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Field localization and enhancement near the Dirac point of a finite defectless photonic crystal
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We use a rigorous electromagnetic approach to show the existence of strongly localized modes in the stop band
of a linear, two-dimensional, finite photonic crystal near its Dirac point. At normal incidence, the crystal exhibits
a Dirac point with 100% transmission. At angles slightly off the normal, where the crystal is 100% reflective,
instead of exponentially decaying fields as in a photonic stop band, the field becomes strongly localized and
enhanced inside the crystal. We explain that this anomalous localization is due to guided mode resonances that
are the foundation of the Dirac point itself and also shape its adjacent band gap. Besides shedding new light
on the physical origin of Dirac points in finite photonic crystals, our results could have applications in many
nonlinear light-matter interaction phenomena in which it is crucial to achieve a high degree of light localization.
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I. INTRODUCTION

In the last few years there has been increasing interest
in the study of Dirac points in two-dimensional photonic
crystals;1–7 i.e., points where two photonic bands touch as a
pair of cones (Dirac cones) giving rise to a linear, instead
of a parabolic, dispersion for photons. Dirac cones and
Dirac points owe their names to the formal analogy existing
between the two-dimensional Helmholtz equation describing
the electromagnetic behavior of photons near these points
and the Dirac equation for the motion of relativistic, free
electrons in the absence of external fields. The subject is
well-rooted in solid state physics, in which Dirac cones appear
in a great variety of scenarios such as non-relativistic motion
of particles in a crystal8 and semiconductor nanostructures
for spintronic applications.9 Particularly important in this
framework is the recent discovery of graphene,10 a purely
two-dimensional electronic system in which the conduction
band and the valence band touch each other at the Dirac point,
leading to remarkable electronic transport properties.11 In the
electromagnetic domain, photonic crystals exhibiting Dirac
cones have been studied, for example, in the context of conical
diffraction.12 Moreover, in some recent publications, photonic
crystals exhibiting Dirac cones have been shown to have
analogies with vacuum impedance-matched, zero-refractive
index metamaterials.6,7,13 Conventional zero-refractive index
metamaterials generally rely on metallic structures, metallic
inclusions, or both,14 whose inherent losses may actually
hamper and/or reduce the functionality of any proposed device,
especially in the visible range. In the photonic crystal case, the
structures can be made entirely of dielectric or semiconductor
materials, or both, with evident benefits in terms of loss
reduction.

In this work we show another important property of light
near the Dirac point of a two-dimensional, finite, defectless
photonic crystal; i.e., the existence of strongly localized modes
in its neighboring stop band. Our approach relies on a full
numerical simulation of Maxwell equations, which we carry
out by using an in-house–developed numerical code based on
the Fourier modal method (FMM).15

II. RESULTS AND DISCUSSION

We start by describing in Fig. 1(a) a two-dimensional, finite
photonic crystal made of a square lattice of dielectric columns.

The incident field is considered to be a plane, monochro-
matic, electromagnetic wave of frequency ω with the electric
vector polarized along the axis of the columns (TE polariza-
tion). For r/a = 0.2 and ε = 12.5, this structure is known to
possess a Dirac point at ωa/2πc ∼= 0.54 for normal incidence at
the � point as in Ref. 6. In Fig. 1(b) we show the transmittance
of a five-period photonic crystal as a function of incident
angle and frequency. The transmittance illustrates the typical
“band structure” associated with a Dirac point: two passbands
that touch each other in one point surrounded by a stopband
(although, here, we plot the incident angle instead of the wave
vector). In Fig. 2 we show the transmittance vs frequency
at normal incidence and several incident angles close to
the normal. We note that at normal incidence, the photonic
crystal acts as a perfect transparent material. As the incident
angle moves away from normal incidence, a stopband opens
in the form of a transmission anti-resonance (or reflection
resonance), whose spectral bandwidth widens with increasing
incident angles. This behavior is in agreement with the overall
characteristics of the transmission band structure shown in
Fig. 1(b).

In Fig. 3, we show the field localization properties. In
particular, in Fig 3(a) the field is calculated at the frequency
corresponding to the Dirac point where total transmission is
achieved (T = 1), whereas in Fig 3(b), the field is calculated
at the frequency of the transmission minimum (T < 0.001%)
of the stopbands corresponding to ϑ = 0.1◦.

In Fig. 3(a), each of the five rows of columns of the
structure shows exactly the same field localization properties,
in agreement with the fact that at the Dirac point, the
photonic crystal becomes perfectly transparent, as expected
for a vacuum-impedance-matched metamaterial.6,7,13 In this
case the transmission mechanism is based on an effective
impedance matching: the wave does not experience any change
in effective impedance, and it can propagate through the
structure with nearly uniform amplitude, no amplification,
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FIG. 1. (Color online) (a) A two-dimensional photonic crystal
made of a square lattice (lattice constant a) of dielectric columns with
radius r and electric permittivity ε. The photonic crystal is five periods
long in the z direction with length L = Na, where N is the number
of rows of columns. A plane electromagnetic wave with the electric
field parallel to the axis of the cylinders is incident on the structure
with its k-vector in the (x, z) plane (in-plane coupling), forming an
angle ϑ with respect to the z direction. (b) Transmittance in the (ω,
ϑ) plane around the Dirac point numerically calculated by the FMM.
The structure’s parameters are N = 5, r/a = 0.2, ε = 12.5.

and minimum reflections (see also Fig. 3(c) for a section of
the field localization profile over the structure). On the other
hand, in Fig. 3(b) at the transmission minimum of the stopband
corresponding to ϑ = 0.1◦, we find quite surprisingly that the
field intensity is strongly localized in the central row with the
maximum intensity reaching an astounding ∼104. A section
of the field localization profile for the two cases is shown
in Fig. 3(c). Note in Fig. 3(c) that the envelope of the field
profile at the transmission minimum has a bell shape. This

FIG. 2. (Color online) Transmittance vs frequency for different
incident angles.
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FIG. 3. (Color online) (a) Cross-sectional view of the electric
field intensity normalized to the incident field intensity at the Dirac
point where T = 1. (b) Cross-sectional view of the field localization
in the stopband at the transmission minimum for ϑ = 0.1◦. The insets
show a magnification of the field localization on the columns. The
dashed circles indicate the position of the columns. The dashed line
parallel to the z axis indicates the section of the field that it is shown
in Fig. 3(c). (c) Section of the field intensity profiles along the z axis
for the two cases.

is in stark contrast to a photonic crystal stopband, in which
the envelope decays exponentially from the incident interface.
The bell-shaped envelope and the large field enhancement at
the Dirac stopband are more typical of a photonic band edge
that has unity transmission.

Field localizations similar to that of the ϑ = 0.1◦ case
are also found for larger angles up to approximately 1◦,
although for these larger angles the peak intensity decreases
and the spectral bandwidth of the associated transmission
anti-resonance widens. By defining an anti-resonance quality
factor as Qar = ωc/ �ω, where, in analogy with the quality
factor for resonances in a conventional cavity, �ω is the full-
width half maximum, whereas in our case, ωc is the anti-peak
frequency, the average electromagnetic energy density stored
in the structure scales as Qar.

We have also calculated the participation ratio (PR) and
localization length (ξ ) with the following standard equations:16

PR = ∫∫ |E(x,z)|4dxdz/(
∫∫ |E(x,z)|2dxdz)2, ξ = 1/

√
PR.
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FIG. 4. (Color online) (a) Localization length vs incident angle
for the N = 5 period structure. (b) Average field localization vs inci-
dent angle. In the Supplemental Materials (StopBandModes.wmv),17

we show the field localization for the different angles and the
transition from localized to evanescent modes.

Along x the integral is performed over the elementary cell.
In Fig. 4(a) we show ξ and in Fig. 4(b) the average field
intensity, both as function of the incident angle. For each angle,
the quantities have been calculated at the frequency of the
respective reflection resonances.

In Fig. 4(a) it is noted that ξ remains practically constant
until ϑ ∼ 1◦, when it starts to increase. This increase in
the localization length marks the transition of the stopband
modes from localized to evanescent. The corresponding
field localization for the different angles is shown in the
Supplemental Material.17 The average field localization shown
in Fig. 4(b) scales exactly as ϑ−2, in agreement with the
previously explained decrement of the quality factor of the
respective transmission anti-resonances as the incident angle
increases. The average field localization starts to depart from
the ϑ−2 law as the stopband modes transition from localized
to evanescent. The average field intensity reaches values close
to 108 for incident angles near 0.001◦. It is quite remarkable to
achieve such a strong field confinement in a photonic crystal
that is only five periods long. Additional calculations have also
been performed (Fig. 5) by increasing the number of periods of
the structure from N = 3 to N = 15 for a fixed incident angle at
ϑ = 0.1◦. We find in this case that the localization length scales
as N0.46, and the average field localization scales as 1/N2. Note
that even in the case of N = 15 the field is still well localized
in the bulk of the structure with a bell-shaped envelope.

To shed some light on the nature of the field localization,
in Fig. 6 we have compared side by side the transmittance
of the structure and the coupling strength (CS) of the leaky
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FIG. 5. (Color online) (a) Localization length and (b) average
field localization compared with number of periods for ϑ = 0.1◦.
(c) Cross-sectional view of the field localization in the stopband at
the transmission minimum for ϑ = 0.1◦ and N = 15. The inset shows
a magnification of the field localization on the columns. The dashed
circles indicate the position of the columns. The dashed line parallel
to the z axis indicates the section of the field that it is shown in
Fig. 5(d). (d) Section of the field intensity profile along the z axis.

waveguide modes propagating along the x axis of the photonic
crystal. In general, for any non-absorbing, planar structure
subject to transverse momentum conservation kx , the poles
of the transmission of the electric field lie over the real kx

axis and are associated with the guided modes supported
by the structure.18 In our case, the photonic crystal is not
“sensu stricto” a waveguide, but still supports leaky modes
that can be excited by the incident field thanks to the additional
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FIG. 6. (Color online) Transmittance and coupling strength in the
(ω, ϑ) plane for different periods. The white dot indicates the position
of the Dirac point. The dashed lines represent the dispersion of the
GMRs.

momentum provided by the periodicity of the structure. These
modes are usually called guided mode resonances (GMRs),
and they generally appear in the form of Fano resonances.19 In
this case the poles of the transmission migrate into the complex
plane; nevertheless, the maxima of the transmission along the
real axis describe quite accurately the dispersion of those leaky

modes. The coupling strength has been calculated as CS =
log10(

∑
m |tm|2), where tm is the electric field transmission

coefficient of the mth diffracted order. We have started by
studying just a single row of columns and proceeded up to
N = 5. In the figures, the dashed lines represent the dispersion
of the GMRs. The N = 1 case is very instructive because
it clearly shows the crucial role played by the GMRs in
the formation of the Dirac point and its related anomalous
localization properties. The figure shows that even in the N = 1
case a Dirac point is created whose position is determined
by the corresponding GMR of the structure. This GMR also
shapes the neighboring stopband, as can be observed by
looking at the coupling strength. The coupling of this GMR
increases as ϑ approaches zero but is strictly forbidden at the
Dirac point where ϑ = 0◦. As the angle increases beyond
1◦, the GMR intersecting the Dirac point degenerates into a
classical stopband evanescent mode.

Adding more periods does not change the basic mech-
anism just described. The position of the Dirac point and
its neighboring stopband are shaped by the corresponding
GMR, which we call the Dirac-point GMR. The decrement
of the coupling strength of the Dirac-point GMR as the
incident angle departs from the near-to-normal condition is
quite peculiar. Conventional GMRs, in both dielectric and
plasmonic structures, are dispersive and generally maintain
their coupling strength for a wide range of incident angles.20

It is indeed possible even in our case to ascertain, by looking
at the coupling strength, that all other GMRs except for the
Dirac-point GMR, are robust at large angles of incidence.

The different characteristics of a field tuned at the Dirac
point and at the GMR near the Dirac point are shown in a
second animation in the Supplemental Material,21 where the
electric field temporal evolution is shown at ϑ = 0◦ and at
ϑ = 1◦ for the N = 5 period case. In the animation, the central
rectangle in each 0◦ and 1◦ field movie is an x-zoom of a
single x-period to observe the temporal evolution of the field
localization over the columns.

At the Dirac point the photonic crystal basically acts as
perfect transparent material; the wave- front of the incident
field undergoes minimal distortion as it propagates through
the crystal, and it is completely transmitted. On the contrary,
at the GMR near the Dirac point, the field is coupled into the
structure along the x axis (i.e., in the transverse direction with
respect to the incident), with strong localization in the interior
of the structure, and then completely reflected.

To demonstrate the generality of these modes, we also show
in Fig. 7 a second example of a finite photonic crystal. In this
latter case, the columns are arranged in a triangular lattice with
r/a = 0.3 and ε = 11.4, and the incident wave has the H-field
parallel to the axis of the columns (transverse magnetic [TM]
polarization). The structure is known to possess a Dirac point
at ωa/2πc ∼= 0.464 for normal incidence.

The triangular lattice has the same overall characteristics as
the square lattice in terms of localized modes at the stopband
near the Dirac point. In Fig. 8, we illustrate the electric
field localization for the different incident angles. Electric
field localization of the order of 105 is found inside the
stopband.

Different from the square lattice, the electric field in this
case is not localized inside the columns but in the space
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FIG. 7. (Color online) (a) A two-dimensional photonic crystal
made of a triangular lattice (lattice constant a) of dielectric columns
with radius r and electric permittivity ε. The photonic crystal is
finite along the z direction with length L = N

√
3/2a, where N is the

number of rows of columns. A plane electromagnetic wave with the
magnetic field parallel to the axis of the cylinders (TM polarization) is
incident on the structure with its k-vector in the (x, z) plane (in-plane
coupling) forming an angle ϑ with respect to the z direction.
(b) Transmittance in the (ω, ϑ) plane around the Dirac point
numerically calculated by the FMM. The structure’s parameters are
N = 5, r/a = 0.3, ε = 11.4. (c) Transmittance vs frequency for
different incident angles.

immediately surrounding the columns. This peculiar field lo-
calization very near the surface might have useful applications
for surface-enhanced processes like Raman scattering from
analytes that form a self-assembled monolayer.

III. CONCLUSIONS

We have studied the anomalous localization properties of
light near the Dirac point of a two-dimensional photonic crystal
and shown how they are related to the GMRs of the structure.
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FIG. 8. (Color online) Cross-sectional view of the electric field
localization normalized to the incident field for the different incident
angles. The dashed circles indicate the position of the columns.

These results could have a remarkable influence in many
light-matter interaction phenomena in which a high degree
of field localization is necessary, such as nonlinear harmonic
generation and switching in nanostructures, quantum dot and
quantum well emission, Raman scattering, and laser emission.
Finally, because of the formal analogy between Maxwell
equations in two-dimensional systems under TM polarization
and the equations governing sound propagation, we anticipate
that similar modes should also exist in the acoustic domain
for phononic crystals that admit a Dirac point, such as the one
described in Ref. 22, with applications for nonlinear acoustic
devices and acoustic sensors.
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