Ẽ2(r − c(t + τ )) − Ẽ2(r + c(t + τ )), (A4)

E1(r − ct) = 2
√

π

r

(
De

a3
e

e(r−ct)2/a2
e − Dh

a3
h

e(r−ct)2/a2
h

)
(r − ct),

E2(r − ct) = E1(r − ct)

+
√

π

r2

(
De

ae

e−(r−ct)2/a2
e − Dh

ah

e−(r−ct)2/a2
h

)
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Ẽ1(r − ct) = 2
√

π

r

(
De

a3
e

erfi

(
r − ct

ae

)
e−(r−ct)2/a2

e

− Dh

a3
h

erfi

(
r − ct

ah

)
e−(r−ct)2/a2

h

)
(r − ct),

Ẽ2(r − ct) = Ẽ1(r − ct)

+
√

π

r2

[
De

ae

erfi

(
r − ct

ae

)
e−(r−ct)2/a2

e

− Dh

ah

erfi

(
r − ct

ah

)
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h

]
.
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