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Mott transitions in the half-filled SU(2M) symmetric Hubbard model
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The Hubbard model with large orbital degeneracy has recently gained relevance in the context of ultracold
earth alkali-like atoms. We compute its static properties in the SU(2M) symmetric limit for up to M = 8 bands at
half filling within dynamical mean-field theory, using the numerically exact multigrid Hirsch-Fye quantum Monte
Carlo approach. Based on these unbiased data, we establish scaling laws which predict the phase boundaries of
the paramagnetic Mott metal-insulator transition at arbitrary orbital degeneracy M with high accuracy.
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I. INTRODUCTION

The interaction-induced Mott transition between a metal
and a paramagnetic insulator is central to the field of
strongly correlated electron systems.1 Much insight into this
phenomenon has been gained in numerical studies of the
single-band Hubbard model within dynamical mean-field
theory (DMFT).2 In particular, the phase diagram and the
behavior of characteristic observables (such as the effective
mass) have been established with high precision,3–11 despite
the lack of analytic solutions.

While the single-band assumption is rather crude in
correlated solids (see below), it can be quite accurate for
two-flavor mixtures of ultracold fermions on optical lattices.
Since, in addition, the effective interaction between neutral
ultracold alkali atoms (in their electronic ground state) is
very short-ranged, such systems appear as nearly perfect
finite-size realizations of the single-band Hubbard model, with
the prospect of addressing some of the open questions (e.g.,
regarding high-Tc superconductivity) via the tunable quantum
simulation of the underlying Hamiltonian. An important step
in this direction was the recent experimental verification of the
Mott transition in cold-atom systems,12,13 for which accurate
quantitative predictions based on DMFT were essential.

The low-energy electronic properties of correlated solids
are usually determined by d orbitals, which are fivefold
degenerate (per spin) in the atomic limit. This degeneracy
is partially lifted by the crystal field, resulting, e.g., in a
threefold-degenerate t2g band and a twofold-degenerate eg

band for cubic symmetry. Each of these bands is characterized
by a local potential plus various Hund rule couplings (which
can also couple inequivalent bands). Thus, the multiorbital case
is not only richer physically14–18 (including the possibility of
orbital-selective Mott transitions19–23), but is complex already
by the number of parameters. In addition, obtaining accurate
numerical results rapidly becomes costly and challenging
with an increasing number M of orbitals. In fact, some
methods such as the numerical renormalization group (NRG)
become impractical beyond M = 2 orbitals. As a consequence,
few properties of the multiorbital Hubbard model can be
considered well-established with high precision, even at the
DMFT level.

However, there is a unique generalization of the single-band
Hubbard model to arbitrary degeneracy which avoids the
introduction of additional parameters: In the SU(2M) sym-
metric Hubbard model, all spins and orbitals are equivalent,

i.e., they share the same local potential, the same hopping
matrix elements, and they are coupled by the same local
interaction. In other words, the phase space of this partic-
ular multiorbital model is identical to the single-band case.
Moreover, interesting analytic insights have been obtained in
the limit of large band multiplicity M → ∞, including an
exact expression for the critical interaction of the ground-
state metal-insulator transition (at half band filling) as well
as scaling arguments for the finite-temperature critical end
point.24 Thus, the sequence of models obtained by varying
M connects two well-established—and somewhat special—
limits (M = 1, M = ∞), while the intermediate regime M =
2,3, . . . shares many characteristics with generic multiorbital
models, including numerical difficulties. Indeed, the SU(2M)
Hubbard model has, so far, been explored in this regime only
using approximate methods, namely the dynamical slave-rotor
approximation (DSR),25 the projective self-consistent method
(PSCM),14,26 and the self-energy functional approximation
(SFA) with one bath site per orbital.27 A fully controlled
treatment is clearly desirable on fundamental grounds and as
a solid starting point for generic multiorbital physics.

Quite recently, the SU(N ) Hubbard model (with total
degeneracy N > 2) has also become of direct physical rel-
evance, namely in the ultracold atom context: In rare-earth
atoms, a large number of internal states can be addressed,
which are essentially decoupled from the valence electrons.
Consequently, all atoms in the electronic ground state expe-
rience the same optical potential and have the same pairwise
interactions28,29; a mixture with N internal states on an optical
lattice can, therefore, realize the SU(N ) symmetric Hubbard
model. A Mott insulating state has already been observed
in a SU(6) symmetric system of fermionic ytterbium atoms
(173Yb) on a cubic optical lattice,30 opening the door to detailed
experimental investigations of Mott metal-insulator transitions
in SU(N ) symmetric Hubbard models (with N > 2). This
breakthrough has sparked theoretical interest in both SU(N )
Hubbard31–33 and Heisenberg34 systems, with initial studies
being limited to one spatial dimension33,34 and to a slave-
particle method,32 respectively.

In this work, we construct the phase boundaries of the Mott
transition at half filling and for up to M = 8 bands, based
on numerically exact multigrid Hirsch-Fye quantum Monte
Carlo35,36 estimates of characteristic observables. We also
derive scaling laws which predict the phase boundaries for
arbitrary orbital degeneracy 1 � M � ∞ with high accuracy.
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In Sec. II, we establish our notation and relate the SU(N )
symmetric Hubbard model to generic multiband models. We
also introduce the DMFT in the present context, discuss our
choice of lattice type and energy scales, and characterize our
DMFT impurity solver. In Sec. III, we specify the procedure to
determine the phase boundaries, briefly summarize literature
data for the SU(2M) symmetric Hubbard model, and present
numerically exact results for M = 2, 4, and 8. Based on these
data, we deduce in Sec. IV the universal scaling of the critical
parameters with spin and orbital degeneracy and establish the
collapse of finite-M data onto a universal phase diagram.

II. MODEL AND METHODS

The general Hubbard model for M equivalent electronic
orbitals (e.g., M = 3 t2g orbitals) with nearest-neighbor
hopping t and SU(2) invariant Hund’s rule coupling J has
the form

H =
M∑

m=1

[
−t

∑
〈ij〉σ

(c†imσ cjmσ + H.c.) + U
∑

i

nim↑nim↓

]

+ 1

2

∑
m�=m′

[∑
iσσ ′

(U ′ − δσσ ′J )nimσ nim′σ ′

+ J
∑
iσ

c
†
imσ (c†im′σ̄ cimσ̄ + c

†
imσ̄ cim′σ̄ )cim′σ

]
. (1)

Here, the first line can be viewed as M versions of the regular
one-band Hubbard model with (intraorbital) on-site Hubbard
interaction U ; 〈ij 〉 denotes pairs of nearest-neighbor sites i and
j , σ ∈ {↑,↓} the spin. The coupling between these orbitals
is provided, in general, by the interorbital density-density
interaction U ′ and the Hund’s rule coupling J ; the latter
contains both an Ising-type contribution, coupling to the spin
densities nimσ ≡ c

†
imσ cimσ (second line), as well as spin-flip

and pair-hopping terms (third line). In the limit J → 0, the
relation U = U ′ − 2J implies that the inter- and intraorbital
Hubbard interaction become equal: U ′ → U . Thus, at J = 0,
spin and orbitals are fully equivalent and one arrives at the
SU(N ) symmetric Hubbard model with N = 2M even:

H = −t

N∑
α=1

∑
〈ij〉

(c†iαcjα + H.c.) + U
∑
α<α′

niαniα′ , (2)

where α is a combined spin-orbital index. This is precisely
the situation which has been realized, within the single-band
approximation and up to the confining potential, using rare-
earth (earth alkali-like) ytterbium atoms (173Yb) on a simple
cubic optical lattice.30 Note that exchange terms as appearing
in (1) at J �= 0 require a unique classification of the internal
degree of freedom α ∈ {1,N} in terms of the “spin” variable
σ ∈ {↑,↓} and cannot arise in the SU(N) symmetric case,
where all values of α are fully equivalent.

Paramagnetic Mott metal-insulator transitions (MITs) can
be expected for this model at all integer fillings n ≡ ∑

α〈niα〉 ∈
{1,2, . . . ,N − 1} (while n = 0, n = N correspond to band in-
sulators). For N = 2M being even (as always in the electronic
context), this includes the case of half filling n = N/2, where
one then expects the largest critical interaction (compared to

pairwise equivalent MITs at fillings n = N/2 ± 1, n = N/2 ±
2, . . .).37 In the cases of odd N � 3, not to be considered in
this paper, the Mott plateaus at fillings n = N/2 ± 1/2 are
separated by a metallic phase with unique “semicompressible”
properties.36

The DMFT reduces the lattice problem (2) to a single-
impurity problem,2 with the same local SU(N ) invariant
interaction terms, which has to be solved self-consistently.37

For homogeneous phases, the lattice properties enter only
via the corresponding tight-binding density of states ρ(ε). In
line with previous studies, we choose the semielliptic form
associated with the Bethe lattice38 and set the energy scale as
t
√

Z = 1 (for coordination number Z), which implies unit
variance of the density of states:

∫ ∞
−∞ dε ε2ρ(ε) = 1. Our

numerical results can be translated, e.g., to the cubic lattice (in
units of the hopping t) by multiplying interactions, energies,
and temperatures by

√
Z = √

6 ≈ 2.45.39

As the interaction couples only to spin-orbital densities
[i.e., spin flip and pair hopping terms, as arising in the
general model (1) for J �= 0, are absent], DMFT solutions
can be obtained using quantum Monte Carlo (QMC) impurity
solvers without any sign problem for arbitrary density. The
Hirsch-Fye algorithm40,41 discretizes the imaginary-time path
integral expression for the Green function into � time slices
of uniform width �τ = β/�, where β = 1/T (for kB ≡ 1);
a Hubbard-Stratonovich transformation replaces the electron-
electron interaction (for each pair α < α′) at each time step
by a binary auxiliary field which is sampled using standard
Markov Monte Carlo techniques. In this work, we use a
multigrid implementation35,36 and, thereby, demonstrate that
its inherent elimination of Trotter errors from the Green
function and from observables works reliably and accurately
even for a large number M of bands and M(2M − 1) Hubbard-
Stratonovich fields. Consequently, our results are free of
significant systematic bias, i.e., exact within statistical error
bars. These statistical errors are reduced, compared to a generic
M-band model, by employing the SU(2M) symmetry, i.e., by
averaging Green functions and related observables over all 2M

values of the internal degree of freedom α and the double (or
pair) occupancy over all M(2M − 1) pairs α < α′.

III. DETERMINATION OF MIT PHASE BOUNDARIES

It the noninteracting limit U → 0, the Hamiltonian (2)
reduces to the corresponding tight-binding model; due to
the degeneracy, the system is then metallic at all densities
0 < n < N . In contrast, the energy levels become discrete in
the atomic limit t → 0; at integer filling, the system is then an
insulator. The question of how the evolution between these two
limits takes place, e.g. as a function of varying U at constant t ,
has been a matter of debate for a long time.1,3,42,43 It is now well
established that the (paramagnetic) metallic and paramagnetic
insulating phases are separated, at low temperatures and within
DMFT, by a sharp transition line in the single-band case (i.e.,
for N = 2,M = 2).

This transition is of first order at temperatures 0 < T < T ∗
(thick blue line in the inset of Fig. 1), evolving to second
order both at the critical end point (T ∗, U ∗) and in the
limit T → 0 (and U → Uc2); here and in the following, we
use the notation Uc2 = Uc2 (T = 0) and Uc1 = Uc1 (T = 0)
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FIG. 1. (Color online) Previous results for the Mott metal-
insulator transition in the SU(2M) symmetric Hubbard model within
dynamical mean-field theory: coexistence phase diagrams for band
degeneracy M = 1, 2, and 4 obtained using the dynamical slave-rotor
approximation (DSR)25 and the self-energy functional approximation
(SFA),27 respectively, in comparison with numerically exact quantum
Monte Carlo (QMC) data for M = 1. Inset: magnified view for
M = 1.

for ground-state values. Due to its mean-field character, the
DMFT self-consistency equations do not directly yield the
critical line Uc(T ); instead, one finds, at T < T ∗, coexistence
of metallic and insulating solutions in the range Uc1(T ) �
U � Uc2(T ) (indicated by circles in the inset of Fig. 1). The
determination of Uc(T ) within these boundaries requires a
comparison of free energies, which are not directly accessible
in QMC-based approaches (but can be obtained via integration
of thermodynamic relations44).

As discussed in Sec. I, the situation is expected to be quite
similar in the multiband case M > 1. Specifically, DMFT
should yield a coexistence region of metallic and insulating
solutions at arbitrary M , including the limit M → ∞. In
this limit, Uc2 was shown24 to approach 4|E0|, where E0

is the noninteracting ground-state (kinetic) energy; for the
Bethe lattice, E0 = −8M/(3π ) ≈ −0.85M . However, as the
single-band case deviates from this asymptotic value by nearly
a factor of 2, numerics at 1 < M < ∞ are needed in order to
derive quantitative predictions from this analytic result. Lin-
earized DMFT17 is not sufficient in this respect; its prediction
Uc2 = 4M + 2 (for arbitrary M) is consistent with the exact
asymptotic result only regarding the power (in M), but the
prefactor [4 instead of 32/(3π ) ≈ 3.4] is obviously incorrect.
Remarkably, the critical interaction at finite temperatures
scales differently: U ∗ ∝ M1/2, as was argued convincingly
analytically.45 In this case, the analytic considerations do not
even yield a prefactor; thus, quantitative predictions regarding
U ∗ are completely dependent on accurate numerical results
for sufficiently large values of M .

A. Previous results for M � 2

So far, the complete DMFT coexistence regions have been
computed at M > 1 only using the dynamical slave-rotor
formalism25 and using the self-energy functional approach.27

The former is an approximate impurity solver which contains

a free parameter and had been tested quantitatively only for
M = 1. Consequently, the accuracy of its results at M > 1
(and even in the limit M → ∞) is, a priori, completely
unclear. In contrast, the SFA46 is based [in the variant used
in Ref. 27, known as the dynamical impurity approximation
(DIA)] on a discretization of the DMFT dynamical bath; it
reduces to the DMFT in the limit of an infinite number of bath
sites, Nb → ∞. So this method is numerically exact (within
DMFT); however, an unknown bias remains for a finite value
of Nb, in particular for the “two-site SFA” with a single bath
site (per interacting orbital), as employed in Ref. 27. It is a
priori unclear how this bias evolves with M (at fixed Nb/M).

As shown in Fig. 1, the DSR (dotted lines) and the SFA
(dashed lines) both yield coexistence regions for M = 2 and
4, which have shapes similar to those in the single-orbital
case M = 1. At M = 2, even the critical interactions are
in good mutual agreement with a value U ∗ ≈ 6.3; however,
this agreement seems coincidental, as the DSR estimate
of U ∗ is significantly below (above) the SFA estimate at
M = 1 (M = 4). In general, the DSR appears to yield much
larger coexistence regions than the SFA. As the DSR is an
uncontrolled and comparatively cheap approximation, one
might be tempted to put more trust in the SFA results. However,
both the DSR and the SFA deviate very significantly from
the exact QMC results previously established for M = 1: as
seen in the inset of Fig. 1, the SFA underestimates the critical
temperature T ∗ by about a factor of 2 and the area of the
coexistence region by even more, while the DSR overestimates
the latter by nearly the same factor. Given these discrepancies,
it is clear that the (previously published) data shown in Fig. 1
are not sufficient for verifying the scaling laws discussed
above and for determining their prefactors and corrections at
finite M .

B. Insights from the single-band case (M = 1)

To achieve this goal, we will, in the remainder of this
section, determine unbiased coexistence phase boundaries at
M = 2 and 4 and determine T ∗ and U ∗ at M = 8, based on
exact QMC data. For completeness and for better illustration
of the asymptotic behavior of the relevant observables in the
limit T → 0, we will first discuss results for the single-band
case (M = 1), depicted in Fig. 2.

The quasiparticle weight Z = m/m∗ quantifies the renor-
malization of the quasiparticles in a Fermi liquid by inter-
actions and is closely associated with the inverse linear spe-
cific heat: Z(U,T = 0) = γ (0)/γ (U ) [with energy E(U,T ) =
E(U,0) + γ (U ) T 2/2 + O(T 4)]. It can be expressed (exactly)
in terms of the self-energy (ω) as

Z−1 = 1 − ∂ Re(ω)/∂ω|ω=0; (3)

Fig. 2(a) shows corresponding discrete QMC estimates at finite
temperature, based on the value of the self-energy at the first
Matsubara frequency iω1 = iπT :

Z−1 ≈ 1 − Im(iπT )/(πT ). (4)

Clearly, the data set for each temperature (denoted by symbols)
is split into two branches: one metallic branch with moderately
high values (Z � 0.04) which extends down to U = 0 (shown
only for U � 4.5) and an insulating branch where Z ≈ 0 for
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FIG. 2. (Color online) Numerically exact DMFT results (sym-
bols), obtained using multigrid HF-QMC, in the vicinity of the Mott
metal-insulator transition for M = 1: (a) quasiparticle weight Z, (b)
double occupancy (= pair occupancy) D, and (c) energy E as a
function of the on-site interaction U . The extrapolations to the ground
state (black solid lines) for D and E include perturbative information
and thermodynamic consistency11; other lines are guides to the eye
only.

the lower temperatures (e.g., T = 0.02, denoted by upward
triangles). Only at the highest temperatures shown (T = 0.04
and T = 0.05) do the estimates in the insulating phase reach
values up to about 0.01, which is mainly an artifact of the
discrete approximation of Z, Eq. (4); in particular, these
values of Z have no relation to the specific heat (which is
exponentially small in this range).

In contrast, the double occupancy D = 〈ni↑ni↓〉 (i.e., the
probability of a site being occupied by two fermions simul-
taneously), which is depicted in Fig. 2(b) and related to the
interaction energy by Eint = UD, has very significant values in
both phases. D is independent of temperature at the scale of the
figure in the insulating phase, within its temperature-dependent
range of stability, i.e., for U > Uc1(T ). This behavior is
expected in a gapped phase, where thermal excitations are
suppressed exponentially. It allows high-precision estimates
of the ground-state function Dins(U ) from QMC, in particular
by extrapolation of high-order coefficients of strong-coupling
perturbation theory.11 On the metallic side, D depends strongly
on temperature, especially in the range T � T ∗ ≈ 0.055.44 As
a function of U , the shapes of the curves look remarkably
similar for D and Z; for both observables, the (negative)
curvature becomes much stronger near the boundaries of the
metallic phase, i.e., at U � Uc2(T ).

In comparison, the results for the energy E = 〈H 〉 look
nearly linear in Fig. 2(c) as a function of U in the same

parameter ranges (which implies that the kinetic energy, not
shown, has a positive curvature which nearly cancels that of
D); the values also approach those of the insulating solution
(again with invisible temperature dependence) much more
closely. As the relation D = ∂F/∂U for free energy F =
E − T S reduces to Dmet(U ) = dEmet(U )/dU in the ground
state, D(U,T ) and E(U,T ) are not independent at low T ; this
connection as well as the relation between γ and Z have made
it possible to determine the ground-state energetics [black solid
lines in Fig. 2(b) and 2(c)] in the metallic phase as well.11

The crucial point for determining the phase boundaries
Uc1(T ),Uc2(T ) via data sets such as depicted in each of the
panels in Fig. 2 is that all included data points actually denote
converged solutions, i.e., they correspond to fixed points
of the DMFT self-consistency cycle, whereas no metallic
solutions exist at U > Uc2(T ) and no insulating solutions
exist at U < Uc1(T ), respectively. Both the verification and
the exclusion of such fixed points are very difficult to
achieve reliably, as numerical noise (associated with Monte
Carlo importance sampling for a finite number of sweeps),
systematic bias (e.g., resulting from Trotter errors), and critical
slowing down (for T ≈ T ∗ and U ≈ U ∗) can easily lead to
false positives or negatives. For this reason, it is essential to
monitor several observables at the same time, as deviations
from the expected systematics can help to identify artifacts
of incomplete convergence or divergence after a (necessarily)
finite number of DMFT iterations.

In this manner, we have obtained the phase boundaries
shown as circles in the inset of Fig. 1 (building upon earlier
work44) with high precision at finite temperatures T � 0.01.
The squares denote complementary ground-state results for
Uc1 from extrapolated perturbation theory11 and for Uc2 from
ED and NRG.2,8 Taken together, these results determine fit
functions for the coexistence region (thin solid lines and
blue-shaded region) with high precision; we will later test
the hypothesis that very similar fits might capture the Mott
transition at M > 1. Note that the (numerically exact) QMC
estimate of Uc2(T ) and its extrapolation to T → 0 agree well
with the corresponding SFA estimate (at T < T ∗

SFA). The inset
of Fig. 1 also shows a thick line within the coexistence region
that denotes the DMFT estimate of the actual first-order phase
transition.44

C. QMC results for M � 2

The quasiparticle weight, as defined above, remains a
well-defined and useful concept at arbitrary degeneracy and
is shown in Fig. 3(a) for M = 2. However, as more than two
fermions can occupy the same site for N > 2, it is advan-
tageous to generalize the concept of the double occupancy
to that of the pair occupancy D = ∑

α<α′ 〈niαniα′ 〉; we have
retained the symbol “D” for this observable, as it obviously
reduces to the double occupancy in the single-band case and
satisfies the relation Eint = DU , stated in the previous section,
for arbitrary degeneracy N (or number of orbitals M). At fixed
integer band filling n, its minimum value as a function of U

and T is Dmin = n(n − 1)/2, corresponding to an atomic state
with exactly n filled orbitals; while this minimum is zero in
the single-band case at half filling (n = 1), it has the values
1, 6, and 28 in the half-filled case (n = M) at M = 2, 4,
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FIG. 3. (Color online) Numerically exact DMFT + QMC results
(symbols) for M = 2: (a) quasiparticle weight Z, (b) pair occupancy
D, shifted by its value in the atomic limit, (c) energy E, relative to
the asymptotics in the atomic limit; lines are guides to the eye only.

and 8, respectively.47 For better comparison to the previous
results, we have, therefore, subtracted Dmin = 1 in Fig. 3(b).
The corresponding interaction energy Emin = U,Dmin = U

has also been subtracted from the energy in Fig. 3(c); only
with this adjustment does the slope ∂E/∂U approach zero in
the limit of strong interaction (in the insulating phase).

With these adjustments, the data shown in Fig. 3 for
M = 2 look remarkably similar to the single-band case at
low temperatures; in addition to data for T < T ∗, i.e., with
coexistence, we have also included results for T = 0.118,
where the DMFT solution is unique for all interactions,
corresponding to a continuous crossover curve (solid line).

By reading off the phase boundaries from these numerically
exact QMC data, we can construct the coexistence phase
diagram for M = 2 in an unbiased way, down to the lowest
QMC temperature T = 0.04, as denoted by circles in Fig. 4.
Also shown is the SFA prediction27 (green dashed lines and
green-shaded area) as well as the DSR result25 (dotted lines).
Quite remarkably, the QMC estimates of Uc2 agree perfectly
with the corresponding SFA prediction at T < T ∗

SFA (for
M = 2), even better than in the case M = 1 (cf. inset of Fig. 1).
Consequently, we regard the two-site SFA as practically exact
(only) for Uc2(T ) at M � 2 and will not try to compete with
its estimates for the corresponding ground-state value Uc2. In
contrast, the exact QMC results for Uc1(T ) are significantly
lower than their SFA counterparts; also the QMC value for
T ∗ ≈ 0.12 is significantly above the SFA estimate. At the
same time, the QMC data for M = 2 (circles) are in excellent
global agreement with a rescaled version (solid blue lines)
of the numerically exact one-band result (solid blue lines in

T

U

M = 2 QMC (exact)
M = 1, rescaled

SFA
DSR

0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

6 7 8 9

FIG. 4. (Color online) Coexistence phase diagram for M = 2
(within DMFT): exact QMC results (circles) for the boundaries at
T � 0.04 are consistent with a fit (solid lines and shaded area)
obtained by rescaling the exact M = 1 coexistence region. Also
shown: the SFA result27 (dashed lines and green-shaded area) and
the DSR prediction25 (dotted lines).

the inset of Fig. 1) determined above; thus, the coexistence
regions for M = 1 and 2 appear to be similar even in the strict
mathematical sense.

The DSR yields phase boundaries (dotted lines) of very
similar shape, but shifted toward larger U and T , with a
prediction for U ∗ which nearly coincides with that of the
SFA. Our exact data now reveal that both estimates are too
large by about 0.3. Still, both approximate methods, SFA and
DSR, yield more accurate predictions of the phase diagram
for M = 2 than for M = 1 (which in the case of the DSR
might be due to a specific parameter choice); in particular, the
discrepancies with respect to the area of the coexistence region
(of about 20%) are much smaller.

The QMC results for M = 4, shown in Fig. 5, include three
temperatures very close to T ∗: both at T = 0.25 (squares)
and at T = 0.222 (circles) the curves are continuous, without
coexistence, while a clear coexistence is observed at T = 0.2
(upward triangles). At the same time, the maximum derivatives
∂Z/∂U and ∂D/∂U are much larger at T = 0.222 than at
the neighboring grid points; we conclude that T ∗ ≈ 0.22.
QMC results, which are already much more expensive com-
putationally at M = 4 than in the single-band case [the cost
being roughly proportional to the number M(2M − 1) = 28
of Hubbard-Stratonovich fields] have also been obtained near
T ∗/2. Overall, the evolution of all three observables (Z, D, and
E as a function of U and T ) is consistent with the expectations
from M = 1 and 2 (cf. Fig. 2 and Fig. 3, respectively) within
symbol sizes, which reflect approximate error bars.

Corresponding phase boundaries are shown as circles in
Fig. 6. These data confirm again both the accuracy of the SFA
prediction for Uc2 and the validity of the scaling assumption
for the shape of the coexistence region, yielding the blue solid
lines in Fig. 6.

The scaling assumption is also supported by the observed
convergence of the SFA results for Uc1(T ) toward these
rescaled one-band results (blue solid lines) in the series M = 1
(inset of Fig. 1), M = 2 (Fig. 4), and M = 4 (Fig. 6); in the
last case, the SFA discrepancy in T ∗ has already shrunk to
about 5% and that in the area of the coexistence region to
about 10%. While the DSR yields an essentially correct value
of T ∗ at M = 4, the whole DSR coexistence region appears
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FIG. 5. (Color online) Numerically exact DMFT + QMC results
(symbols) for M = 4, analogous to Fig. 3.

shifted toward larger interactions (relative to the unbiased
QMC results, denoted by circles and solid lines) by an offset
of roughly 1/8 of its true width, similarly to the case M = 2.
We conclude that the DSR, in contrast to the SFA (with one
bath site per orbital), does not become more accurate at large
M .

Let us finally turn to the case of M = 8 orbitals (i.e., a
total degeneracy of 16 in the spin + orbital space), which
has never been considered in the literature before. Due to
the extreme computation cost (increased by a factor of 120
relative to the one-band case), and since we have already
established the universal shape of the phase diagram, we
focus on temperatures in the immediate vicinity of the critical
point. The QMC results depicted in Fig. 7 show an increased

T

U

M = 4 QMC (exact)
M = 1, rescaled

SFA
DSR

0

 0.05

 0.1

 0.15

 0.2

8 9  10  11  12  13  14  15  16

FIG. 6. (Color online) Coexistence phase diagram for M = 4
(within DMFT): exact QMC results (circles) and fit (solid lines and
shaded area) in analogy with Fig. 4. Also shown: the SFA result27

(dashed lines and green-shaded area) and the DSR prediction25

(dotted lines).
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FIG. 7. (Color online) Numerically exact DMFT + QMC results
(symbols) for M = 8, analogous to Fig. 3 and Fig. 5. Increased
symbol sizes reflect larger error bars.

scatter, indicating larger relative error bars as represented by
the increased symbol sizes.

Still, they allow us to locate the critical point at T ∗ ≈ 0.33,
U ∗ ≈ 10.9. Together with the value Uc2 ≈ 29.6 read off from
Fig. 9, these parameters also determine Uc1 ≈ 12.8 and (using
the known shape) the full coexistence phase for M = 8,
shown in Fig. 8. Due to the exponential scaling of exact
diagonalization with the total number of orbitals (interacting
and bath), an SFA solution analogous to those shown for
M = 1,2,4 would be prohibitively expensive at M = 8.

IV. SCALING OF CRITICAL PARAMETERS WITH SPIN
AND ORBITAL DEGENERACY

As seen in the preceding section, the critical parameters
T ∗, U ∗ (of the finite-temperature critical end point), and Uc

T

U

M = 8 QMC (exact)
M = 1, rescaled

0

 0.1

 0.2

 0.3

 0.4

 10  15  20  25  30

FIG. 8. (Color online) Coexistence phase diagram for M = 8
(within DMFT): exact QMC results (circles) and fit (solid lines and
shaded area) in analogy with Fig. 4 and Fig. 6.
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FIG. 9. (Color online) Dependence of critical parameters on
band degeneracy. Left column: estimates of Uc2 (first row), U ∗

(second row), and T ∗ (third row) as a function of the inverse
number of orbitals, M−1, from DSR,25 linearized DMFT,17 SFA,1

and numerically exact QMC calculations. Right column: rescaled
critical parameters are perfectly linear as a function of M−1. The
open square in the Uc2 scaling corresponds to the exact result for Uc2

at M → ∞.24

(of the ground-state Mott transition) all increase significantly
with increasing degeneracy [i.e., with the number M of
orbitals, corresponding to (N = 2M)-fold degeneracy in the
spin-orbital space]. To study the dependences in detail, the left
column of Fig. 9 shows the estimates of these parameters as a
function of the inverse number of orbitals, M−1. At the scale
of Fig. 9(b), all finite-temperature methods give quite similar
results for U ∗, with slight deviations for DSR (triangles and
dotted line) at large degeneracy. Deviations become much
more apparent for T ∗, shown in Fig. 9(c), with SFA data
(diamonds and dashed line) having a nearly constant negative
offset relative to the exact QMC data (circles and solid line).
Regarding Uc2, we see in Fig. 9(a) that DSR is far above
the accurate SFA data at larger M; we have also included
the L-DMFT prediction Uc2 = 4M + 2. Obviously, all of the
observables increase strongly toward smaller 1/M (i.e., toward
larger degeneracy); alas, it is hard to distinguish exponents at
this level.

The scaled data shown in the right-hand column of Fig. 9
demonstrate convincingly, however, that Uc2 indeed scales as
M while U ∗ scales as M1/2; in addition, we establish that
also T ∗ scales as M1/2. In Fig. 9(d) we have, specifically,
divided Uc2 by 2M + 1 (instead of M) in order to convert the
L-DMFT prediction to a constant (with value 2). With this
particular scaling ansatz, also the SFA data fall on a straight
line, interpolating between the numerically exact results for
M = 1 and the analytic expression for M = ∞ (square). Our
fit corresponds to the scaling law

Uc2 ≈ 1.70 (2M + 1) (1 + 0.166 M−1). (5)

In this representation, DSR is even seen to have the wrong
tendency; this method should be off by more than a factor of
2 for M → ∞.

The same offset in the argument is also seen, in Fig. 9(e),
to minimize curvature when rescaling estimates of U ∗ (to
U ∗/

√
2M + 1). Specifically, the exact QMC data become

nearly flat and can safely be extrapolated to 1/M = 0, with
the result (given without higher-order corrections as they are
not significant)

U ∗ ≈ 2.67
√

2M + 1. (6)

The SFA data are significantly above the QMC results at all
finite M . In the extrapolation to 1/M = 0, some discrepancy
remains; it is not entirely clear whether it is significant.

For rescaling T ∗, we have chosen a different offset in
Fig. 9(f) which ensures, again, that the results of each method
fall on a nearly straight line, with perfect convergence of the
SFA data to the exact QMC results. We conclude that T ∗ is
well represented by the expression

T ∗ ≈ 0.090
√

2M − 1 (1 − 0.41 M−1). (7)

Note that both corrections to the asymptotic scaling T ∗ ∝
M1/2, arising from the shift in the argument and associated
with the explicit 1/M term, work in the same direction: in the
physical range of M , the critical temperature increases much
faster with the degeneracy than one would expect from the
scaling law. For example, going from SU(2) to the SU(6)
Hubbard model, recently realized with ultracold rare-earth
atoms,30 increases T ∗ by a factor of 3.3, much larger than
the factor

√
3 ≈ 1.73 suggested by the large-M asymptotics.

This extra enhancement is certainly beneficial for accessing
Mott physics in cold atom experiments.

Let us stress again that all numerical results correspond
to a semielliptic density of states of unit variance (and full
bandwidth 4); they can be converted to the cubic lattice, in
units of the hopping t , by multiplication with

√
6 ≈ 2.45 (or

to the square lattice by multiplication with
√

4 = 2).39

The expressions (5)–(7) fully determine the coexistence
phase diagram at any orbital degeneracy M when combined
with the scaling phase diagram Fig. 10 in which, by construc-
tion, the finite-temperature critical point has the coordinates
(0,1) while the ground-state critical point has the coordinates
(1,0) for any value of M . Its main panel shows that the
QMC data (symbols) for the phase boundaries indeed collapse
onto a universal phase diagram (black solid lines and gray
shaded background) in this representation, while the SFA data
(using one bath site per interacting orbital) approach it only
at large M . As seen in the inset of Fig. 10, the inclusion
of a larger number of bath sites (instead of one per orbital)
vastly improves the accuracy of the SFA also at M = 1 (filled
circles),48 beyond the level of the multiband case with the same
total number of sites. The inset further shows that the DSR data
seem to converge after rescaling (with a near collapse between
the results for M = 2 and 4), but to an incorrect limit.

From the universal phase diagram, one can also read off
that the insulating state is metastable (within DMFT and in a
paramagnetic phase) at zero temperature down to

Uc1 ≈ 0.9 U ∗ + 0.1 Uc2, (8)

which is easily expressed explicitly in terms of M by using
Eqs. (5) and (6).
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FIG. 10. (Color online) Scaling phase diagram: upon rescaling
with the parameters T ∗,U ∗ of the second-order finite-temperature
critical end point and with the critical interaction Uc2 of the second-
order ground-state Mott transition, the exact QMC data (symbols)
collapse onto the scaling curves (solid lines). SFA results (broken
lines and shaded regions) deviate, but converge toward this scaling
form for large M . Inset: DSR results25 (broken lines) deviate from
the scaling form (solid lines) at all M; in contrast, a high-precision
SFA calculation48 (with five bath sites: circles) nearly recovers the
reference result already at M = 1.

V. CONCLUSION AND OUTLOOK

In conclusion, we have studied the Mott metal-insulator
transition of the SU(2M) symmetric Hubbard model by solv-
ing the paramagnetic DMFT equations numerically exactly.
Our results confirm the predicted24 asymptotics of the ground-
state critical interaction Uc2 ∝ M for M → ∞ and determine
the (previously unknown) subleading corrections. They also
confirm the predicted45 exponent (of 1/2) of the dependence
of the finite-temperature critical interaction U ∗ on M and yield

the missing prefactor plus subleading terms; in addition, they
establish the relation T ∗ ∝ M1/2 also for the associated critical
temperature. Despite the different scaling of the end points of
the first-order phase-transition line with M , the shape of the
coexistence region is found to be universal to an astonishing
degree. This universality could only be revealed by a method
(multigrid HF-QMC) that is numerically exact at arbitrary M;
in earlier SFA and DSR studies, it was obscured by systematic
errors.

Our results yield precise predictions for the Mott transition
at arbitrary values of M , to be tested in cold-atom experiments.
Due to the enhanced critical temperatures, the multiflavor case
might make Mott physics more accessible than in the single-
band (i.e., two-flavor) case, in which the Mott signatures12,13

seen so far correspond to crossovers, not true phase transitions.
On the other hand, the experimental two-flavor studies profited
from the fact that the MIT extends, as a crossover, far above
T ∗ with relatively little variation in U ; thus, it is possible,
e.g., to obtain good estimates of U ∗ from measurements
at T � T ∗. This is still true in the SU(3) case.36 At large
M , however, the relative variation of U along the MIT line
increases significantly, from (Uc2 − U ∗)/Uc2 ≈ 0.2 at M = 1
to, e.g., (Uc2 − U ∗)/Uc2 ≈ 0.6 at M = 8.49 One may suspect
that the relative variation of U in the crossover region is
similarly enhanced at large degeneracy, which implies that a
closer approach of T ∗ would be required in order to determine
U ∗. Such low-temperature experiments might also explore
ordering phenomena, which are a fascinating topic of their
own and beyond the scope of this paper.

More generally, our results provide high-precision numer-
ical benchmarks for evaluating DMFT impurity solvers in the
challenging regime of moderate to high orbital degeneracy;
they could also be used for assessing the relative importance
of nonlocal correlations at higher band degeneracy, e.g., by
comparison with high-temperature expansions50 or with direct
exact calculations once they become available.
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