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Effective field theories for topological insulators by functional bosonization
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Effective field theories that describe the dynamics of a conserved U(1) current in terms of “hydrodynamic”
degrees of freedom of topological phases in condensed matter are discussed in general dimension D = d + 1
using the functional bosonization technique. For noninteracting topological insulators (superconductors) with
a conserved U(1) charge and characterized by an integer topological invariant [more specifically, they are
topological insulators in the complex symmetry classes (class A and AIII), and in the “primary series” of
topological insulators, in the eight real symmetry classes], we derive the BF-type topological field theories
supplemented with the Chern-Simons (when D is odd) or the θ (when D is even) terms. For topological
insulators characterized by a Z2 topological invariant (the first and second descendants of the primary series),
their topological field theories are obtained by dimensional reduction. Building on this effective field theory
description for noninteracting topological phases, we also discuss, following the spirit of the parton construction
of the fractional quantum Hall effect by Block and Wen, the putative “fractional” topological insulators and their
possible effective field theories, and use them to determine the physical properties of these nontrivial quantum
phases.
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I. INTRODUCTION

Topological phases are fully quantum-mechanical states of
matter that are not characterized by spontaneous breaking
of a global symmetry of the quantum-mechanical system.
While gapped in the bulk, quite often these phases have
gapless excitations at their boundary, signaling the highly
entangled nature of their ground states. Since the discovery
of the integer quantum Hall effect (IQHE) and the factional
quantum Hall effect (FQHE),1 the list of topological phases
in nature has been expanded, in particular, by the recent
discovery of time-reversal symmetric topological insulators
in two and three dimensions (2D and 3D) in systems with
strong spin-orbit coupling2–11 and the identification of 3He-B
phase as a topological superconductor (actually a superfluid).12

Unlike the IQHE, the topological character of these topological
insulators and superconductors (i.e., the stable gapless edge
or surface modes) is protected by time-reversal symmetry
(TRS). The presence or absence of a topological distinction
among gapped phases for a given set of symmetries and for
given spatial dimensions can be studied systematically, and is
summarized in the “periodic table” of topological insulators
and superconductors for noninteracting fermions.13–15

One of the defining properties of topological insulators
is their characteristic response to external electromagnetic
fields. A classic example for this is the quantum Hall effect
(QHE), which is characterized by the nonzero, quantized
value of the Hall conductance. The three-dimensional time-
reversal symmetric topological insulator is characterized by
nonzero magnetoelectric polarizablility, which, in the presence
of time-reversal symmetry, also takes a quantized value.11

Correspondingly, these responses are described by a field
theory supplemented with a term of topological origin, such
as the Chern-Simons (CS) term, or the axion term. For a
wide class of topological insulators and superconductors, such
topological response theories have been studied and carefully
classified.11,16–19 When it exists, such topologically protected

response is a powerful way to characterize a topological phase,
as it is not limited to noninteracting topological phases.

There is, however, a subtle but profound distinction between
a topological phase and a phase with a topologically protected
response. For instance, the IQHE is a phase of a (generally
interacting) two-dimensional electron gas in a strong mag-
netic field whose Hall conductance is precisely defined, and
protected, by a topological invariant.20 Similarly, its edge
states are also protected in this case by their chiral nature.
However, the fractional quantum Hall states are topological
fluids. In addition to having a topologically protected fractional
quantum Hall conductance, these fluids are characterized by
having nontrivial ground-state degeneracies on topologically
nontrivial surfaces, excitations that carry fractional charge and
fractional statistics (Abelian or non-Abelian), and by a set of
edge states with generally complex properties. The universal
properties of such topological phases are given in terms of
effective low-energy hydrodynamic topological field theories
of these fluids.21–23

While powerful, the effective field theories of the response
of a system to an external local probe should be distinguished
from internal or hydrodynamic topological field theories de-
scribing the global properties and the excitations of topological
phases, as in the example of the FQH fluids.23 Just as fluid
dynamics is an efficient description of a collection of a
macroscopic number of particles, the dynamics of topological
insulators may be well described in terms of collective degrees
of freedom, rather than relying on microscopic electrons
(quasiparticles). In fact, such a picture was developed for
the QHE, and we have a good understanding of a quantum
Hall system as a droplet of electron liquid. The hydrodynamic
topological field theory description of the quantum Hall droplet
is given by the Chern-Simons (CS) gauge theory. Once such
effective description of the low-energy physics is established, it
is likely to be robust against interactions, and has a wider range
of applicability than the noninteracting microscopic system.
The purpose of this paper is to develop such a hydrodynamic
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effective field theory that is capable of describing collective
excitations in topological insulators in general dimension. For
previous studies, see, for example, Refs. 24–27.

The CS description of the two-dimensional QHE can be
derived, for example, from composite particle theories. In
the composite boson theory,28 one first attaches a unit flux
to each electron to make it a boson. For the completely filled
Landau level, this will cancel the external magnetic field on
average, and thus we have a composite boson system at zero
magnetic field, but interacting with a statistical CS gauge
field. A subsequent duality transformation delivers the CS
theory, which gives us a hydrodynamical description of the
filled Landau level. Similarly, by using the composite fermion
picture,29,30 the same CS theory can also be derived.31

The flux attachment concept is successfully used to derive
the hydrodynamic theories of the Laughlin and Jain states
of the FQHE. However, it only works in two dimensions
since it is based on the existence of the Chern-Simons gauge
theory and a connection with the braiding group. In 2D, the
excitations (or vortices) can carry the quantum numbers of
representations of the braid group, which allows for fractional
statistics. However, the concept of braiding is only meaningful
in two spatial dimensions since the braiding of particle world
lines is not topologically stable in other spatial dimensions. In
addition, for technical reasons, flux attachment is somewhat
cumbersome to apply even for 2D lattice systems (see, e.g.,
Ref. 32). Thus an alternative procedure to derive effective
hydrodynamic field theories of topological phases is desirable.

One alternative approach for deriving effective field theo-
ries is bosonization. This method is closely related to the well-
known boson-fermion correspondence in 1 + 1 dimensions,
which is an exact operator correspondence between a theory
of massless (Dirac) fermions and a theory of a massless
relativistic scalar field. We will show here that one can use
an approach known as “functional bosonization” to derive
effective hydrodynamic field theories for general topological
phases both in two and three dimensions. Although for spatial
dimensions d > 1 the functional bosonization approach is not
an exact mapping, it is nevertheless useful to derive effective
low-energy theories in massive phases, which is what we are
after in this work. In particular, in this paper, we will apply
functional bosonization to the (3 + 1)D topological insulator
to derive an effective topological hydrodynamic theory of the
form of the BF theory in 3 + 1 space-time dimensions.

This paper is organized as follows. In Sec. II, we start by
applying functional bosonization to the topological insulators
in the primary series of the periodic table of topological
insulators.13,15 We derive BF-type topological field theories
supplemented with a term of topological origin. Next, the
physical picture suggested by functional bosonization is
described in Sec. III, making some comparison with flux
attachment, and composite particle theories. In Sec. IV, we
discuss hydrodynamic topological field theory descriptions
of Z2 topological insulators, including the three-dimensional
time-reversal symmetric topological insulators, and the two-
dimensional quantum spin Hall effect. They are obtained from
the BF-type topological field theories of the primary series
by dimensional reduction. N.B. we will use D to represent
space-time dimensions and d to represent space dimensions.
Thus D = 2 is 1 + 1-dimensional space-time.

In Sec. V, we explore the possibility of topological phases
that arise because of strong interactions, e.g., “fractional”
topological insulators. Starting from the BF theories for
noninteracting topological insulators, and following the parton
approach pioneered by Blok and Wen33,34 in the FQHE by
implementing strong correlations as a constraint among fields,
we give a derivation of topological field theories that describe
strongly interacting topological phases. Finally, we present our
conclusions in Sec. VI.

II. FUNCTIONAL BOSONIZATION

A. Functional bosonization

We begin with a summary of functional bosonization. Our
starting point is the fermionic partition function in D = d + 1
space-time dimensions:

Z(Aex) =
∫

D[ψ̄,ψ] exp(iKF [ψ̄,ψ,Aex]), (2.1)

where KF [ψ̄,ψ,Aex] is the fermionic action describing the
(topological) insulator in question, and Aex

μ is an external U(1)
gauge field, which couples minimally to the fermion field ψ̄,ψ

as a source (background). The correlation functions of the
electrical current operator can be obtained from the generating
functional Z(Aex) as

〈jμ1 (x1)jμ2 (x2) · · · 〉 = 1

i

δ

δAex
μ1

(x1)

1

i

δ

δAex
μ2

(x2)
· · · ln Z(Aex).

(2.2)

Functional bosonization makes use of the gauge invariance
of the action and of the functional integral under a local U(1)
gauge transformation: for an aμ that is pure gauge, the partition
function is invariant under the shift Aex → Aex + a,

Z(Aex + a) = Z(Aex). (2.3)

Thus one can represent Z(Aex) as

Z(Aex) =
∫

D[a]pureZ(Aex + a), (2.4)

up to some normalization, where
∫
D[a]pure is the path integral

over the gauge field aμ with the condition that it is a pure gauge.
Thus, in terms of the field strength fμν(a) = ∂μaν − ∂νaμ,
the allowed gauge field configurations are required to obey
fμν(a) = 0 for all possible pairs of indices μ,ν (μ < ν).

In the case of a system of fermions on an open manifold with
fixed boundary conditions, such as a disk in two dimensions or
a ball in three dimensions, this procedure does not change the
partition function. This is true independently of the dynamics
of the fermions (provided it is gauge-invariant). This is also
true for a closed topologically trivial manifold (such as a
sphere). On the other hand, in the case of fermions on a
closed topologically nontrivial manifold, such as a torus in
any dimension, this procedure is equivalent to averaging the
partition function over the large gauge transformations on the
torus. Thus this is equivalent to averaging the partition function
over “twisted” boundary conditions.
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The pure gauge condition can be imposed by inserting the
δ functional

∏
x

μ<ν<λ···∏
μ,ν,λ,...

εμνλ···αβδ{fαβ(a(x))} (2.5)

in the path integral, where εμν···αβ is the Levi-Civita symbol
in D space-time dimensions, and

∏μ<ν<λ···
μ,ν,λ,... runs over D(D −

1)/2 independent directions. For example, when D = 3 and
D = 4, the δ functional is given by

∏
x

∏3
μ=1 εμνλδ(fνλ(a)),

and
∏

x

∏μ<ν
μ,ν εμνλσ δ(fλσ (a)), respectively. The δ functional

can be exponentiated by introducing an auxiliary rank (D − 2)
tensor field bμν... as

Z(Aex) =
∫

D[a,b]Z(Aex + a)

× exp

[
− i

2

∫
dDx bμν···εμν···αβfαβ(a)

]
. (2.6)

Using the invariance of the integration measure under a shift
of the gauge fields, a → a − Aex, we can write the partition
function Z(Aex) as

Z(Aex) =
∫

D[a,b]Z(a) exp

{
− i

2

∫
dDx bμν···εμν···αβ

× [fαβ(a) − fαβ(Aex)]

}
. (2.7)

From the partition function (2.7), the current correlation
functions can be computed as the correlation functions of the
tensor field bμν···,

〈jμ1 (x1)jμ2 (x2) · · · 〉
= 〈εμ1ν1λ1···∂ν1bλ1···(x1)εμ2ν2λ2···∂ν2bλ2···(x2) · · · 〉, (2.8)

suggesting the correspondence (bosonization rule)

jμ(x) ⇔ εμνλρ···∂νbλρ···(x), (2.9)

where the (D − 2)-form tensor field bμν··· was introduced as
a Lagrange multiplier field. This system has, in fact, a (local)
gauge symmetry as its partition function is invariant under

bμν··· → bμν··· + ∂{μξνλ··· } (2.10)

where the symbol {· · · } fully antisymmetrizes the indices.
Observe also that in Eq. (2.7) the field strength for bμν···,
which is the (D − 1)-form field h defined by h := db (in the
differential form notation), does not appear.

A consequence of the bosonization rule (2.9) and the form
of the partition function (2.7) is that local magnetic fluxes (or,
in general dimension, magnetic flux “tubes”) couple to the
tensor field b. In addition, in a system with an energy gap,
the world lines of fermionic excitations (i.e., the quasiparticle
currents) are minimally coupled to the gauge field aμ.

To complete the bosonization mapping, we need to evaluate
the fermionic path integral Z(a). Our discussion so far
is quite general and applicable to gapped/gapless, inter-
acting/noninteracting systems in any dimension. However,
for a theory of massless fermions (free or interacting), the
fermionic path integral Z(a) can only be evaluated exactly
in D = 1 + 1 dimensions. In general space-time dimension
D, the fermion path integral Z(a) is a nonlocal (but gauge

invariant) functional of the gauge field. On the other hand,
if the band gap (mass) is finite, an approximate form of
the fermionic path integral Z(a) can be obtained using the
inverse mass expansion. Below, we will discuss first the case
of noninteracting (topological) insulators and we will later
extend these results to the interacting cases. The path integral
calculation is most conveniently described by choosing the
Dirac representative of topological insulators as a microscopic
model. The resulting bosonized action is then a sum of
local gauge-invariant operators. In particular, the parts of it
which are topological do not depend on microscopic details.
These topological terms are always marginal and dominate
the low-energy physics for d < 3, and they also only depend
on universal properties of the system. In particular, they
contain the information on the topological invariants of the
microscopic model.

In the next section, we discuss some technical and subtle
points about functional bosonization that might be skipped
during a first reading. After this discussion, we move on to
discuss what this approach predicts in various dimensions D

using several examples.

B. Generalities

The functional bosonization technique is rooted in
the well-known Fermi-Bose equivalence in D = 1 + 1
dimensions.35–42 (For reviews, on bosonization see Refs. 32,
43, and 44). It is known that the density-density commutator of
a D = 1 + 1-dimensional chiral fermion is anomalous in the
sense that it develops the so-called Schwinger term, while one
would naively expect (for a system with a relativistic spectrum)
that the charge and current density operators at different
positions (momenta) commute with each other at equal times.
This is due to the underlying chiral anomaly. This anomalous
commutator allows one to represent the fermion density
operator in terms of a boson field. Indeed, if we represent
the (normal-ordered) operators for the fermion charge density
j0 and current density j1 by the two-vector jμ = (j0,j1), then
the anomalous commutator [j0(x),j1(y)] = (i/π )∂xδ(x − y)
implies that the current can be represented in terms of a
scalar (Bose) field φ, i.e., jμ = (1/

√
π )εμν∂

νφ, which is
consistent with the requirement of local conservation of the
charge current, ∂μjμ = 0. In the Abelian case, the resulting
effective field theory for the Bose field φ turns out to be free
(up to a finite renormalization of the Luttinger parameter and
the speed of excitations due to interaction effects). In other
words, the dynamics of the fermionic system (interacting
or not) is fully represented in terms of the dynamics of its
conserved currents. In this sense, in one space dimension,
bosonization yields an exact hydrodynamic representation of
the system. In fact, the full excitation spectra of both systems
are identical and so are their partition functions. This exact
Fermi-Bose equivalence is a consequence of the kinematic
restrictions of one-dimensional motion for systems with a
relativistic (linear) dispersion. Using these identities, one can
establish a one-to-one mapping between seemingly different
systems such as the D = 2-dimensional massive Thirring
model and the D = 2-dimensional sine-Gordon model.38,39

Such a correspondence also extends to D = 2-dimensional
theories with non-Abelian symmetries.45
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In 1 + 1 space-time dimensions, these bosonization opera-
tor identities can also be formulated in terms of the functional
integral language. In this (functional) bosonization approach,
the fermion determinant of a Dirac operator coupled to gauge
fields is computed by means of a local chiral transformation.
At the classical level (i.e., in the Lagrangian) in 1 + 1
dimensions it is possible to (formally) cancel the coupling
of the Fermi field to a gauge field Aμ(x) by means of a
local chiral transformation, which acts on the Dirac fermion as
ψ(x) → exp[iφ(x)γ5]ψ(x), where φ(x) is an arbitrary smooth
function of space-time coordinates x and γ5 is a suitable
Pauli matrix. In a gauge-invariant theory, the chiral anomaly
implies that the integration measure of the fermion path
integral is not invariant under the chiral transformation. As
a result there is a nontrivial Jacobian associated with the chiral
transformation.46 This Jacobian is computable in terms of the
fermion determinant that leads to the bosonized form of the
effective action theory, which is a local functional of the Bose
field φ(x). This approach has been applied with great success
to several 1 + 1-dimensional theories of massless fermions.41

In massive theories, the Fermi-Bose mapping relates the two
descriptions as identities valid order by order in a perturbation
theory in powers of the fermion mass term.38,39,47 It also
yields an alternative derivation of non-Abelian bosonization
yielding the Wess-Zumino-Witten model45 by means of an
exact computation of the fermion determinant.42

For d > 1, it is not possible, in general, to find an exact
mapping in the form of operator identities, between a local
theory of fermions and a local theory of bosons. In practice, for
d > 1, bosonization reduces to finding an effective field theory
in terms of Bose fields. Physically, this is largely due to the fact
that the kinematic restrictions of one dimension do not exist
for d > 1 and, as a result, the spectrum of a local fermionic
theory, interacting or not, is not equivalent to the spectrum of
a local bosonic theory.48 The resulting effective field theory
is local only in the case of theories with a finite gap in the
fermionic spectrum and for energies much smaller than the
gap. The prime example of such a theory is the hydrodynamic
field theory of the FQHE.

For the case of functional bosonization, the problem is
that the resulting fermion determinant for massless fermions
coupled to gauge fields is a gauge-invariant but nonlocal
functional of the gauge field and, contrary to the case of D = 2,
cannot be computed in closed form. However, in the case of
massive fermions, the contribution of the fermion determinant
to the effective action of the gauge fields can be expressed in
terms of local gauge-invariant terms (for manifolds without
boundary) with coefficients that involve powers of the inverse
of the mass, i.e., a gradient expansion. This approach naturally
is only meaningful for massive theories. In the case of
massive Dirac fermions in D = 2 + 1 dimensions, it has been
shown51–56 that the correlation functions of the conserved
fermionic currents are the same as the correlation functions
of a dual topological Chern-Simons gauge theory in the
low-energy regime (only!). A mapping of the correlators of
other fermion bilinears can also be determined but, again, only
in the low-energy and long-wavelength regime.

Below, we will show that functional bosonization can
be used to derive hydrodynamic theories of topological
insulators in d = 1, . . . ,4. Specifically, we give the functional

bosonization results for noninteracting topological insulators
in D = d + 1 with d = 1, . . . ,4, which crucially conserve
electromagnetic U(1) charge. These topological phases belong
to “the complex symmetry classes” and to “the primary series”
of the eight real symmetry classes in the periodic table; by
“complex symmetry classes” we refer to symmetry classes A
and AIII, while the “primary series” of topological insulators
(superconductors) is located on the diagonal of the periodic
table, and its members are characterized by an integer Z
topological invariant.

After this, we will discuss field theory descriptions of non-
interacting topological phases characterized by Z2 invariants.
These theories can be obtained from “the primary series” by
dimensional reduction and can be divided into two different
classes: first and second descendants. These phases include the
time-reversal symmetric topological insulators in D = 3 + 1
(a first descendant) and D = 2 + 1 (the quantum spin Hall
effect, a second descendant) dimensions. It is also possible
to extend our discussion to topological phases (topological
superconductors) that conserve non-Abelian currents such
as a spin SU(2) current.57 Such non-Abelian functional
bosonization is discussed in Appendix A.

C. Functional Bosonization Examples

1. D = 1 + 1 (AIII or BDI)

There are no nontrivial topological insulator states in D =
1 + 1 dimensions if we do not require a protected symmetry.
That is, topological insulators (in fact, topological phases in
general) in D = 1 + 1 must be symmetry-protected ones. In
the following, we consider band insulators with sublattice
(chiral) symmetry. In the Altland-Zirnbauer classification,58

they belong to symmetry class AIII. In D = 1 + 1, topological
insulators in symmetry class AIII are characterized by an
integer-valued topological invariant, the winding number ν.
A canonical example for such systems is polyacetylene.59

In addition to the sublattice symmetry, we can further
impose time-reversal symmetry, which squares to be either
+1 or −1 (corresponding to symmetry class BDI or CII). In
either case, band insulators in D = 1 + 1 dimensions in these
symmetry classes are characterized by an integral topological
invariant ν, in much the same way as symmetry class AIII in
D = 1 + 1. Below, we will consider symmetry class BDI in
D = 1 + 1, which is in the primary series in the periodic table.

The symmetry class BDI can be realized either in terms
of complex (Dirac) or real (Majorana) fermions.17,60,61 In the
latter case, instead of imposing a sublattice symmetry, we
would impose a reality condition (originating from the fact
that we are dealing with Majorana fermions) combined with
time-reversal symmetry. The reality condition is equivalent
to a charge-conjugation symmetry and when combined with
time-reversal plays a role similar to sublattice symmetry. Our
discussion below, however, will focus on the case of complex
fermions, as functional bosonization takes advantage of the
presence of a U(1) global symmetry.

To summarize, we consider (topological) band insulators
with U(1) global symmetry (particle number conservation) in
symmetry class AIII or BDI in D = 1 + 1 dimensions. For
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these cases, Z(a) in Eq. (2.7) can be evaluated as

ln Z(a) = iθ

2π

∫
d2x εμν∂μaν + · · · . (2.11)

Here, the angle θ is given in terms of the bulk topological
invariant, the winding number ν, as θ = νπ mod 2π . In
Eq. (2.11), terms with more fields and derivatives such as
Maxwell terms are suppressed as they are more irrelevant
[indicated by · · · in Eq. (2.11)].

Thus the bosonized partition function is given by

Z(Aex) =
∫

D[a,b] exp i

∫
dDxL (2.12)

with the effective low-energy Lagrangian density

L = −bεμν∂μ

(
aν − Aex

ν

) + θ

2π
εμν∂μaν + · · · . (2.13)

In summary, the effective low-energy theory of massive
fermions in 1 + 1 dimensions is a BF theory (the first term) and
a topological term whose coupling constant is the topological
invariant θ = πν, where ν is the winding number. Notice that
in D = 1 + 1 dimensions the BF theory involves a vector
(gauge) field aμ and a scalar field b.

2. D = 2 + 1 (A or D)

In D = 2 + 1, we discuss the bosonization of topological
insulators in symmetry classes A and D. They are topological
insulators belonging to the primary series in the terminology
introduced above. These topological insulators are character-
ized by an integer topological invariant, Ch, the first Chern
number, which is nothing but the Hall conductivity σxy (in units
of e2/h). The symmetry class A is defined as a set of fermionic
quadratic Hamiltonians that possess no discrete symmetry,
and the canonical example of the topological insulator in
this class is the integer QHE. The symmetry class D is
obtained, from symmetry class A, by imposing additional
particle-hole symmetry while keeping the electromagnetic
U(1) symmetry.11 This should be distinguished from the
superconducting realization of symmetry class D, where
there is no conserved U(1) charge whereas the particle-hole
“symmetry” simply reflects the fact that fermionic Bogoliubov
quasiparticles must satisfy a reality constraint.

For these cases, Z(a) can be computed in the low-energy
limit as

ln Z(a) = iCh
4π

∫
d3x εμνλaμ∂νaλ + · · · , (2.14)

where Ch is the integer-valued bulk topological invariant, the
first Chern number, of the topological insulator. As in the case
of D = 2, terms that are less relevant compared the Chern-
Simons term, including the Maxwell term, are suppressed by
powers of the inverse of the mass (the energy gap). Thus

Z(Aex) =
∫

D[a,b] exp i

∫
dDxL (2.15)

with the effective low-energy Lagrangian density

L = −bμεμνλ∂ν

(
aλ − Aex

λ

) + Ch
4π

εμνλaμ∂νaλ. (2.16)

Thus, here too, we obtain a BF theory (this time in 2 + 1
dimensions) and a topological invariant term, the Chern-
Simons action, whose coupling constant (or “level”) is the
(topological invariant) Chern number of the microscopic band.
In D = 2 + 1, the BF term relates two gauge fields, bμ

and aμ. This effective action has a formal similarity with
the hydrodynamic theory of the FQHE. However, in the
hydrodynamic theory of the FQHE, the two gauge fields are the
hydrodynamic field bμ and the statistical gauge field aμ, with
the important difference that the Chern-Simons term affects
the hydrodynamic field.23,62 In the present case, the bosonized
action (2.16) represents an integer QHE with a quantized Hall
conductance σxy = (e2/h)Ch. Thus this is a theory of the
quantized anomalous Hall effect.

3. D = 3 + 1 (AIII or DIII classes)

In D = 3 + 1, topological insulators in symmetry class
AIII are characterized by an integral topological invariant,
the three-dimensional integer-valued winding number ν, and
are protected by a chiral symmetry. An example of topological
insulators in this class can be found in Ref. 63, which discusses
a lattice tight-binding model description. This topological in-
sulator is somewhat analogous to the time-reversal symmetric
topological insulator in symmetry class AII in that it supports
a Dirac fermion surface state, and has a nontrivial axion-
electrodynamics response to the external electromagnetic field.
The difference is, however, that the latter is characterized by
a Z2 topological invariant, rather than an integer topological
invariant. We will discuss the bosonization of the time-reversal
symmetric topological insulator in symmetry class AII in a
later section.

The topological insulator in symmetry class DIII is similar
to the topological insulator in symmetry class AIII above
but with the requirement of an additional particle-hole or
time-reversal symmetry (which leads to equivalent results
since these symmetries, when combined with the sublattice
symmetry, give the third symmetry). As in the cases of
D = 2 and 3 above, this realization of symmetry class DIII in
terms of complex fermions [i.e., with conserved U(1) charge]
should be distinguished from the superconducting realization
of symmetry class DIII.

For these cases, Z(a) can be computed, again, in the low-
energy limit, as (see, for example, Ref. 63 for calculations in
terms of the Dirac representative)

ln Z(a) = i

∫
d4x

[
θ

8π2
εμνλρ∂μaν∂λaρ

− 1

4πg2
fμνf

μν + · · ·
]
. (2.17)

Here, the angle θ is related to the winding number as θ = νπ

mod 2π .14 Thus

Z(Aex) =
∫

D[a,b] exp i

∫
dDxL (2.18)

with the effective Lagrangian

L = −bμνε
μνλρ∂λ

(
aρ − Aex

ρ

) + θ

8π2
εμνλρ∂μaν∂λaρ

− 1

4πg2
fμνf

μν + · · · . (2.19)
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In the last line, we have written down the Maxwell term
explicitly since it is also marginal in D = 4.

4. D = 4 + 1 (A or AII classes)

Finally, we discuss the bosonization of the topological
insulators in D = 4 + 1. In fact, the bosonization rule applies
to any dimension. One of our motivations to study the case
of D = 4 + 1 is that the lower-dimensional topological insu-
lators, in particular, the time-reversal symmetric topological
insulators in D = 3 + 1 and D = 2 + 1, are the first and
second descendants of the D = 4 + 1 topological insulator
in class AII.11,14 In D = 4 + 1, topological insulators in
symmetry class A and AII are characterized by an integer-
valued topological invariant, the second Chern number Ch2.

For these cases, Z(a) can once again be computed as

ln Z(a) = i

∫
d5x

[
Ch2

24π2
εμνλρσ aμ∂νaλ∂ρaσ

− 1

4πg2
fμνf

μν + · · ·
]
, (2.20)

where the integer Ch2 is the second Chern number of the
topological insulator. Thus

Z(Aex) =
∫

D[a,b] exp i

∫
dDxL, (2.21)

where the effective Lagrangian is now given by

L = −bμνλε
μνλρσ ∂ρ

(
aσ − Aex

σ

)
+ Ch2

24π2
εμνλρσ aμ∂νaλ∂ρaσ + · · · , (2.22)

where we have dropped the Maxwell term in the last equation.

5. Interactions

We have not included interactions so far, but perturbative
effects of weak interactions can easily be taken into account.
As an example, consider the local current-current interaction
(which is the analog of the Luttinger-Thirring interaction in
D = 1 + 1 dimensions)

−u

∫
dDx jμjμ, (2.23)

where u is the coupling constant. Because of the bosonization
rule, this leads to a term of the form

−u

∫
dDx (εμνλρ···∂νbλρ···)(εμαβγ ···∂αbβγ ···). (2.24)

III. PHYSICAL PICTURES FROM FUNCTIONAL
BOSONIZATION

In this section, we discuss the physical picture that
functional bosonization provides in three different situations
with increasing complexity: an example of a topologically
trivial insulator, a time-reversal breaking topological insulator
(the QHE or quantum anomalous Hall effect) in D = 2 + 1
dimensions, and a time-reversal invariant topological insulator
in D = 3 + 1 dimensions.

A. Topologically trivial insulators

We start our discussion from topologically trivial insu-
lators and we will make a few comments. We will discuss
(i) the normalization of the gauge fields when the BF theory
description is considered on a compact spatial manifold
(ii) functional bosonization and the dual picture of insulators,
and (iii) the presence/absence of fermionic excitations in the
low-energy spectrum. In fact, these comments are not limited
to topologically trivial insulators, and we will continue our
discussion of them for nontrivial topological insulators in the
later sections.

(i) Functional bosonization gives us a bosonized description
of nontopological band insulators in terms of the BF theory
without a CS or θ term, i.e., the pure BF theory. In D = 2 + 1
dimensions, the bosonized Lagrangian of a nontopological
band insulator is given by Eq. (2.16) with vanishing Chern
number, Ch = 0. On a compact spatial manifold, such as a
torus, we should be careful of the normalization of the gauge
fields, which must be done relative to their compactification
condition. On the torus, where the spatial coordinates (x1,x2)
are identified periodically as xi ≡ xi + Li , the gauge fields αi

j

(α1
μ ≡ bμ and α2

μ ≡ aμ), in the αi
0 = 0 gauge, are normalized

such that they are global gauge-transform equivalent to
αi

j + 2πnj/Lj , where nj=1,2 are integers. When properly
normalized, the BF Lagrangian is given by

L = − 2k
4π

bμεμνλ∂ν

(
aλ − Aex

λ

)
(3.1)

with k = 1. With this normalization, the ground-state degen-
eracy is one (i.e., no ground-state degeneracy).

(ii) The BF theory description of (nontopological)
band insulators resembles the dual description of BCS
superconductors.64–66 The bosonized theory of the trivial-band
insulator from functional bosonization is naturally related to
the dual theory of (band/Mott) insulators.67,68 Below, let us
take a closer look at this by focusing on D = 2 + 1, although
a similar discussion applies for D �= 2 + 1.

In (2+1)-D superconductors, a defect (vortex) of the
condensate �(	r) traps a magnetic field ∇ × AEM(	r);
the phase φ(	r) of the superconducting order parameter
�(	r) = |�(	r)| exp iφ(	r) is related to the magnetic field as
(2π )−1�0

∮
∂S

∇φ · d l = ∫
S
(∇ × AEM) · dS, where �0 is the

flux quantum, and if we reinstate h, c, and e, �0 = hc/(2e);
the magnetic flux is localized in the region S.

In the dual description of an insulator, we view the charge
density modulation δρ(	r) caused, perhaps, by external doping,
as a pointlike “defect.” As in the (2+1)d superconductor, we
postulate that such a defect traps a fictitious magnetic field
∇ × a: ∫

S

δρ dS = e

∫
S

(∇ × a) · dS, (3.2)

where aμ is a fictitious gauge field. As will become clear, this
gauge field is the same gauge field appearing in Eq. (3.1). As
the local charge density modulation is viewed as a vortex, we
can postulate the existence of an order parameter χ . The phase
of χ , χ = |χ | exp i�, is related to the charge density as

e

∮
∂S

∇� · d l =
∫

S

δρdS. (3.3)
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As in the dual theory of superconductors, the above
description in terms aμ and χ can be dualized (in the condensed
phase) and can instead be rewritten in terms of two gauge fields
aμ and bμ, which are the gauge fields appearing in Eq. (3.1).
Upon dualization, bμ couples minimally to the vortex current
of χ , j

μ

V = εμνλ∂ν∂λ�. This is, in fact, consistent with the
bosonization rule jμ ∝ εμνλ∂νbλ.

(iii) The bosonic descriptions (in terms of aμ and χ ,
or in terms of aμ and bμ) do not contain any fermionic
excitations even though we started from a gapped fermionic
theory (a band insulator). Drawing again an analogy to
BCS superconductors, this resembles to the fact that, under
duality, a superconductor in a uniform field is equivalent to
the insulating phase of the same bosonic theory at uniform
charge density.69–71 In the latter theory, the charges are gapped
Cooper pairs, not fermions. For this reason, the bosonic theory
only describes arrays of Josephson junctions in which the
fermionic excitations do no exist (they are bound on each
superconducting grain). The connection between the gapped
fermionic theory and the bosonized descriptions is that they
share the same topological limit in the form of a BF theory. As
we will see in the next section, the bosonized description of a
D = 2 + 1 dimensional topological insulator is different and
supports fermionic excitations (electrons) due to the presence
of the Chern-Simons term.

B. Topological insulator in D = 2 + 1

Let us now move on to a more nontrivial discussion of a
topological insulator. The bosonized Lagrangian of the D =
2 + 1 dimensional topological insulator (in symmetry class A
or D) is given by Eq. (2.16):

L = − 2k
4π

bμεμνλ∂ν(aλ − Aex
λ ) + Ch

4π
εμνλaμ∂νaλ

= Kij

4π
αi

μεμνλ∂να
j

λ + k
2π

bμεμνλ∂νA
ex
λ , (3.4)

where we integrated by parts once, and introduced the
following notation: (α1

μ,α2
μ) = (bμ,aμ) and

K =
(

0 −k
−k Ch

)
. (3.5)

We have normalized bμ as before (assuming we are on a
compact manifold such as a torus) and k = 1.

This effective theory also makes sense for k �= 1. However,
in this case, this effective hydrodynamic theory cannot be
derived from a free-fermion system, even if it is a Chern
insulator. In fact, this effective field theory describes a
topological fluid. This can be checked by noting that it
describes a system with a nontrivial ground-state degeneracy
kg , where g is the number of handles of the surface. In
other terms, a theory with k �= 1 describes a fractionalized
topological insulator, e.g., a fractional quantum Hall fluid, as
we will see in Sec. V.

The Lagrangian (3.4) is the hydrodynamic effective field
theory for D = 2 + 1 dimensional topological insulators.
Some examples include the QHE realized in a two-dimensional
electron gas with Landau levels produced by a uniform
magnetic field as well as the Chern-insulator i.e., lattice
fermion systems with nonzero Chern number but without

uniform magnetic field, such as the Haldane model.72 Note
that we have arrived at Eq. (2.16) without using composite
particle theories (see below for more comments) and that
for the Chern-insulator, the flux attachment transformation is
highly nontrivial but not impossible.73–75

It is readily seen that the bosonized theory reproduces the
QHE. From the equations of motion, δS/δaμ = δS/δbμ = 0,

− 2k
4π

εμνλ∂νbλ + Ch
2π

εμνλ∂νaλ = 0,

−εμνλ∂ν

(
aλ − Aex

λ

) = 0. (3.6)

From the definition of the electrical current,

jμ := δS

δAex
μ

= 2k
4π

εμνλ∂νbλ, (3.7)

we then conclude the QHE as

jμ = Ch
2π

εμνλ∂νA
ex
λ . (3.8)

While functional bosonization delivers the two-component
CS theory (the BF-CS theory), it is possible to derive the
familiar single-component CS theory by integrating over aμ.
If we eliminate aμ by using the equation of motion, for the
simplest case of k = Ch = 1, we obtain the effective action

L = − 1

4π
εμνλbμ∂νbλ + 1

2π
εμνλbμ∂νA

ex
λ . (3.9)

This is the familiar single-component CS theory (here for the
case of the integer QHE). Observe that, as it should, the CS
coefficient in front of εμνλbμ∂νbλ has the opposite sign as com-
pared to the CS theory of the response, (Ch/4π )εμνλAex

μ ∂νA
ex
λ .

The transition from the BF-Chern Simons-theory (3.4) to
the single-component CS theory (3.9) is quite analogous to the
derivation of the CS description for the (integer) QHE in terms
of the composite boson theory. In the composite boson theory,
one introduces a CS theory that attaches a flux (fluxes) to
electrons, and the bosonic composite particle (electron + flux),
in terms of a dualized language, is expressed by a U(1) gauge
field; these two U(1) gauge fields correspond to aμ and bμ

in functional bosonization. In fact, if we “dualize back” the
BF-Chern Simons theory (3.4), we obtain the Chern-Simons-
Landau-Ginzburg action, in terms of the CS gauge field aμ and
some bosonic field �. Comparing with the composite boson
theory, the bosonic � could be interpreted as a composite
boson field. Thus, in functional bosonization, while we have
not used the flux attachment, the resulting effective field theory
is quite similar to the composite boson theory of the IQHE.

As is clear from the comparison to the composite boson
theory, the hydrodynamic theory (3.9) [and hence Eq. (3.4)]
includes a fermionic excitation (electron) due to the presence
of the Chern-Simons term. The world lines of point defects
(point sources for the vortex current that couples to bμ), when
linked, pick up a π phase (i.e., a fermionic sign) due to
the Chern-Simons term. This should be contrasted with the
hydrodynamic theory for topologically trivial insulators (3.1),
which does not have the Chern-Simons term, and thus no
fermionic statistics of its excitations.
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C. Topological insulator in D = 3 + 1

The bosonized Lagrangian (2.19) describes the D = 3 + 1-
dimensional (topological) insulator in the symmetry class AIII
(DIII). As a possible microscopic realization that conserves a
U(1) charge, let us consider the following fermionic action:

KF [ψ†,ψ,Aex]

=
∫

dt
∑
r,r ′

ψ†(r)
[(

i∂t + Aex
0

)
δr,r ′ − H(r,r ′,Aex)

]
ψ(r ′),

(3.10)

where ψ(r)/ψ†(r) is the fermion annihilation/creation field
operators at site r and H(r,r ′,Aex) represents a (tight-binding)
Hamiltonian of a chiral topological insulator, minimally
coupled to the external electromagnetic U(1) gauge field Aex

μ .
[Here, ψ(r) can possibly be multicomponent, but internal
indices will be suppressed below.] A single-particle Hamil-
tonian H in symmetry class AIII is sublattice symmetric in
that it anticommutes with a unitary matrix �, {H,�} = 0.� is
diagonal in sublattice indices and takes values ±1 for sublattice
A and B, respectively. This means, in turn, that under the
unitary transformation (particle-hole transformation)

Cψ(t,r)C−1 = (−1)rψ†(t,r),
(3.11)

(−1)r =
{+1, r ∈ A sublattice

−1, r ∈ B sublattice

followed by time reversal

T ψ(t,r)T −1 = ψ(−t,r), T iT −1 = −i, (3.12)

the fermion bilinear
∫

dt
∑

r,r ′ ψ†(r)H(r,r ′,Aex)ψ(r ′) is left
unchanged while the sign of Aex

0 is flipped, i.e., T C sends
(i = 1,2,3)

T C : Aex
0 (t,r) → −Aex

0 (−t,r),
(3.13)

Aex
i (t,r) → +Aex

i (−t,r),

and 	Eex(t,r) → − 	Eex(−t,r), 	Bex(t,r) → + 	Bex(−t,r).
The functional bosonization recipe in Sec. II, when applied

to the fermionic action, delivers the hydrodynamic field
theory (2.19):

L = −bμνε
μνλρ∂λ

(
aρ − Aex

ρ

) + θ

8π2
εμνλρ∂μaν∂λaρ,

(3.14)

where we have dropped the Maxwell term for simplicity. The
θ angle is θ = νπ , where ν ∈ Z is the topological invariant
(winding number). This is consistent with chiral symmetry;
because of the transformation law of Aex and, similarly, aμ

under T C, θ is mapped to −θ by T C. With the invariance of
the θ term under a shift θ → θ + 2π , the value of the θ angle
allowed by chiral symmetry is an integral multiple of π .

From the BF coupling bμνε
μνλρ∂λA

ex
ρ or from the bosoniza-

tion rule jμ ∝ εμνλρ∂νbλρ , one also reads off the transforma-
tion law

T C : b0i(t,r) → +b0i(−t,r), bi0(t,r) → +bi0(−t,r),
(3.15)

bij (t,r) → −bij (−t,r),

where i,j = 1,2,3.

The effective Lagrangian (3.14) obtained from functional
bosonization was discussed previously in Refs. 27, 76, 77, and
Eq. (3.14) should be compared with the one proposed in
Ref. 24:

L = 1

2π
εμνλρaμ∂νbλρ + 1

2π
εμνλρAex

μ ∂νbλρ

+Cεμνλρ∂μaν∂λA
ex
ρ , (3.16)

where C = ±1/(8π ). One can check, upon integration over a

and b, we reproduce the axion response term

S = ±1

8π

∫
dtd3x εμνλρ∂μAex

ν ∂λA
ex
ρ . (3.17)

As compared to Eq. (3.14), the effective action (3.16) does
not have the axion term for the aμ field. However, assuming
there is no monopole in aμ field configurations, with the gauge
transformation in Eq. (3.14),

bμν → bμν + θ

16π2
(∂μaν − ∂νaμ), (3.18)

one can transform Eq. (3.14) into Eq. (3.16).
As in the case of D = 2 + 1, one can readily verify that

the bosonized effective Lagrangian reproduces the physics
of the topological insulator in D = 3 + 1 dimensions; by
eliminating bμν and aμ using the equations of motion,
δS/δaμ = δS/δbμν = 0,

εμνλρ∂νbλρ − 1

4π2
εμνλρ∂ν(θ∂λaρ) = 0,

εμνλσ ∂λ

(
aσ − Aex

σ

) = 0, (3.19)

one obtains the axion term for the external gauge field

1

8π2

∫
d4x θεμνρσ ∂μAex

ν ∂ρA
ex
σ , (3.20)

as expected for the response of the topological insulator in
symmetry classes AIII and DIII in D = 4. Also, from the
bosonization rule jμ ≡ εμνλρ∂νbλρ , the electrical current is
given by

jμ = εμνλρ∂νbλρ = 1

4π2
εμνλρ∂ν

(
θ∂λA

ex
ρ

)
. (3.21)

Taking θ to be a step function, which jumps from π → 0 at
the system’s boundary, this equation tells us that surface Hall
conductance is σxy = 1/4π = e2/2h where we have reinserted
units. Alternatively, when θ = π = const, but Aex

ρ has a
monopole configuration, this equation tells us the monopole
acquires a charge, which is a manifestation of the Witten
effect.78–80

To discuss the effect of monopoles, it is convenient to
introduce a monopole gauge fieldf M

μν(Aex) and f M
μν(a) for Aex

μ

and aμ, respectively.27,81,82 In the presence of a monopole in a
U(1) gauge field Aμ (it can be either Aex

μ or aμ), the monopole
gauge field f M

μν(A) is a field that is related to the monopole
current jM,μ as

1
2εμνλρ∂νf

M
λρ (A) = jM,μ. (3.22)

More specifically, it is given by

f M
μν(A)(x) = qm

2
εμνλρδ

λρ(x; S) = qmδ̃μν(x; S), (3.23)
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where qm is the strength of the monopole, and δλρ(x; S) is
singular on the world surface S,

δμν(x; S) :=
∫

dσdτ

[
∂Xμ(σ,τ )

∂σ

∂Xν(σ,τ )

∂τ
− (μ ↔ ν)

]
× δ(4)[x − X(σ,τ )]. (3.24)

The surface S is the world sheet of the Dirac string, parame-
terized by its world-sheet coordinates Xμ(σ,τ ), and bounded
by a world line L of the monopole, ∂S = L. One verifies

1
2εμνλρ∂ν δ̃λρ(x; S) = δμ(x; L), (3.25)

where

δμ(x; L) =
∫

dσ
∂Xμ(σ,τ )

∂σ
δ(4)[x − X(σ )]. (3.26)

One then concludes f M
μν(Aex) is related to the monopole

current as Eq. (3.22). It represents the magnetic field inside
the infinitely thin solenoid that emanates from the monopole.

The physically observable field strength, f obs
μν (A), is the

difference of the field strength for the integrable vector
potential Aμ and the monopole gauge field, f obs

μν (A) =
fμν(A) − f M

μν(A). The curl of the observable field strength
f obs

μν (A) is nonzero in the presence of a magnetic monopole,
(1/2)εμνλρ∂νf

obs
λρ (A) = −jM,μ, as expected, where we noted

the integrability of Aμ, (∂μ∂ν − ∂ν∂μ)Aλ = 0. While both Aμ

and f M
μν(A) depend on the choice of the world surface S (i.e.,

for a given Dirac string L, there are many surfaces satisfying
∂S = L), f obs

μν (A) does not. In other words, f obs
μν (A) is invariant

under the monopole gauge transformation,

f M
μν(A) → f M

μν(A) + ∂μην − ∂νημ, Aμ → Aμ + ημ.

(3.27)

The partition function, invariant under both the ordi-
nary U(1) gauge transformation Aμ → Aμ + ∂μλ and the
monopole gauge transformation (3.27), can be constructed
from the Lagrangian

L = −1

2
bμνε

μνλρ[fλρ(a) − fλρ(Aex)]

+ θ

32π2
εμνλρ[fμν(a) − f M

μν(a)]
[
fλρ(a) − f M

λρ (a)
]
.

(3.28)

As opposed to the second term (the axion term), the first
term (the BF term) in Eq. (3.28) is not manifestly invariant
under the monopole gauge transformation. However, given
the bosonization rule εμνλρσ ∂νbλρσ ∝ jμ, Dirac’s quantization
condition of the electric and magnetic charges tells us that the
BF term is merely shifted by an integer multiple of 2π under
the monopole gauge transformation, and hence the partition
function is not affected.

Let us now focus on the case where θ is constant throughout
the bulk. We can use the equations of motion δS/δaμ =
δS/δbμν = 0 derived from the effective action (3.28) to find
that the electrical current is given in terms of the monopole

current as

jμ = εμνλρ∂νbλρ = − θ

8π2
εμνλρ∂νf

M
λρ (Aex) = − θ

4π2
jM,μ.

(3.29)

Given that in D = 2 + 1 the gauge field aμ plays the role
of attaching a flux (fluxes) to electrons, it is tempting, and
perhaps instructive, to view the gauge field aμ in D = 3 + 1
as a proper generalization of the CS “statistical gauge field.”
From the equation of motion εμνλρ∂νbλρ = −(θ/4π2)jM,μ, the
gauge field aμ is attaching a monopole to the electron (and as in
D = 2 + 1, the temporal component a0 enforces a constraint).
If we further choose, in the presence of a vortex line, the
world sheet of the Dirac string to be identical to the vortex
world sheet, the boundary of the vortex world sheet (the end
of the vortex) is the world line of a monopole (i.e., a dyon since
θ �= 0). In this case, Eq. (3.29) gives bμν = −(θ/8π2)f M

μν(Aex)
up to a choice of gauge.

IV. DIMENSIONAL REDUCTION

We have derived the effective BF topological field theories
for the primary series of the topological insulators in the peri-
odic table. In microscopic fermionic theories, Z2 topological
insulators (such as the time-reversal symmetric Z2 topological
insulator in D = 3 + 1 dimensions, and the quantum spin
Hall effect in D = 2 + 1 dimensions) can be derived as
a “descendant” of the primary series by the Kaluza-Klein
dimensional reduction.11 We now discuss the Kaluza-Klein
dimensional reduction of the BF type effective action we
derived. This is expected to deliver an effective bosonic field
theory description for descendant Z2 topological insulators.
Similar dimensional reduction was discussed in Ref. 11 for
the topological response theories.

Let us start from the D = 4 + 1-dimensional BF-CS theory
(the “parent” theory):

S = − 1

2π

∫
d5x bμνλε

μνλρσ ∂ρ

(
aσ − Aex

σ

)
+ Ch2

24π2

∫
d5x εμνλρσ aμ∂νaλ∂ρaσ + · · · , (4.1)

where μ,ν,λ, . . . = 0,1,2,3,4. The topological insulator in
D = 4 + 1 dimensions is time-reversal symmetric (symmetry
class AII) and so is the effective hydrodynamic theory;
the action (4.1) is invariant under time-reversal defined by
(i,j,k = 1, . . . ,4)

T : a0(t,r) → +a0(−t,r), ai(t,r) → −ai(−t,r),

b0ij (t,r) → −b0ij (−t,r), bijk(t,r) → +bijk(−t,r).

(4.2)

We now expand the fields as

�(xμ) =
+∞∑

nw=−∞
ei2πnww/Lw�(xi,nw), (4.3)

where � represents a field, Lw is the circumference of x4

direction, and xi = (x0,x1,x2,x3) and x4 = w. By “shrinking”
the x4 direction by taking Lw → 0, the “parent” D = 4 +
1-dimensional theory is reduced to a descendant theory in
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D = 3 + 1 dimensions. In doing so, we view each Fourier
mode �(xi,nw) as a field in D = 3 + 1 dimensions (Kaluza-
Klein modes). The modes with nw �= 0 have a gap that grows as
we take Lw → 0 and hence, at low energies, only the Fourier
modes with nw = 0 are important. [This can be seen in the
presence of proper kinetic terms (e.g., the Maxwell term) for
aμ and bμνλ, which are not shown explicitly above]. We define

aw(xi,nw = 0) =: φ(xi)/Lw,

bwij (xi,nw = 0) =: 1
3uij (xi)/Lw, (4.4)

Aex
w (xi,nw = 0) =: θ ex(xi)/Lw,

(i,j = 0, . . . ,3). The resulting D = 3 + 1-dimensional La-
grangian inherits the field content of the parent theory: 1-form
gauge fields ai and Aex

i , a 3-form gauge field bijk , where the
space-time index in D = 4 dimensions i,j,k runs from 0 to
3. In addition, as introduced in Eq. (4.4), it also contains two
scalar fields, φ and θ ex, and one 2-form gauge field uij . The
scalar field θ ex is the background axion field, which satisfies
θ ex = π (0) inside (outside) of the D = 3 + 1-dimensional
topological insulator. Putting together, the effective topolog-
ical field theory for the D = 3 + 1-dimensional topological
insulator is given by the Lagrangian

L = −εμνλρ

2π
(φ − θ ex)∂μbνλρ − εμνλρ

2π

(
aμ − Aex

μ

)
∂νuλρ

+ Ch2

8π2
εμνλρφ∂μaν∂λaρ + · · · , (4.5)

where the space-time index μ,ν,λ now runs from 0 to 4. The
last two terms resemble the effective field theory of the D =
3 + 1-dimensional topological insulator in the primary series,
i.e., the BF theory with the axion term, Eq. (2.19), whereas
the first term is absent in Eq. (2.19). The Z2 nature of the
system lies in the restriction on Ch2θ

ex, which is quantized
by time-reversal symmetry to be fixed at Ch2θ

ex = 2nπ or
(2n + 1)π , where n is an integer. The Z2 nature is manifest in
the fact that the bulk of the material only uniquely determines
whether Ch2θ

ex is an even or odd multiple of π not what the
value of n is.11 If we calculate the electrical current response,
we find

δS

δAex
μ

= jμ = 1

2π
εμνλρ∂νuλρ,

δS

δaμ

= − 1

2π
εμνλρ∂νuλρ + 2Ch2

8π2
εμνλρ∂ν(φ∂λaρ) = 0,

δS

δbνλρ

= 1

2π
εμνλρ∂μ(φ − θ ex) = 0,

δS

δuλρ

= 1

2π
εμνλρ∂ν

(
aμ − Aex

μ

) = 0, (4.6)

which gives rise to

jμ = Ch2

4π2
εμνλρ∂νθ

ex∂λA
ex
ρ , (4.7)

where we have ignored possible monopole contributions to
the current. This response implies that if Ch2θ

ex = (2n + 1)π
inside the material and 2nπ outside, then there is a half-integer
quantum Hall effect on the surface.

We can continue the reduction down to the second de-
scendant in D = 2 + 1 to obtain a hydrodynamic effective

field theory for the quantum spin Hall effect; we separate the
D = 4-dimensional coordinates (x0,x1,x2,x3) into the D = 3-
dimensional ones (x0,x1,x2) and x3 ≡ z. The z direction is
compactified on a circle with radius Lz and then we take
Lz → 0. The fields can be Fourier decomposed in the z

direction, as in Eq. (4.3), and only the Fourier modes with
nz = 0 (the momentum quantum number in the z direction)
are kept. This second step of dimensional reduction introduces,
in addition to two new scalar fields ψ,χ ex, a vector field vi ,
and a second 2-form gauge field gij (i,j = 0,1,2,3). They are
defined, from the D = 3 + 1-dimensional fields, as

az(xi,nz) =: ψ(xi)/Lz,

bzij (xi,nz) =: 1
3gij (xi)/Lz,

(4.8)
uzi(xi,nz) =: 1

2vi(xi)/Lz,

Aex
z (xi,nz) =: χ ex(xi)/Lz.

The resulting D = 2 + 1-dimensional Lagrangian is

L = −εμνλ

2π
(φ − θ ex)∂μgνλ − εμνλ

2π
(ψ − χ ex)∂μuνλ

− εμνλ

2π

(
aμ − Aex

μ

)
∂νvλ + Ch2

4π2
εμνλφ∂μψ∂νaλ, (4.9)

where the space-time index μ,ν,λ now runs from 0 to 2.
We recognize the third term εμνλ(aμ − Aex

μ )∂νvλ as the BF
coupling in D = 2 + 1 dimensions with bμ replaced by vμ.

The presence of such term is largely expected based upon the
phenomenology of the nonchiral (helical) edge modes of the
quantum spin Hall effect. However, there are some additional
terms, which have not been previously discussed in dynamical
gauge theories: the coupling to the real scalar fields φ and ψ ,
which could be combined into a single complex scalar field.
We note that this theory, unlike other hydrodynamic theories
of the quantum spin Hall effect,6,83–87 only has a single U(1)
gauge invariance [unlike the more conventional U(1) × U(1)
for charge and spin]. This is a natural result since in real
materials spin is not conserved generically and only the local
charge U(1) invariance is preserved.

It is a simple exercise to read off, from the above effective
field theories, a response of the system to the external field.
For example, for D = 2 + 1 dimensions, the definition of the
electrical current jμ := δS/δAex

μ together with the equation of
motions derived from the effective action (4.9),

δS

δAex
μ

= jμ = εμνλ

2π
∂νvλ,

δS

δaμ

= −εμνλ

2π
∂νvλ + Ch2

4π2
εμνλ∂ν (φ∂λψ) = 0, (4.10)

gives rise to

jμ = Ch2

4π2
εμνλ∂ν (φ∂λψ) . (4.11)

If we assume that εμν∂μ∂νψ = 0, then we can write this in
terms of the external scalar fields as

jμ = Ch2

4π2
εμνλ∂νθ

ex∂λχ
ex. (4.12)

A similar expression for the electrical current was derived
in Ref. 11 in terms of the effective topological response
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theory. If we think of the field φ∂λψ as a velocity field
Vλ, then this response implies that there is charge bound
to the vorticity of the velocity field j 0 = (Ch2/4π2)∇ × V ,

similar to the quantum Hall effect where charge is bound
to the magnetic flux. A simple example is the case when
θ ex(x,y) = π�(y) and χ ex(x,y) = 2π [�(x) − 1/2], where
θ ex represents a jump in the axion angle at an edge and
χ ex represents a magnetic domain wall on the edge. The
charge confined to the edge magnetic domain wall is Q =
(eCh2/4π2)

∫
dxdy 2π2δ(x)δ(y) = eCh2/2. The distinction

between integer and half-integer charge, i.e., Ch2 even or odd,
gives an electromagnetic characteristic to determine the Z2

topological nature of the 2D time-reversal invariant topological
insulator.11 Another consequence of the action is the fermionic
mutual statistics between quasiparticles that couple as jμaμ

and Kμvμ. When Ch2 vanishes the currents jμ,Kμ have
mutual fermionic statistics but when Ch2 �= 0 the current jμ is
shifted such that j̃ μ and Kμ carry mutual fermionic statistics
where

j̃ μ = jμ − Ch2

4π2
εμνλ∂ν(φ∂λψ). (4.13)

V. FRACTIONAL STATES

Our discussions so far concern a bosonized description of
noninteracting topological band insulators or weakly inter-
acting topological insulators that are adiabatically connected
to a topological band insulator. In these systems, functional
bosonization gives rise to the BF topological field theory
with the unit level k = 1. In this section, we will discuss
the possibility of topological states that can be induced
by strong interactions and characterized by, e.g., nonzero
ground-state degeneracy. While the existence of strongly
interacting topological insulators with topological order is
not well established microscopically for D > 3, we can use
the hydrodynamic bosonization formalism of the preceding
sections to explore possible mechanisms that lead to a
topological order. One such route is the fractionalization of
electrons due to strong correlations. We will implement this
through the parton construction a la Blok and Wen,33,34 to find
effective topological field theories.

A. Parton Construction for the Chern Insulator in D = 2 + 1

We start with a construction of time-reversal breaking
fractional states in D = 2 + 1 dimensions by combining
functional bosonization and the parton construction. When
applied to elections in the (lowest) Landau level, this approach
is equivalent to the composite particle (composite boson
and composite fermion) theories.23,28–32,88–93 The functional
bosonization is also readily applicable to fractional quantum
Hall states formed on a lattice, i.e., “fractional Chern insula-
tors.” (See Refs. 94–106 for recent studies on the fractional
Chern insulators.)

We focus on the effective field theory for the hierarchy
states at ν = m/(mp + 1) in terms of the parton construction.
Following Refs. 33 and 34, we first split the electron into p + 1
partons. Here, p is an even integer, and we require partons to
obey Fermi statistics. Since the electrons do not split in reality,

we impose a constraint

j (i)
μ = j (j )

μ , i,j = 1, . . . ,p + 1, (5.1)

on the parton densities j (i)
μ . The ith parton carries electric

charge ei , and e = ∑
i ei = 1. We assume that all partons are

in independent integer quantum Hall states, but we treat the
i = 1, . . . ,p-th flavors and the i = p + 1-th flavor differently.
For i = 1, . . . ,p, we assume the filling faction is ν(i) = 1,
whereas for i = p + 1, ν(i) = m. The total filling fraction is

ν = 1

p + 1/m
= m

mp + 1
. (5.2)

Each parton can be bosonized by functional bosonization.
For i = 1, . . . ,p-th partons, they can be described by the
following D = 2 + 1 BF theories with the CS term,

L(i) = −1

2π
εb(i)∂a(i) + 1

4π
εa(i)∂a(i) − eij

(i) · Aex, (5.3)

where the repeated indices i are not summed, and we have
introduced short-hand notations Aex · j ≡ Aex

μ jμ, εa∂a ≡
εμνλaμ∂νaλ, etc. On the other hand, for the i = p + 1-st parton,
since we have m filled Landau levels, we introduce m separate
gauge fields, bI=1,...,m

μ and aI=1,...,m
μ , each representing the

condensate in the I th Landau level. The Lagrangian for the
i = p + 1-th parton is

L(p+1) =
m∑

I=1

(−1

2π
εbI ∂aI + 1

4π
εaI ∂aI − ep+1j

I Aex

)
.

(5.4)

The total Lagrangian is given by L = ∑p
i=1 L(i) + L(p+1).

With the constraints imposed on the parton densities,

εμνλ∂νb
(i)
λ = εμνλ∂νb

(p+1)
λ =

∑
I

εμνλ∂νb
I
λ, (5.5)

(i = 1, . . . ,p), the total Lagrangian (after solving the con-
straints) is given by

L = −1

2π

∑
I

εbI ∂aI + −1

2π

∑
I,i

εbI ∂a(i)

+ 1

4π

∑
I

εaI ∂aI + 1

4π

∑
i

εa(i)∂a(i)

− e

2π

∑
I

ε∂bIAex. (5.6)

This can be written more compactly as

L =
∑
i,j

K̃ij

4π
εαi∂αj −

∑
i

e

2π
qiε∂αiAex, (5.7)

where α = (bI ,aI ,a(i)), the charge vector qi is given as qi = 1
for the first m entries, whereas qi = 0 otherwise, and the K

matrix is

K̃ =
⎛
⎝ 0 −Im −Jm,p

−Im Im 0
−Jp,m 0 Ip

⎞
⎠ , (5.8)
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where Im is an m × m identity matrix and Jm,p is the m × p
matrix with all matrix elements equal to 1.

The topological order encoded in the K̃-matrix CS the-
ory (5.7) can equivalently be described by a multicomponent
CS theory with fewer components. For example, when m = 1
and p = 2, the filling fraction is ν = 1/3 and

K̃ =

⎛
⎜⎝

0 −1 −1 −1
−1 1 0 0
−1 0 1 0
−1 0 0 1

⎞
⎟⎠ . (5.9)

The ground-state degeneracy can be read off from |Det K̃| =
3, as expected for the Laughlin state at ν = 1/3. We can
integrate out the a(i) one by one using the equations of
motion to arrive at the more familiar form of the K matrix;
with the equations of motion δS/δa(i)

μ = −(2π )−1εμνλ∂νbλ +
(2π )−1εμνλ∂νa

(i)
λ = 0, the Lagrangian

L = −1

2π
εb∂a + −1

2π

p∑
i=1

εb∂a(i)

+ 1

4π
εa∂a + 1

4π

p∑
i=1

εa(i)∂a(i) − e

2π
ε∂bAex (5.10)

can be reduced to

L → −1

2π
εb∂a + 1

4π
εa∂a

+ −p
2π

εb∂a(p) + p
4π

εa(p)∂a(p). − e

2π
ε∂bAex. (5.11)

This is identical to the effective action obtained from the flux
attachment composite particle approach, where bμ plays the
role of the vortex gauge field whereas aμ is the statistical CS
gauge field that transmutes the statistics of the electrons.

B. Parton construction for topological insulators in D = 3 + 1

We can formally repeat the parton construction in D =
3 + 1. As before, we postulate that electrons are fractionalized,
consist of p + 1 partons, and each parton is in its topological
insulator phase. For each parton, we can apply functional
bosonization to derive its hydrodynamic theory. Solving the
constraints among parton densities, we will arrive at multi-
component BF theories with a topological term (e.g., axion
or θ term in D = 3 + 1). In this section, we assume partons
are in a D = 3 + 1-dimensional topological insulator phase
in symmetry class AIII or DIII characterized by an integer
topological invariant. See Refs. 107–109 for previous studies
of time-reversal symmetric fractional topological insulators in
D = 3 + 1 in terms of the parton construction.

We thus write down the following Lagrangian L =∑p
i=1 L(i) + L(p+1) for partons [see Eq. (3.14)]:

L(i) = −εμνλρb(i)
μν∂λa

(i)
ρ + θ

8π2
εμνλρ∂μa(i)

ν ∂λa
(i)
ρ − eij

(i)
μ Aμ,

(5.12)

for i = 1, . . . p-th flavors, and

L(p+1) = −εμνλρ

m∑
I=1

bI
μν∂λa

I
ρ + θ

8π2
εμνλρ

m∑
I=1

∂μaI
ν ∂λa

I
ρ

− ep+1

m∑
I=1

j I
μAμ, (5.13)

for the p + 1-th flavor. Here, e = ∑
i ei = 1, the parton

densities are written in terms of the two-form gauge fields
b(i)

μν and bI
μν as j I,μ = εμνλρ∂νb

I
λρ , etc., and are subject to the

constraint

εμνλρ∂νb
(i)
λρ = εμνλρ∂νb

(p+1)
λρ =

m∑
I=1

εμνλρ∂νb
I
λρ, (5.14)

(i = 1, . . . ,p). Solving the constraint, following similar steps
to those leading to Eq. (5.6), the resulting effective field theory
is

L = −
∑

I

εμνλρbI
μν∂λ

(
aI

ρ +
∑

i
a(i)

ρ

)

+ θ

8π2

∑
I

εμνλρ∂μaI
ν ∂λa

I
ρ + θ

8π2

∑
i

εμνλ∂μa(i)
ν ∂λa

(i)
ρ

− e
∑

I

εμνλρ∂νb
I
λρA

ex
μ . (5.15)

For a simple case where m = 1 and p = k − 1, introducing
bμν := bI=1

μν and labeling the k gauge fields as αa=1,2,...,k
μ =

(a(1)
μ ,a(2)

μ , . . . ,aI=1
μ ), the effective Lagrangian is given by

L = −εμνλρbμν∂λ

k∑
a=1

αa
ρ + θ

8π2

k∑
a=1

εμνλρ∂μαa
ν ∂λα

a
ρ

− eεμνλρ∂νbλρA
ex
μ . (5.16)

As before in the case of D = 2 + 1, we can eliminate αa
μ

one by one. [The following steps should be compared with
Eqs. (5.10) and (5.11) in the D = 2 + 1-dimensional case.]
From δS/δαa

μ = δS/δbμν = 0,

εμνλρ∂νbλρ − 1

4π2
εμνλρ∂ν

(
θ∂λα

a
ρ

) = 0,

εμνλσ ∂λ

(∑
a

αa
σ − Aex

σ

)
= 0. (5.17)

If we assume θ = const and neglect monopole configurations,
the first equation gives εμνλρ∂νbλρ = 0. However, if we take
into account monopoles, we claim, from the first equation,

bλρ = 1

4π2
θ∂λα

a
ρ, a = 1, . . . ,k. (5.18)

Then, α1 = α2 = · · · = αk ≡ α, and hence the Lagrangian,
after eliminating αa

μ, is

L = −kεμνλρbμν∂λαρ + kθ

8π2
εμνλρ∂μαν∂λαρ

− eεμνλρ∂νbλρA
ex
μ . (5.19)

Further integrating over αμ by using δS/δbμν = 0,

εμνλσ ∂λ

(
kασ − Aex

σ

) = 0, (5.20)
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we then arrive at

L = θ

8π2k
εμνλρ∂μAex

ν ∂λA
ex
ρ . (5.21)

[This step should be compared with Eq. (3.20).]

C. Parton construction for the quantum spin Hall insulator
in D = 2 + 1

There are two natural ways to apply the parton construction
for D = 2 + 1 time-reversal invariant insulators: (i) create
the necessary copies of the gauge fields in D = 4 + 1 and
then perform dimensional reduction twice or (ii) perform
dimensional reduction from a nonfractionalized theory in
D = 4 + 1 and then create replicas of the relevant fields. We
will take the former approach. Our result, in fact, matches what
would be found by taking Eq. (5.21) and simply performing
dimensional reduction on Aex

μ .

We begin with Eq. (4.9) and add replicas for the
φ,ψ,aμ,gμν,uμν , and vμ fields to find the Lagrangians

L(i) = −εμνλ

2π
(φ(i) − eiθ

ex)∂μg
(i)
νλ − εμνλ

2π
(ψ (i) − eiχ

ex)∂μu
(i)
νλ

− εμνλ

2π
(a(i)

μ − eiA
ex
μ )∂νv

(i)
λ + εμνλ

4π2
φ(i)∂μψ (i)∂νa

(i)
λ ,

(5.22)

where i = 1, . . . ,p. Note that we have crucially included the ei

charges in front of the scalar fields θ ex,χ ex as they arise from
the dimensionally reduced Aex

w ,Aex
z fields, respectively, and

would enter the D = 4 + 1 Lagrangian with the corresponding
charge. For the p + 1-st flavor, we have

L(p+1) = −
m∑

I=1

εμνλ

2π
(φI − eI θ

ex)∂μgI
νλ

−
m∑

I=1

εμνλ

2π
(ψI − eIχ

ex)∂μuI
νλ

−
m∑

I=1

εμνλ(aI
μ − eIA

ex
μ )∂νv

I
λ

+
m∑

I=1

εμνλ

4π2
φI ∂μψI∂νa

I
λ. (5.23)

For the simple case when m = 1,p = k − 1 the constraint for
the parton densities identifies all of the v(i)

μ ≡ vi,g(i)
μν ≡ gμν ,

and u(i)
μν = uμν. We can then use the equation of motion

δS

δa
(i)
μ

= εμνλ

[
1

4π2
∂ν(φ(i)∂λψ

(i)) − 1

2π
∂νvλ

]
= 0 (5.24)

to eliminate a(i)
μ and arrive at

L = εμνλ

2π

[(
θ ex−

k∑
i=1

φ(i)

)
∂μgνλ +

(
χ ex −

k∑
i=1

ψ (i)

)
∂μuνλ

]

+ k
4π2

εμνλAex
μ ∂ν�λ, (5.25)

where �λ = φ(i)∂λψ
(i) is the same for all i from the equation of

motion δS/δa(i)
μ = 0. Using δS/δφ(i) = 0 and δS/δψ (i) = 0,

we can show that ψ (i) ≡ ψ and φ(i) ≡ φ are identical for all i,
respectively. Eliminating ψ and φ, we finally arrive at

L = 1

4π2k
εμνλAex

μ ∂ν(θ ex∂λχ
ex). (5.26)

Physically, this term implies that on the edge of a fractional
quantum spin Hall system there will be fractional multiples of
e/2 charge, i.e., Q = e/(2k) on an antiphase magnetic domain
wall.

VI. DISCUSSION

The effective Chern-Simons field theory approach is one of
the most successful theoretical frameworks of the D = 2 + 1-
fractional quantum Hall effect. In this paper, we aimed to
extend this type of hydrodynamic formulation to a broader
class of noninteracting, as well as interacting topological
insulators, in arbitrary dimensions with a suitable set of
discrete symmetries.

We close with a few relevant comments. First, our approach
relies crucially on the presence of a U(1) gauge symmetry.
While we have focused on topological insulators with the
electromagnetic charge U(1) symmetry, there are topological
phases that preserve non-Abelian symmetry [such as spin-
singlet topological superconductors in D = 2 + 1 and 3 + 1
that preserve spin SU(2) rotation symmetry]. Our approach can
easily be extended to such situations (see Appendix A). There
are also various topological phases that do not conserve any
quantum numbers, except possibly energy and momentum.
In particular, these include topological superconductors in
symmetry class D (D = 2) and DIII (D = 3). For such
topological superconductors, Ref. 110 proposed a BF-type
topological field theory with fermionic degrees of freedom.

Second, we note that in various situations, it may be useful
to initially consider more U(1) charges than are actually
conserved. For example, in the quantum spin Hall effect, while
the electromagnetic U(1) symmetry is strictly conserved, spin
rotation symmetry is not. It is, however, still a useful starting
point to consider a system with U(1) symmetries associated
with both charge and spin rotations around, for example,
the z axis. The system is then invariant under an expanded
U(1) × U(1) symmetry. Functional bosonization in this case
then gives rise to a BF theory with Chern-Simons terms. This
is, in fact, the usual approach and gives rise to doubled Chern-
Simons theories with U(1) × U(1) symmetry [more generally,
with U(1)N × U(1)N symmetry]. Ultimately, however, the
quantum spin Hall effect does not depend crucially on the
presence of the additional U(1) spin symmetry; its stability is
guaranteed by a Z2 topological invariant, which has nothing
to do with the presence of the Sz spin rotation symmetry.
Starting from the BF theory with U(1) × U(1) symmetries,
the “unwanted” Sz conservation can be broken by introducing
monopole processes or possibly the Higgs mechanism. The
former was discussed for the BF theory describing a BCS
superconductor in Ref. 66, which has a Z2 topological order.
It would be interesting to see if one started from a U(1) × U(1)
theory and implemented either symmetry breaking mechanism
if one would generate a hydrodynamic field theory that is
equivalent with what we constructed in this article by only
using the U(1) charge symmetry.
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Finally, due to the lack of microscopic realizations of
fractional topological insulators (in particular, in D > 2 + 1),
the usefulness of our effective field theory approach is not
yet entirely clear. It is, however, interesting to speculate on
the possible mechanism of such states. In the functional
bosonization scheme, we need to “raise the level” of the BF
term, as it is this term that controls the ground-state degeneracy.
In this paper, we have explored the parton construction.
Another possible way to raising the level would be to use
a Higgs field. This mechanism was discussed in the fractional
quantum Hall effect, in particular, in non-Abelian fractional
quantum Hall states. Together with functional bosonization,
this method may allow us to discuss the same kinds of
fractional states obtained by the parton construction as well
as different kinds of states.111,112
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APPENDIX A: NON-ABELIAN FUNCTIONAL
BOSONIZATION

Here, we describe the functional bosonization for non-
Abelian currents. We start from the generating functional
Z(Aex

μ ) for the correlation functions of non-Abelian currents,
where Aex

μ is a Lie-algebra valued external field. We rewrite
Z(Aex

μ ) as

Z(Aex
μ ) =

∫
D[aμ]

∏
x

∏
μ

δ
(
aμ − Aex

μ

)
Z(aμ). (A1)

The δ functional can be written as∏
x

∏
μ

δ
(
aμ − Aex

μ

)

= �FP(a)
∏
x

μ<ν<λ···∏
μ,ν,λ,...

εμνλ···αβ

∏
a

δ
[
f a

αβ(a) − f a
αβ (Aex)

]
,

(A2)

where fαβ(a) = ∂αaβ − ∂βaα + [aα,aβ],
∏

a runs over the
Lie algebra index, and

∏
μ,ν runs over n = D(D − 1)/2

independent directions. The Jacobian �FP(a) can be expressed
in terms of a functional integral as follows. By integrating over
Aex

μ in Eq. (A2),

1 =
∫

D[Aμ]
∏
x

∏
μ

δ(aμ − Aμ)

= �FP(a)
∫

D[Aμ]
∏
x

μ<ν<ρ···∏
μ,ν,ρ,...

εμνρ···

×
∏
a

δ
[
f a

αβ(a) − f a
αβ(A)

]
. (A3)

(Here we denote Aex
μ = Aμ to lighten notations). Consider

(∗) :=
∫

D[A]
∏
x

α<β∏
α,β

δ
[
f a

αβ (a) − f a
αβ (A)

]
. (A4)

We expand fαβ(A) as

fαβ(A) = fαβ(a) + Dα(a)δAβ − Dβ(a)δAα, (A5)

where A = a + δA. Then,

(∗) =
∫

D[δAμ]
∏
x

α<β∏
α,β

δ
[
Da

α(a)δAβ − Da
β(a)δAα

]
. (A6)

This can be rewritten with a bosonic auxiliary field βαβ as

(∗) =
∫

D[βαβ,δAμ] exp i

∫
dDx

×
∑
α<β

βa
αβ

[
Da

α(a)δAβ − Da
β(a)δAα

]
, (A7)

where βαβ = −ββα and βαβ = 0 for β = α. Thus

�FP(a)−1 =
∫

D[βαβ,δAμ] exp i

∫
dDx βa

αβDa
α(a)δAβ.

(A8)

The functional determinant can then be written, in terms of
fermionic ghosts c̄αβ and cμ,

�FP(a) =
∫

D[c̄αβ,cμ] exp i

∫
dDx c̄a

αβDα(a)ca
β. (A9)

Then, the generating functional can be written as

Z(Aex) =
∫

D[a,b,c̄,c] exp iS,

S =
∫

dDx tr {c̄μν···εμν···αβDα(a)cβ

+ bμν···εμν···αβ[fαβ(a) − fαβ (Aex)] + L(a)},
(A10)

where we introduced L(a) by Z(a) = exp i
∫

dDx tr L(a).
Let us now introduce auxiliary fields

S =
∫

dDx tr {c̄μν···εμν···αβDα(a)cβ

+ bμν···εμν···αβ[fαβ(a) − fαβ(Aex)]

+L(a − h) − i(lhμhμ − 2χ̄hμcμ)}. (A11)

Here, l and χ̄ are bosonic and fermionic scalars, respectively,
and hμ is a bosonic Lie-algebra valued field, hμ = ha

μta . The
integration over l sets hμhμ = 0 ⇒ hμ = 0 and then we go
back to the original action. The action is invariant under the
following BRST transformation:

δaμ = cμ, δhμ = cμ, δχ̄ = l, δl = 0,
(A12)

δcμ = 0, δc̄μν··· = −2bμν···, δbμν··· = 0.

It is possible to write the action as

iS = δG,

where G = − i

2

∫
dDx tr [c̄μν···εμν···αβfαβ(a)]. (A13)
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APPENDIX B: QUANTIZATION OF THE BF THEORY
WITH THE CHERN-SIMONS AND AXION TERM

From the bosonized action, we can read off, e.g., the
current-current correlation functions. If we take the BF-CS
theory (3.4), however, we do not have charge fluctuations in
the bulk of the system; with only terms of topological origin
(such as BF and CS terms), there is no dynamics. This situation
corresponds to the limit where the band gap (mass) is taken to
be infinitely large. To see charge fluctuations, we need either
to have other terms than BF and CS terms, or to introduce
a boundary to a system. The former means that we keep the
band gap finite, or consider electron-electron interactions. Let
us thus consider the Lagrangian with the Maxwell term

L = − 2k
4π

bμεμνλ∂ν(aλ − Aλ) + Ch
4π

εμνλaμ∂νaλ

− 1

4πg2
FμνF

μν, (B1)

where g2 is a coupling constant, Aμ is the dynamical elec-
tromagnetic U(1) gauge field and Fμν = ∂μAν − ∂νAμ is the
field strength. [Aμ is not a static source as in Eq. (3.4)]. Given
the equation of motion δS/δbμ = 0 ⇒ Fμν(A) = fμν(a), the
Maxwell term −(4πg2)−1FμνF

μν gives rise to the Maxwell
term for aμ, −(4πg2)−1fμνf

μν . Alternatively, integrating over
Aμ gives rise to a current-current interaction ∝ jμ(x)Kμν(x −
y)jν(y) where according to the bosonization rule, jμ ∝
εμνλ∂νbλ.

The BF-CS-Maxwell theory (B1) can be canonically
quantized by going through the Dirac quantization procedure.
Some nonzero canonical commutation relations are given by[

bi(	x),bj (	x ′)
] = −i2πCh

k2
εij δ(2)(	x − 	x ′),

(B2)[
ai(	x),πj

a (	x ′)
] = [

Ai(	x),πj

A(	x ′)
] = iδ

j

i δ
(2)(	x − 	x ′),

where 	x = (x1,x2) is the spatial coordinates, i,j run over the
spatial components of the coordinates i,j = x,y, and πi

a and
πi

A are the canonical momentum for ai and Ai and are given by

πi
a = − 2k

4π
εij bj + Ch

4π
εij aj ,

(B3)

πi
A = + 2k

4π
εij bj + 1

πg2
Ei,

where Ei = ∂0Ai − ∂iA0. The canonical commutation
relations between current operators are given by

[j 0(	x),j 0(	x ′)] = 0, [j 0(	x),j i(	x ′)]= −iCh2
g2

4π
∂iδ

(2)(	x−	x ′),
(B4)

[j i(	x),j j (	x ′)] = −iCh3
g2

8π
εij δ(2)(	x − 	x ′).

Similarly, in D = (3 + 1) dimensions, one can use the
bosonized action (3.14) to read off the current-current com-
mutation relations in the bulk, once we allow charges to
fluctuate, by adding an Maxwell term, say. Let us consider
the Lagrangian,

L = −bμνε
μνλρ∂λ(aρ − Aρ) + θ (x)

8π2
εμνλρ∂μaν∂λaρ

− 1

4πg2
FμνF

μν, (B5)

where as before Aμ is a dynamical U(1) gauge field.
The BF-axion-Maxwell theory (B5) can be canonically

quantized by going through the Dirac quantization procedure.
As one may infer from the (half-integral) quantum Hall
effect at the surface of D = 3 + 1-dimensional topological
insulators, the current-current commutators are “anomalous”
only at the location where θ (x) changes, i.e., at an interface
between topologically trivial and topologically nontrivial
insulators. For simplicity, we assume that θ (x) depends
only on the x3 (z) component of the spatial coordinates.
Some nonzero canonical commutation relations are given
by

[bm3(	x),bn3(	x ′)] = −i(∂3θ )

16π2
εmnδ(3)(	x − 	x ′),

(B6)[
am(	x),πn

a (	x ′)
] = [

Am(	x),πn
A(	x ′)

] = iδn
mδ(3)(	x − 	x ′),

where m,n run over the spatial components of the coordinates
m,n = x,y, and πi

a and πi
A are the canonical momentum for

ai and Ai and are given by

πi
a = −εijkbjk + θ

4π2
εijk∂j ak,

(B7)

πi
A = +εijkbjk + 1

πg2
Ei.

The canonical commutation relations between current opera-
tors are given by

[j 0(	x),j 0(	x ′)] = 0,

[j 0(	x),jm(	x ′)] = −i(∂3θ )2g2

16π3
∂mδ(3)(	x − 	x ′), (B8)

[jm(	x),jn(	x ′)] = −i(∂3θ )3g2

64π4
εmnδ(3)(	x − 	x ′) .

This is exactly the same as the quantum Hall effect in the
topological insulator in 2 + 1 dimensions, see Eq. (B4), but
with the integer Ch replaced by ∂3θ .
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