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A higher-angular-momentum (� = 2) d density wave, a mixed triplet and a singlet, interestingly, admits
skyrmionic textures. The skyrmions carry charge 2e and can condense into a spin-singlet s-wave superconducting
state. In addition, a charge current can be induced by a time-dependent inhomogeneous spin texture, leading
to quantized charge pumping. The quantum phase transition between this mixed triplet d density wave and
the skyrmionic superconducting condensate likely leads to deconfined quantum critical points. We suggest
connections of this exotic state to electronic materials that are strongly correlated, such as the heavy-fermion
URu2Si2. At the very least, we provide a concrete example in which topological order and broken symmetry are
intertwined, which can give rise to non-BCS superconductivity.

DOI: 10.1103/PhysRevB.87.085114 PACS number(s): 73.43.−f, 71.27.+a, 74.20.Mn

I. INTRODUCTION

It has become very much in vogue to argue that topological
aspects of condensed matter bear no relation to broken
symmetries.1 In a strict sense this need not be so.2 One
can construct examples where a broken-symmetry state has
interesting topological properties and can even be protected by
the broken symmetry itself. An interesting example of a mixed
triplet d density wave (DDW) and its possible relevance to one
of the many competing phases in the high-temperature cuprate
phase digram was recently demonstrated,3 where it was found
that the system exhibits the quantized spin Hall effect even
without any explicit spin-orbit coupling.

In particular, we considered a density wave of nonzero
angular momentum (� = 2) of a mixed singlet and triplet
variety such that in the half-filled limit, it is a gapped
insulator. Unlike the semimetallic singlet DDW,4 the spin
Hall effect is quantized for a range of chemical potential.
The state is a topological Mott insulator2 because it originates
from electron-electron interaction that leads to a broken
symmetry. The addition of charge carriers, doping, results
in Lifshitz transitions destroying the quantization but not the
very existence of the spin Hall effect.3 It is remarkable that
such an unconventional broken symmetry, possibly relevant to
high-temperature superconductors, has an intimate similarity
to topological insulators.

In the present paper we illustrate another remarkable aspect
of the mixed singlet-triplet d density wave state: we show that
the system exhibits charge-2e skyrmions, which can condense
into a remarkable superconducting state. As we shall discuss,
such a mixed triplet d density wave system, and the resulting
superconductivity is potentially relevant to the heavy-fermion
URu2Si2 with hidden order.5

An early attempt at such a non-BCS mechanism of
superconductivity was made by Wiegmann,6 as an extension of
the Fröhlich mechanism to higher dimension. More recently,
several interesting papers have led to discussions of supercon-
ductivity in single- and bilayer graphenes. Grover and Senthil7

have provided a mechanism in which electrons hopping on
a honeycomb lattice can lead to a charge-2e skyrmionic
condensate, possibly relevant to single-layer graphene. To a
certain degree we follow their formalism; see also the earlier
work in Ref. 8 of charge-e skyrmions in a quantum Hall

ferromagnet. As to bilayer graphene, a charge-4e skyrmionic
condensate has been suggested by Lu and Herbut9 and Moon.10

The difference between our present work and the more
recent papers on graphene is an unusual spontaneously
broken symmetry leading to superconductivity and not the
noninteracting band structure of a material. We also point out
possible implications for the mysterious hidden-order state
in URu2Si2, in particular for its superconductivity. In terms
of theoretical work, we have provided explicit calculations
of the angular momentum of the condensate, an intriguing
quantized charge pumping, a derivation of the nonlinear
σ model on which the existence of skyrmions rests, and a
full analysis of the spin-orbit coupling, correcting mistakes
in a seminal work.11 In addition, we have gone beyond the
adiabatic approximation, as in Ref. 7, thus fully confirming
our final results.

It is appropriate to comment on what we mean by “hidden
order.” An order parameter can often be inferred from its
macroscopic consequences in terms of certain generalized
rigidities. Sometimes its direct microscopic signature is diffi-
cult to detect: a direct determination of superconducting order
requires a subtle Josephson effect,12 and even antiferromag-
netic order requires microscopic neutron scattering probes.
Density wave states of higher angular momentum, such as the
mixed triplet d density wave, are even harder to detect. They do
not lead to a net charge density wave or spin density wave to be
detected by common s-wave probes. It is further undetectable
because it does not even break time-reversal invariance. A
discussion of possible experimental detections of particle-hole
condensates of higher angular momentum was given in Ref. 13.
Thus, it is fair to conclude that the state we consider here is a
good candidate for a hidden order.

It is also necessary to remark on the realization of particle-
hole condensates of higher angular momentum. An effective
low-energy theory of a strongly correlated system is bound to
have a multitude of coupling constants, perhaps hierarchically
arranged. In such cases, we can generally expect a phase
diagram with a multitude of broken-symmetry states. It is a
profound mystery as to why nontrivial examples are so few
and far between. A partial reason could be, as stated above,
that these states are unresponsive to common s-wave probes
employed in condensed matter physics and therefore appear to
be hidden.4
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The next question is whether these low-energy effective
Hamiltonians are contrived. If so, it would be of little value
to pursue them. However, simple Hartree-Fock analyses have
shown that they certainly are not:11,13 an on-site repulsion U ,
a nearest-neighbor interaction V , and an exchange interaction
J are sufficient in a single-band model.

The structure of this paper is as follows: In Sec. II, we
construct the low-energy effective action of the mixed triplet
and singlet d density wave system. In Sec. III, we compute
the charge and the spin of a skyrmion and verify that the
skyrmions in this system are bosons, which can lead to a
superconducting phase transition. In Sec. IV, we compute
the angular momentum of a skyrmion. In Sec. V, we study
the charge pumping due to a time-dependent inhomogeneous
spin texture that is interesting in its own right. In Sec. VI we
discuss mainly the problem of URu2Si2. In the Appendixes,
the derivation of the nonlinear σ model and the details of
computing the Chern-Simons coefficients and charge pumping
are provided.

II. EFFECTIVE ACTION

In the momentum space the mixed triplet and singlet
d density wave order parameter is [c and c† are the fermionic
annihilation and creation operators, respectively, Q = (π,π ),
and the lattice constant is set to unity]

〈c†k+Q,αck,β〉 ∝ i(�σ · N̂ )αβWk + δαβ�k, (1)

where N̂ is a unit vector, �σ are the Pauli matrices acting on
spin indices, and the form factors

Wk ≡ W0

2
(cos kx − cos ky), (2)

�k ≡ �0 sin kx sin ky (3)

correspond to the dx2−y2 and dxy density waves, respectively.13

It is not necessary that the dxy and dx2−y2 transitions be close
to each other, nor are they required to be close in energy.3

If we choose the spin quantization axis to be ẑ, the up
spins represent circulating spin currents corresponding to
the order parameter d + id and the down spins correspond
to d − id (in an abbreviated notation). So there are net
circulating spin currents alternating from one plaquette to
the next but no circulating charge currents. By the choice
of the quantization axis we have explicitly broken SU(2)
symmetry, but not U(1), and the coset space of the order
parameter S2 ≡ SU(2)/U(1). Such a state can admit skyrmions
in two dimensions, ignoring the possibility of hedgehog
configurations in (2 + 1) dimensions. See the derivation of
the nonlinear σ model in Appendix A.

The Hamiltonian is

H =
∑
k,α,β

ψ
†
k,α[δαβ(τ zεk + τ x�k) − (�σ · N̂ )αβτ yWk]ψkβ,

(4)

where the summation is over the reduced Brillouin zone
bounded by ky ± kx = ±π , the spinor is ψ

†
k,α ≡ (c†k,α,c

†
k+Q,α),

and εk ≡ −2t(cos kx + cos ky); addition of longer-ranged hop-
ping will not change our conclusions.3 Here τ i (i = x,y,z)
are Pauli matrices acting on the two-component spinor. It
is not necessary but convenient to construct a low-energy
effective field theory. For this we expand around the points
K1 ≡ (π

2 , π
2 ) and K2 ≡ (−π

2 , π
2 ), which would have been the

two distinct nodal points in the absence of the dxy term,
and K3 ≡ (0,π ), which would have been the nodal point in
the absence of the dx2−y2 term. This allows us to develop
an effective low-energy theory by separating the fast modes
from the slow modes. After that we make a sequence of
transformations for simplicity: (1) transform the Hamiltonian
to the real space, which allows us to formulate the skyrmion
problem; (2) perform a π/2 rotation along the τ y direction,
which allows us to match to the notation of Ref. 11 for the
convenience of the reader; (3) label ψKi+q,α by ψiα , since Ki

is now a redundant notation; (4) construct the imaginary-time
effective action, with the definition ψ̄ ≡ −iψ†τ z. Finally, after
suppressing the spin indices, and with the definitions γ 0 ≡ τ z,
γ x ≡ τ y , and γ y ≡ −τ x , we obtain the effective action in a
more compact notation:

S =
∑
j=1,2

∫
d3x ψ̄j

[
−iγ 0∂τ − 2itγ x(ηj∂x + ∂y)

+ i
W0

2
(�σ · N̂ )γ y(−ηj∂x + ∂y) + iηj�0

]
ψj

+
∫

d3x ψ̄3[−iγ 0∂τ − W0(�σ · N̂ )γ y]ψ3, (5)

where η1 = 1 and η2 = −1. There is no spatial derivative in
the ψ3 term since the expansion of the dx2−y2 gap around the
nodal point K3 = (0,π ) is

WK3+q = W0

2

(
2 − q2

x

2
− q2

y

2
+ · · ·

)
, (6)

where the second- (and higher-) order derivative terms are
dropped when linearizing the action. In other words, the dx2−y2

term behaves as a mass term at the K3 point.

III. THE CHARGE AND SPIN OF A SKYRMION

First we will compute the charge of the skyrmions in the
system by following Grover and Senthil’s adiabatic argument.7

Consider the action around K1 = (π
2 , π

2 ) when the order
parameter is uniform (say, N̂ = ẑ). The results for K2 =
(−π

2 , π
2 ) and K3 = (0,π ) follow identically. In our previous

paper we showed that in this case the nontrivial topology leads
to a quantized spin Hall conductance in the iσdx2−y2 + dxy

density wave state3 as long as the system is fully gapped. The
spin quantum Hall effect implies that the external gauge fields
Ac and As couple to charge and spin currents, respectively. In
the presence of these external gauge fields, we add minimal
coupling in the action by

1

i
∂μ = pμ → pμ + Ac

μ + σ z

2
As

μ. (7)
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Then the action is

S1[Ac,As]

=
∫

d3xψ̄1

[
−iγ 0∂τ + γ 0

(
Ac

τ + σ z

2
As

τ

)
− 2itγ x(∂x + ∂y)

+ 2tγ x

(
Ac

x + σ z

2
As

x + Ac
y + σ z

2
As

y

)
i
W0

2
σ zγ y(−∂x + ∂y)

− W0

2
σ zγ y

(
−Ac

x − σ z

2
As

x + Ac
y + σ z

2
As

y

)
+ i�0

]
ψ1,

(8)

where we set e = h̄ = 1. The nonvanishing transverse spin
conductance implies that the low-energy effective action
obtained from integrating out the fermions for the gauge fields
is given by

S1,eff = i

2π

∫
d3x εμνλAc

μ∂νAs
λ, (9)

and the charge current is induced by the spin gauge field

jc
μ = 1

2π
εμνλ∂νA

s
λ. (10)

Consider now a static configuration of the N̂ field with unit
Pontryagin index in the polar coordinates (r,θ ):

N̂ (r,θ ) = [sin α(r) cos θ, sin α(r) sin θ, cos α(r)] (11)

with the boundary conditions α(r = 0) = 0 and α(r → ∞) =
π . Performing a unitary transformation at all points in space
such that U †(�σ · N̂ )U = σ z, and defining ψ = Uψ ′, and ψ̄ =
ψ̄ ′U †, we obtain

S1 =
∫

d3x ψ̄ ′
1

[
−iγ 0∂τ − 2itγ x(∂x + ∂y)

+ i
W0

2
σ zγ y(−∂x + ∂y) + i�0

]
ψ ′

1

+
∫

d3x ψ̄ ′
1

[
−iγ 0(U †∂τU ) − 2itγ x(U †∂xU

+U †∂yU ) + i
W0

2
σ zγ y(−U †∂xU + U †∂yU )

]
ψ ′

1. (12)

To proceed, we write down the explicit form for U (r,θ ), which
is

U (r,θ ) =
(

cos α(r)
2 − sin α(r)

2 e−iθ

sin α(r)
2 eiθ cos α(r)

2

)
. (13)

In the far-field limit, U †∂xU = (−i sin θ
r

)σ z and U †∂yU =
( i cos θ

r
)σ z; substituting into Eq. (12) and introducing fμ =

−iU †∂μU , we get

S1 =
∫

d3x ψ̄ ′
1

[
−iγ 0∂τ − 2itγ x(∂x + ∂y)

+ i
W0

2
σ zγ y(−∂x + ∂y) + i�0

]
ψ ′

1

+
∫

d3x ψ̄ ′
1

[
2tγ x(fx + fy) + W0

2
σ zγ y(fx − fy)

]
ψ ′

1.

(14)

Equating the above equation and Eq. (8), we obtain in the
far-field limit

Ac
x = Ac

y = 0, As
x = −2 sin θ

r
, As

y = 2 cos θ

r
. (15)

In other words, the process of tuning the order parameter from
σ z to σ̂ · N̂ (r,θ ) is equivalent to adding an external spin gauge
field

�As = −2 sin θ

r
x̂ + 2 cos θ

r
ŷ = 2

r
θ̂ . (16)

The total flux of this gauge field is clearly 4π . Suppose
we adiabatically construct the skyrmion configuration N̂ (r,θ )
from the ground state ẑ in a very long time period τp → ∞.
During the process, we effectively thread a spin gauge flux
of 4π . The transverse spin Hall conductance implies that a
radial current jc

r will be induced by the 4π spin gauge flux
of �As(t), which is now time dependent: �As(t = 0) = 0 and
�As(t = τp) = �As , that is,

jc
r (t) = − 1

2π
∂tA

s
θ (t). (17)

As a result, charge will be transferred from the center to the
boundary, and the total charge transferred is

Qc =
∫ τp

0
dt

∫ 2π

0
rdθjc

r (t) = −2. (18)

Therefore, after restoring the unit of charge to e, we obtain a
skyrmion with charge 2e; its spin is 0.

It is important to verify the adiabatic result by a different
method. This can be done by a computation of the Chern
number.14 The charge and spin of the skyrmions are associated
with the coefficients of the Chern-Simons terms by the follow-
ing relations: Qskyrmion = C2e and Sskyrmion = C1

h̄
2 , where C1

and C2 are

C1 = εμνλ

24π2
Tr

[∫
d3kG

∂G−1

∂kμ

G
∂G−1

∂kν

G
∂G−1

∂kλ

]
, (19)

C2 = εμνλ

24π2
Tr

[∫
d3k(�σ · ẑ)G

∂G−1

∂kμ

G
∂G−1

∂kν

G
∂G−1

∂kλ

]
,

(20)

where G is the matrix Green’s function and the trace is taken
over the spin index σ and other discrete indices.

If the Green’s function matrix is diagonal in the spin index,
then the Chern-Simons coefficients for up and down spins can
be computed separately:

N (Gσ ) = εμνλ

24π2
Tr

[∫
d3kGσ

∂G−1
σ

∂kμ

Gσ

∂G−1
σ

∂kν

Gσ

∂G−1
σ

∂kλ

]
,

(21)

and C1 = N (G↑) + N (G↓), C2 = N (G↑) − N (G↓). Fur-
thermore, it can be shown (see Appendix B) that for

G−1
σ = iωÎ − τ̂ · �hσ (22)

with �hσ being the Anderson pseudospin vector15 of the
Hamiltonian, the Chern-Simons coefficient for spin σ can be
written as

N (Gσ ) = −
∫

d2k

4π
ĥσ · ∂ĥσ

∂kx

× ∂ĥσ

∂ky

, (23)
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where ĥσ ≡ �hσ/|�hσ | is the unit vector of �hσ . Here C1 and C2

are the total Chern number and the spin Chern number Nspin

defined in our previous paper, respectively.3 For the iσdx2−y2 +
dxy system, we have �hσ ≡ (�k,−σWk,εk). Explicitly, C1 =
−1 + 1 = 0 and C2 = −1 − 1 = −2; thus the results are the
same as above.

Because a skyrmion in the system carries integer spin,
it obeys bosonic statistics and may undergo Bose-Einstein
condensation. As a result, the charge-2e skyrmion condensate
will lead to a superconducting phase transition. But what about
its orbital angular momentum? In the following section, we
will prove that it is zero, resulting in an s-wave singlet state.
This is somewhat surprising given the original d-wave form
factor.

IV. THE ANGULAR MOMENTUM OF A SKYRMION

To compute the angular momentum carried by a skyrmion
in the system, we consider the angular momentum density due
to the electromagnetic field. For a static spin texture it is clearly
zero, because �E = �0. For a time-dependent texture it is a little
harder to prove. Consider

Nx(r,θ,t) = sin α(r,t) cos β(θ,t),

Ny(r,θ,t) = sin α(r,t) sin β(θ,t),

Nz(r,t) = cos α(r,t),

where α(r,t) and β(θ,t) are smooth functions, and α(r,t)
satisfies the boundary conditions α(r = 0,t) = 0 and α(r →
∞,t) = π , for any t , and ∂α(r,t)

∂r
|r→∞ = ∂α(r,t)

∂t
|r→∞ = 0 in the

far-field limit. The unitary matrix is now time dependent. After
a little algebra, we obtain the time-dependent gauge fields in
the far-field limit to be

As
x(r,θ,t) = −2 sin θ

r

∂β(θ,t)

∂θ
, (24)

As
y(r,θ,t) = 2 cos θ

r

∂β(θ,t)

∂θ
. (25)

So �(θ,t) = As
t (θ,t) = 2 ∂β(θ,t)

∂t
and �As(r,θ,t) = As

x(r,θ,t)x̂ +
As

y(r,θ,t)ŷ = As
θ (r,θ,t)θ̂ , where

As
θ (r,θ,t) = 2

r

∂β(θ,t)

∂θ
. (26)

Therefore, the electric field will have a nonzero θ̂ component,
�E = Eθ θ̂ , and the magnetic field will have a nonzero ẑ

component, �B = Bzẑ, where

Eθ = −1

r

∂As
t (θ,t)

∂θ
− ∂As

θ (r,t)

∂t
= −4

r

∂2β(θ,t)

∂θ∂t
, (27)

Bz = ∂As
θ (r,t)

∂r
= − 2

r2

∂β(θ,t)

∂θ
. (28)

As a result, the angular momentum density still vanishes,

�Lfield = 1

4πc
�r × (Eθ θ̂ × Bzẑ) = 0. (29)

It is possible that superconductivity with nonzero angular
momentum may be realized when the interaction between
skyrmions is included, but we do not know how to prove it. It

would be interesting to explore what other kinds of quantum
numbers are carried by the topological textures in the model
we have studied.

V. QUANTIZED CHARGE PUMPING

In Sec. III, we considered a static spin texture and obtained
charge-2e skyrmions in the system. If we consider a time-
dependent spin texture, which has a slow variation in one
spatial direction, say, ŷ, and is uniform in the other, x̂, charge
will be pumped from one side of the system to the other along
x̂.16 This charge pumping effect can be understood from the
effective gauge action, which is

Seff
[
Ac

μ,As
μ

] = C2

4π

∫
d3x εμνλAc

μ∂νAs
λ, (30)

where the integral is over the real time t instead of the
imaginary time τ . Therefore, the charge current induced by
the spin gauge field will be

jc
μ = δSeff

[
Ac

μ,As
μ

]
δAc

μ

= C2

4π
εμνλ∂νA

s
λ = C2

8π
εμνλF s

νλ, (31)

where we define the spin gauge flux F s
μν ≡ ∂μAs

ν − ∂νA
s
μ.

After some straightforward algebra (see Appendix C), the spin
gauge flux can be written in terms of the N̂ vector,

F s
μν = N̂ · [(∂μN̂ ) × (∂νN̂ )]. (32)

As a result, even in the absence of an external electromagnetic
field, a charge current may be induced by a time-dependent
inhomogeneous spin texture because

jc
μ = C2

8π
εμνλN̂ · [(∂νN̂ ) × (∂λN̂ )]. (33)

To demonstrate the charge response induced by the spin
texture, we consider the following configuration with unit
Pontryagin index:

N̂ (y,t) = [sin θ (t) cos φ(y), sin θ (t) sin φ(y), cos θ (t)], (34)

where θ (t) and φ(y) are smooth functions of t and y,
respectively, with boundary conditions θ (t = 0) = 0, θ (t =
τp) = π , and φ(y → ±∞) = ±π . Therefore, we have an
induced charge current along the x̂ direction,

jc
x = C2

8π
εxνλN̂ · [(∂νN̂ ) × (∂λN̂ )]

= C2

4π
N̂ · [(∂yN̂ ) × (∂t N̂ )]. (35)

Interestingly, we can show that the pumped charge is quan-
tized,

Qpumped =
∫ τp

0
dt

∫ ∞

−∞
dy jc

x

= C2

4π

∫ τp

0
dt

∫ ∞

−∞
dy N̂ · [(∂yN̂ ) × (∂t N̂ )]

= C2

4π

∫ π

0
dθ

∫ π

−π

dφ N̂ · [(∂θ N̂ ) × (∂φN̂ )] = C2,

(36)
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where we have used that, for the spin texture with unit
Pontryagin index,∫ π

0
dθ

∫ π

−π

dφ N̂ · [(∂θ N̂ ) × (∂φN̂ )] = 4π. (37)

After restoring the unit of charge, we have Qpumped = C2e. So
far we have considered the spin texture with unit Pontryagin
index. If the spin texture is generalized to a general Pontryagin
index, NP , then the pumped charge will be Qpumped = C2NP e.

How could we observe this charge pumping experimen-
tally? We need to control the direction of the N̂ vector so
that it can be the time-dependent inhomogeneous spin texture
discussed above. In topological chiral magnets,16 the N̂ vector
is the net ferromagnetic moment, which aligns along the
external magnetic field, so one can apply a time-dependent
magnetic field �H (t) = H (t)x̂ coupling to the N̂ vector and
control the magnitude of the x̂ component of N̂ .

In the mixed triplet d density wave, however, the situation
is more complicated. In the presence of an external magnetic
field, there will be a spin-flop transition and the N̂ vector will
lie in the plane perpendicular to the external field.11 In other
words, we cannot fully control the direction of N̂ with a time-
dependent magnetic field. Therefore, it would be a challenge
to measure the pumped charges in the system.

Nevertheless, the charge pumping effect provides, at least,
a different conceptual approach to probe the topological
properties of the system in addition to the quantized spin
Hall conductance. For the quantum spin Hall effect, a spin
current is induced by the external electric field,3 whereas for
the charge pumping effect, a charge current will be induced
by the spin texture. It would, of course, be interesting if
one could manipulate the N̂ vector experimentally because
a charge current is easier to detect than a spin current.

VI. DISCUSSION AND APPLICATION TO THE
HIDDEN-ORDER STATE IN URu2Si2

There are two points that we have glossed over. The first
is rather simple: in the ordered phase at T = 0, there are also
Goldstone modes that can be easily seen by integrating out
the fermions, resulting in a nonlinear σ model involving N̂ ,
the form of which is entirely determined by symmetry. These
do not lead to any interesting physics, such as charge-2e

skyrmions that condense into a superconducting state. At
finite temperatures they could lead to a renormalized classical
behavior.17 The second point is more subtle: we have assumed
that the hedgehog configurations are absent. This would
require, as pointed out by Grover and Senthil,7 that the
energy of the skyrmion (especially in the limit �0 → 0) is
smaller than individual pairs of electrons, a question that is
likely to be model dependent. If this assumption is correct,
however, the transition from the mixed d density wave state
to the superconducting state will correspond to a deconfined
quantum critical point, which otherwise would have been a
first-order transition, as in Landau theory.18

We suggest that the superconducting phase driven by the
skyrmion condensate may be realized in URu2Si2, which hosts
an exotic hidden-order (HO) phase, with broken translational
symmetry below THO ≈ 17.5 K and a superconducting phase
below Tc ≈ 1.5 K.5 Recently, Fujimoto19 proposed a triplet

x

y

z

FIG. 1. (Color online) The spin current pattern due to the order
parameter in Ref. 19. The U atoms are marked by the dots. The
directions of the spin currents are marked by the arrows. Black and
blue colors indicate two independent sets of staggered circulating
spin current patterns. The Ru and Si atoms are not shown for clarity.

d density wave with the order parameter 〈c†k,1,αck+Q0,2,β〉 =
�d(k) · �σαβ with �d(k) = i(�1 sin (kx−ky )√

2
sin kz,0,0) to describe

this state;19 here 1 and 2 refer to two different bands and
Q0 = (0,0,1) is the nesting vector; even the earlier work
in Ref. 20 involving circulating spin current is not entirely
unrelated. The order parameter considered in Ref. 19 is
different but a close cousin of the order parameter considered
in our work; the circulating staggered spin currents in Ref. 19
lie on the diagonal planes instead and the crucial dxy part is
missing there. As mentioned in Sec. II in the paper, the mixed
triplet d density wave gives rise to net circulating spin currents
alternating from one plaquette to the next in the square lattice.
Notice that the coefficient of the dxy component is real, so in
the tight-binding model the presence of the dxy term affects the
kinetic energy, but does not produce any charge current or spin
current. As a result, the addition of the singlet dxy component
in the present work modulates only the next-nearest-neighbor
hopping, and the spin current patterns remain unaffected. As
mentioned above the spin currents lie on the diagonal planes in
the three-dimensional lattice. For the purpose of illustration,
in Fig. 1 we plot the spin current pattern due to the order
parameter in Ref. 19. On each diagonal plane, there are two
copies of the staggered circulating spin current patterns. Each
of them is the same as the one in the mixed triplet d density
wave system because, as explained above, the dxy component
has no effect on the spin current pattern.

That the currents are in the diagonal planes instead of being
square planar is conceptually not important, but is necessary
to explain the nematicity observed in experiments.21 We now
discuss the role of spin-orbit coupling before making our final
comments.

A. Spin-orbit coupling

It will be shown below that the order of magnitude of the
spin-orbit energy ESO ≈ [(N̂ · ẑ)2 − 1](�2

0/W )(W0/W )2[1 +
O(W0/W )2], correcting a mistake in Ref. 11. Here �0 is the
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strength of the spin-orbit coupling, given by

HSO =
∑

k

c
†
kα

��(k) · �σαβckβ, (38)

where ��(k) = (�0/
√

2)[x̂ sin ky − ŷ sin kx]. In the presence of spin-orbit coupling, the Hamiltonian is

Htotal = H + HSO =
∑

k

�
†
k

⎛
⎜⎜⎜⎝

εk �k + iNzWk �x(k) − i�y(k) iWk(Nx − iNy)

�k − iNzWk −εk −iWk(Nx − iNy) −�x(k) + i�y(k)

�x(k) + i�y(k) iWk(Nx + iNy) εk �k − iNzWk

−iWk(Nx + iNy) −�x(k) − i�y(k) �k + iNzWk −εk

⎞
⎟⎟⎟⎠ �k, (39)

where �
†
k is the four-component spinor (c†k,↑,c

†
k+Q,↑,c

†
k,↓,c

†
k+Q,↓). In the absence of spin-orbit coupling, the eigenvalues are ±E0k

with E0k =
√

ε2
k + W 2

k + �2
k . On the other hand, when spin-orbit coupling is present, the eigenvalues of the upper and lower

bands now become λup,± = Ek,±, λlow,± = −Ek,±, respectively, where

Ek,± =
√

ε2
k + W 2

k + �2
k + �2

k ± 2
[(

ε2
k + W 2

k

)
�2

k − W 2
k (N̂ · ��k)2

]1/2
(40)

with �2
k ≡ | ��k|2 = �2

x(k) + �2
y(k). When the dxy component

is absent, �k = 0, and the results of Ref. 11 are recovered.
Consider the following two cases separately.

1. N̂ ‖ ẑ

Since the chemical potential is at the midgap, we can focus
on the lower bands. When N̂ = ẑ, we have N̂ · ��k = 0 and

λz
low,± = −

√
E2

0k + �2
k ± 2

[
E2

0k�
2
k

]1/2

= −E0k ∓ | ��k|. (41)

Assuming that �0 � W0, �0 � W with the electronic band-
width W = 8t , the change in the ground-state energy will be

ESO =
∑

k

[(
λz

low,+ + λz
low,−

) − 2(−E0k)
]

=
∑

k

[(−E0k − | ��k| − E0k + | ��k|) + 2E0k] = 0.

(42)

2. N̂ ⊥ ẑ

When N̂ lies in the xy plane, we have N̂ · ��k = | ��k| cos φk ,
where φk is the angle between N̂ and ��k , and

cos φk = N̂ · ��k

| ��k|
= Nx�x(k) + Ny�y(k)√

�2
x(k) + �2

y(k)
. (43)

The eigenvalues of the lower bands are now

λ
xy

low,± = −
√

E2
0k + �2

k ± 2
[
E2

0k�
2
k − W 2

k �2
k cos2 φk

]1/2

≈ −E0k ∓
(

1 − 1

2

W 2
k

E2
0k

)
| ��k|

− 1

2

W 2
k

E0k

�2
k

E2
0k

[
1 + O

(
W 2

k

E2
0k

)]
, (44)

where we have used cos2 φk ≈ O(1). Notice that the signs of
the second-order terms for λ

xy

low,+ and λ
xy

low,− are both negative,

leading to a net change in the ground-state energy, which is op-
posite to the N̂ = ẑ case. Assuming that �0 � W0, �0 � W ,
the change in the ground-state energy per lattice site will be

ESO =
∑

k

[(
λ

xy

low,+ + λ
xy

low,−
) − 2(−E0k)

]

≈ −
∑

k

�2
kW

2
k

E3
0k

[
1 + O

(
W 2

k

E2
0k

)]

= −�2
0

W

(
W0

W

)2
[

1 + O

(
W0

W

)2
]

< 0. (45)

Therefore, the N̂ vector should lie in the xy plane in the
presence of spin-orbit interaction and the result stated above
follows.

As large as the spin-orbit coupling may be for U atoms, ESO

is still a small energy scale. However, if other anisotropies are
absent, the order parameter will be in the XY plane, resulting
in vortices; exchange anisotropy can also result in an easy-axis
anisotropy, in which case the spin textures could be Ising
domain walls that can trap electrons. Although skyrmions are
finite-energy solutions, vortices cost infinite energy unless they
are bound in pairs. We speculate that charge-2e skyrmionic
condensation is a more likely scenario, but the crossover in the
texture is an interesting topic for further research.

The following remarks about URu2Si2 are relevant: in both
magnetic field–temperature (H -T ) and pressure-temperature
(P -T ) phase diagrams, the superconducting phase is enclosed
within the HO phase.5 This implies that the superconducting
phase is closely related to the HO phase and is probably
induced by it. Throughout our calculation, ignoring of course
the skyrmions, we have assumed that the system is half
filled. The lower band is filled and the upper band is empty,
and the topological invariant is quantized. If this is not the
case, then there will be no quantized spin Hall conductance,
but an induced superconducting (SC) phase from charge-2e

skyrmionic condensation; doping will result in conducting
midgap states, as in polyacetylene.22 Of course, such a
topological superconducting phase is very sensitive to disorder.
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Indeed, this may be supported by the destruction of the HO
and SC phases with 4% Rh substitution on the Ru site.5 To
summarize, we can find a rationale for a hidden-order phase
enclosing a superconducting phase at lower temperatures.
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APPENDIX A: DERIVATION OF THE
NONLINEAR σ MODEL

To derive the nonlinear σ model, we compute the effective
action by integrating out the fermions. We start with the action
S = ∑3

j=1 Sj , where

Sj ≡
∫

d3x ψ̄j

[
G−1

j

]
ψj , (A1)

with G−1
j ≡ G−1

0,j + �j .
For j = 1,2, we have

G−1
0,j ≡ −iσ 0τ z∂τ − 2itσ 0τ y(ηj∂x + ∂y), (A2)

�j ≡ iηj�0σ
0τ 0 − i

W0

2
(�σ · N̂ )τ x(−ηj∂x + ∂y), (A3)

and for j = 3, we have

G−1
0,3 ≡ −iσ 0τ z∂τ , (A4)

�3 ≡ W0(�σ · N̂ )τ x. (A5)

The effective action will be Seff = ∑3
j=1 Sj,eff with

Sj,eff = − ln

[∫
Dψ̄jDψje

−Sj

]
= − ln

[
det

∣∣G−1
j

∣∣], (A6)

where the fermion operators can be integrated out easily since
the Hamiltonian has only bilinear fermion operator terms.
Using the mathematical identity ln det |A| = tr ln A with tr
being the trace, we have

Sj,eff = −tr ln G−1
0,j [1 + G0,j�j ]

= −tr ln G−1
0,j − tr[G0,j�j ]

+ 1
2 tr[G0,j�jG0,j�j ] + · · · , (A7)

where we have used ln(1 + x) = x − x2

2 + · · · .
The zeroth-order term is the effective action for free

particles and the first-order term vanishes, so our goal is to

compute the second-order terms:

S
(2)
j,eff ≡ 1

2
tr[G0,j�jG0,j�j ]

= 1

2

∫
dτ

∫
dτ ′

∫
d2x

∫
d2x ′Tr[G0,j (x,τ ; x ′,τ ′)

×�j (x ′,τ ′)G0,j (x ′,τ ′; x,τ )�j (x,τ )]

= 1

2

∑
k̃,q̃

Tr[G0,j (k̃)�j (q̃)G0,j (k̃ + q̃)�j (−q̃)], (A8)

where k̃ ≡ (k0,kx,ky), q̃ ≡ (q0,qx,qy), and G0,j (k̃) can be
obtained by inverting Eqs. (A2) and (A4).

Putting all together, taking the long-wavelength limit
(q̃ → 0) and keeping only terms up to the second-order
derivative, we have, for j = 1,2,

S
(2)
j,eff ≈ 2

∑
k̃,q̃

1

k2
0 + 4t2(ηjkx + ky)2

×
[
−�2

0 +
(

W0

2

)2

(−ηjqx + qy)2(N̂q̃ · N̂−q̃)

]
,

(A9)

where terms which are odd in k̃ and q̃ are dropped.
Using the relation

∑
q̃ fq̃f−q̃ = ∫

dτ d2x|f (�x,τ )|2, we
obtain

S
(2)
1,eff + S

(2)
2,eff ≈ 1

g1

∫
dτ d2x[|∂XN̂ |2 + |∂Y N̂ |2],

(A10)

where the constant terms are dropped, (X,Y ) is the coordinate
after a π/4 rotation, and

1

g1
≡

∑
k̃

−W 2
0

2
[
k2

0 + 4t2(kx + ky)2
] (A11)

Similarly, for j = 3, we obtain

S
(2)
3,eff ≈ −2

∑
k̃,q̃

W 2
0

k2
0

(
q0

k0

)2

(N̂q̃ · N̂−q̃)

= 1

g3

∫
dτ d2x

∣∣∂τ N̂
∣∣2

, (A12)

where

1

g3
≡

∑
k̃

2W 2
0

k4
0

. (A13)

Therefore, we obtain the nonlinear σ model,

Seff ≈ 1

g

∫
dτ d2x|∂μN̂ |2, (A14)

where the constant terms and higher-order terms are dropped,
and it is rescaled in order to obtain a familiar form.
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APPENDIX B: CHERN-SIMONS COEFFICIENTS

In this Appendix we are going to prove that

N (Gσ ) = εμνλ

24π2
Tr

[∫
d3kGσ

∂G−1
σ

∂kμ

Gσ

∂G−1
σ

∂kν

Gσ

∂G−1
σ

∂kλ

]
= −

∫
d2k

4π
ĥσ · ∂ĥσ

∂kx

× ∂ĥσ

∂ky

. (B1)

We start by taking (μ,ν,λ) to be (0,x,y), and obtain

Gσ

∂G−1
σ

∂ω
= 1

(iω)2 − |�hσ |2 [(iωÎ + τ̂ · �hσ ) · (iÎ )] = 1

(iω)2 − |�hσ |2 (−ωÎ + iτ̂ · �hσ ) (B2)

and

Gσ

∂G−1
σ

∂kx

= 1

(iω)2 − |�hσ |2 [iωÎ + τ̂ · �hσ ]

(
− τ̂ · ∂ �hσ

∂kx

)
= −1

(iω)2 − |�hσ |2

[(
�hσ · ∂ �hσ

∂kx

)
Î + iτ̂ ·

(
ω

∂ �hσ

∂kx

+ �hσ × ∂ �hσ

∂kx

)]
,

(B3)

where we have used the matrix identity (τ̂ · �a)(τ̂ · �b) = (�a · �b)Î + iτ̂ · (�a × �b). Similarly,

Gσ

∂G−1
σ

∂ky

= −1

(iω)2 − |�hσ |2

[(
�hσ · ∂ �hσ

∂ky

)
Î + iτ̂ ·

(
ω

∂ �hσ

∂ky

+ �hσ × ∂ �hσ

∂ky

)]
. (B4)

Therefore,

Gσ

∂G−1
σ

∂kx

Gσ

∂G−1
σ

∂ky

= 1

[(iω)2 − |�hσ |2]2

{(
�hσ · ∂ �hσ

∂kx

)(
�hσ · ∂ �hσ

∂ky

)
Î + iτ̂ ·

[(
�hσ · ∂ �hσ

∂kx

)(
ω

∂ �hσ

∂ky

+ �hσ × ∂ �hσ

∂ky

)

+
(

�hσ · ∂ �hσ

∂ky

)(
ω

∂ �hσ

∂kx

+ �hσ × ∂ �hσ

∂kx

)]
−

[
τ̂ ·

(
ω

∂ �hσ

∂kx

+ �hσ × ∂ �hσ

∂kx

)] [
τ̂ ·

(
ω

∂ �hσ

∂ky

+ �hσ × ∂ �hσ

∂ky

)]}
.

(B5)

Since we are going to multiply this with the antisymmetric tensor εμνλ, the terms which are symmetric under (x ↔ y) will
vanish. Therefore, only the last term in the braces contributes,[

τ̂ ·
(

ω
∂ �hσ

∂kx

+ �hσ × ∂ �hσ

∂kx

)] [
τ̂ ·

(
ω

∂ �hσ

∂ky

+ �hσ × ∂ �hσ

∂ky

)]

= iτ̂ ·
[
ω2

(
∂ �hσ

∂kx

× ∂ �hσ

∂ky

)
+ ω�hσ

(
∂ �hσ

∂kx

· ∂ �hσ

∂ky

)
− ω

∂ �hσ

∂ky

(
�hσ · ∂ �hσ

∂kx

)

−ω�hσ

(
∂ �hσ

∂kx

· ∂ �hσ

∂ky

)
+ ω

∂ �hσ

∂kx

(
�hσ · ∂ �hσ

∂ky

)
+

(
�hσ · ∂ �hσ

∂kx

× ∂ �hσ

∂ky

)
�hσ

]
, (B6)

where we used the following mathematical identities:

�a × (�b × �c) = �b(�a · �c) − �c(�a · �b), (�a × �b) × (�a × �c) = [�a · (�b × �c)]�a.

Therefore, after combining with ε0xy and taking the trace, we have

ε0xyTr

[
Gσ

∂G−1
σ

∂ω
Gσ

∂G−1
σ

∂kx

Gσ

∂G−1
σ

∂ky

]
= −1

[(iω)2 − |�hσ |2]3
Tr

(
−iωτ̂ ·

[
ω2

(
∂ �hσ

∂kx

× ∂ �hσ

∂ky

)
+

(
�hσ · ∂ �hσ

∂kx

× ∂ �hσ

∂ky

)
�hσ

]

−(τ̂ · �hσ )

{
τ̂ ·

[
ω2

(
∂ �hσ

∂kx

× ∂ �hσ

∂ky

)
+

(
�hσ · ∂ �hσ

∂kx

× ∂ �hσ

∂ky

)
�hσ

]})

= 2

[(iω)2 − |�hσ |2]3

{
�hσ ·

[
ω2

(
∂ �hσ

∂kx

× ∂ �hσ

∂ky

)
+

(
�hσ · ∂ �hσ

∂kx

× ∂ �hσ

∂ky

)
�hσ

]}

= −2

[(iω)2 − |�hσ |2]2

(
�hσ · ∂ �hσ

∂kx

× ∂ �hσ

∂ky

)
, (B7)
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where we have used the fact that Pauli matrices are traceless, so the only contribution will be the term proportional to Î .
We have six nonzero terms because of the εμνλ tensor, so

N (Gσ ) = −2 × 6

24π2

∫
d3k

1

((iω)2 − |�hσ |2)2

(
�hσ · ∂ �hσ

∂kx

× ∂ �hσ

∂ky

)
= −

∫
d2k

4π

1

|�hσ |3

(
�hσ · ∂ �hσ

∂kx

× ∂ �hσ

∂ky

)

= −
∫

d2k

4π
ĥσ · ∂ĥσ

∂kx

× ∂ĥσ

∂ky

, (B8)

where the energy integral was done by computing the residue of the second-order pole.

APPENDIX C: SPIN GAUGE FLUX Fs
μν IN TERMS OF N̂

In the main text, we obtain the spin gauge field to be

fμ = σ z

2
As

μ, (C1)

where fμ = −iU †∂μU . Therefore, we can write the spin gauge field in terms of the unitary matrix,

As
μ = Tr

[
σ z · σ z

2
As

μ

]
= Tr[σ zfμ] = −iTr[σ zU †∂μU ], (C2)

and we have

F s
μν = ∂μAs

ν − ∂νA
s
μ = −iTr

[
σ z(∂μU †)(∂νU ) − σ z(∂νU

†)(∂μU )
]
. (C3)

Assume that the spin texture has the general form

N̂ (�x,t) = [
sin θ (�x,t) cos φ(�x,t), sin θ (�x,t) sin φ(�x,t), cos θ (�x,t)

]
, (C4)

where θ (�x,t) and φ(�x,t) can be any functions of position and time. Then we have the unitary matrix

U (�x,t) =
(

cos θ(�x,t)
2 − sin θ(�x,t)

2 e−iφ(�x,t)

sin θ(�x,t)
2 eiφ(�x,t) cos θ(�x,t)

2

)
, (C5)

∂μU †(�x,t) =
( − 1

2 sin θ
2 ∂μθ e−iφ( 1

2 cos θ
2 ∂μθ − i sin θ

2 ∂μφ)

eiφ(− 1
2 cos θ

2 ∂μθ − i sin θ
2 ∂μφ) − 1

2 sin θ
2 ∂μθ

)
, (C6)

and

∂νU (�x,t) =
( − 1

2 sin θ
2 ∂νθ e−iφ(− 1

2 cos θ
2 ∂νθ + i sin θ

2 ∂νφ)

eiφ( 1
2 cos θ

2 ∂νθ + i sin θ
2 ∂νφ) − 1

2 sin θ
2 ∂νθ

)
, (C7)

where we have suppressed the arguments of θ (�x,t) and φ(�x,t).
Therefore, we can calculate the product of the last two matrices, and express the spin gauge flux as

F s
μν = −i

[
i

2
sin θ (∂μθ∂νφ − ∂νθ∂μφ)

]
× 2 = sin θ

(
∂μθ∂νφ − ∂νθ∂μφ

)
. (C8)

In addition, we can also write N̂ · (∂μN̂ × ∂νN̂ ) in terms of θ (�x,t) and φ(�x,t),

N̂ · (∂μN̂ × ∂νN̂ ) =

∣∣∣∣∣∣∣∣∣∣∣

sin θ (�x,t) cos φ(�x,t) sin θ (�x,t) sin φ(�x,t) cos θ (�x,t)[
cos θ (�x,t) cos φ(�x,t)∂μθ (�x,t)

[
cos θ (�x,t) sin φ(�x,t)∂μθ (�x,t) − sin θ (�x,t)∂μθ (�x,t)

− sin θ (�x,t) sin φ(�x,t)∂μφ(�x,t)
] + sin θ (�x,t) cos φ(�x,t)∂μφ(�x,t)

]
[
cos θ (�x,t) cos φ(�x,t)∂νθ (�x,t)

[
cos θ (�x,t) sin φ(�x,t)∂νθ (�x,t) − sin θ (�x,t)∂νθ (�x,t)

− sin θ (�x,t) sin φ(�x,t)∂νφ(�x,t)
] + sin θ (�x,t) cos φ(�x,t)∂νφ(�x,t)

]

∣∣∣∣∣∣∣∣∣∣∣
,

= sin θ
(
∂μθ∂νφ − ∂νθ∂μφ

)
, (C9)

where, again, we suppressed the arguments of θ (�x,t) and φ(�x,t). Finally, we obtain

F s
μν = N̂ · (∂μN̂ × ∂νN̂ ). (C10)
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