
PHYSICAL REVIEW B 87, 085107 (2013)

Heisenberg antiferromagnet on Cayley trees: Low-energy spectrum and even/odd site imbalance
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To understand the role of local sublattice imbalance in low-energy spectra of s = 1
2 quantum antiferromagnets,

we study the s = 1
2 quantum nearest neighbor Heisenberg antiferromagnet on the coordination 3 Cayley tree. We

perform many-body calculations using an implementation of the density matrix renormalization group (DMRG)
technique for generic tree graphs. We discover that the bond-centered Cayley tree has a quasidegenerate set
of a low-lying tower of states and an “anomalous” singlet-triplet finite-size gap scaling. For understanding the
construction of the first excited state from the many-body ground state, we consider a wave function ansatz given
by the single-mode approximation, which yields a high overlap with the DMRG wave function. Observing the
ground-state entanglement spectrum leads us to a picture of the low-energy degrees of freedom being “giant
spins” arising out of sublattice imbalance, which helps us analytically understand the scaling of the finite-size
spin gap. The Schwinger-boson mean-field theory has been generalized to nonuniform lattices, and ground states
have been found which are spatially inhomogeneous in the mean-field parameters.
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I. INTRODUCTION

Quantum antiferromagnetism for unfrustrated systems has
been one of the most extensively researched subjects in con-
densed matter physics. One of the simplest models in this fam-
ily, the nearest neighbor spin- 1

2 Heisenberg antiferromagnet on
the square lattice, has been studied extensively: analytically
with spin-wave1–3 and Schwinger-boson approaches4–8 and
numerically with quantum Monte Carlo9 (which has no “sign
problem” for bipartite lattices). That said, effects from physical
imperfections such as the presence of open edges10,11 and static
nonmagnetic impurities12 are less well understood and hence
are areas of active research.

In this paper, we study quantum antiferromagnetism on
the Cayley tree (or Bethe lattice13), a bipartite lattice without
loops, with the motivation of understanding the low-energy
spectrum of the spin-1/2 Heisenberg model on this lattice.
The Cayley tree has the well-known general pathology that in
the thermodynamic limit, the number of boundary sites is a
finite fraction of the total number of sites; as a consequence,
different ways of approaching the thermodynamic limit may
give different results in any problem based on the Cayley tree.
A particular manifestation of this for the antiferromagnet is
that finite trees may have a large excess of sites belonging to
one sublattice over the other.

Our systematic study of the low-energy spectrum of the
spin-1/2 Heisenberg Hamiltonian on the Cayley tree shows
that the effect of sublattice imbalance is to create a “tower
of states” lower than the Anderson tower of states.14–18 A
similar result was obtained by Wang and Sandvik19 from their
study of spin-1/2 antiferromagnets on diluted square lattices.
Aided by numerical calculations, we propose a framework
for understanding this effect. We also find that Schwinger-
boson mean-field theory5 is a good description of the many-
body ground state and can reproduce many of its features
quantitatively.

Previous studies of this model by Otsuka20 and Friedman21

focused primarily on ground-state properties, and excited

states were not considered in these studies. More recently
Kumar et al.22 have significantly extended this analysis to
both the spin-1/2 and spin-1 Heisenberg model. We use all
these studies as useful benchmarks for our own numerical
calculations.

From a theorist’s perspective, the Cayley tree achieves
many simplifications which make exact solutions possible;
e.g., the Bose Hubbard model on this lattice was recently
solved by Semerijan, Tarzia, and Zamponi.24 It is also the
basis of approximations such as the Brinkman-Rice treatment
of the Hubbard model.25 More recently, it found applications
in the treatment of the quantum impurity problem which is at
the heart of dynamical mean-field theory (DMFT).26 It does not
appear that a spin model has been realized on such a topology
experimentally (though there has been interest in the study of
dendrimers27–29).

In our case, the complete absence of loops makes this
lattice conducive for the density matrix renormalization group
(DMRG) algorithm.30 With the DMRG method we have an
explicit (yet compact) representation of ground- and excited-
state many-body wave functions which gives us abundant
information to understand the low-energy properties of these
systems. In particular, reduced density matrices can be used as
tools to understand properties of these states.31

The remainder of the paper is divided as follows. In Sec. II
we introduce the model and lattices being investigated and
define a measure of sublattice imbalance associated with them.
In Sec. III, we give a brief overview of our implementation of
the DMRG algorithm applied to generic trees. In Sec. IV, we
discuss the general properties of the ground state and excited
states of the bond-centered Cayley tree. In Sec. V, we use
a variational ansatz given by the single-mode approximation,
in conjunction with an argument from first-order perturbation
theory, to explain the finite-size scaling of the spin gap. Finally,
in Sec. VI, we corroborate our observations of the ground-
state properties, by the use of the Schwinger-boson mean-field
theory (SBMFT).
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II. THE MODEL

We consider the nearest neighbor antiferromagnetic spin-
1/2 Heisenberg model with uniform coupling J ,

H = J
∑
〈i,j〉

Si · Sj . (2.1)

In this paper, we use the spin rotational symmetry of the
Hamiltonian (2.1) to label many-body states by |S,Sz〉, where
S refers to the spin of the state and Sz is its z component. On
a bipartite lattice (with sublattices A and B), like the Cayley
tree, with nA sites in sublattice A and nB sites in sublattice B, it
is rigorously known32 that the ground state of the Heisenberg
Hamiltonian has a net spin S = | nA−nB

2 |.
The first kind of tree we consider is the “bond-centered”

Cayley tree of the form depicted in Fig. 1(a). The number of
sites Ns for such a cluster is related to the “generation” g by

Ns(g) = 2g+1 − 2. (2.2)

Since the bond-centered clusters have no “global imbalance,”
i.e., nA = nB , the ground state is a singlet (and the monotonic-

FIG. 1. (Color online) (a) The bond-centered Cayley tree. (b) The
site-centered Cayley tree. In both cases all sites, other than those on
the boundary, have coordination 3. (c) The “Fibonacci Cayley tree”
is constructed hierarchically and has some coordination 2 sites. The
figure shows a generation 4 cluster constructed by connecting the
roots (head sites) of the generation 2 and generation 3 trees to a
common site (the root of the generation 4 tree). To have a globally
balanced cluster we introduced a bond connecting the root of the
generation 4 tree with the root of its mirror image. All clusters in (a),
(b), and (c) are bipartite [the dark (red) and light (green) colors show
the two sublattices] and have no loops.

ity of the energy with total spin S implies that the first excited
state is a triplet).

As mentioned before, the notion of “local sublattice
imbalance” will be crucial in understanding the low-energy
physics. For the bond-centered cluster, we define a measure of
imbalance (which we refer to as Ib from here on) by dividing
the cluster at the central bond into two equal parts. We
count the excess of one sublattice over the other in one half
of the cluster and multiply by 1/2 for spin-1/2. It can be easily
shown that Ib(g) is related to the generation g as

Ib(g) = 2g ± 1

6
, (2.3)

where + (−) is for g odd (even).
Figure 1(b) is the more usual way of defining a Cayley tree

and which we refer to as “site-centered.” The number of sites
is related to the generation g by

Ns(g) = 3(2g − 1) + 1. (2.4)

Unlike the bond-centered cluster, a global sublattice imbalance
exists here which leads to a ground-state spin of S0 ≡ 2g−1. We
measure the imbalance Is(g) in either of the three symmetrical
arms of the site-centered Cayley tree: Specifically, we count
the excess sites of one sublattice over the other (in one arm)
and multiply by 1/2. This definition is particularly convenient
as it gives us Is(g) = Ib(g) for all g.

A recent publication on the study of the Heisenberg model
on the Cayley tree by Kumar, Ramasesha, and Soos22 considers
the site-centered clusters. We confirm their results for the site-
centered case, but interestingly find that the bond-centered
cluster has significantly different ground- and excited-state
properties. We will provide some brief comparisons in Sec. IV
to illustrate this point.

How is the situation different if there is no imbalance
locally? To address this, we introduce the “Fibonacci Cay-
ley tree.” The recipe for constructing the generation g + 1
Fibonacci Cayley tree is to combine the generation g and g − 1
trees by connecting their roots (head sites) to a common site
[which in turn serves as the root (head site) of the generation
g + 1 tree]. Figure 1(c) illustrates this construction.

If we label the number of odd and even sublattice sites by Ag

and Bg , respectively, then (counting the root as even) we get

Ag+1 = 1 + Bg + Bg−1, (2.5a)

Bg+1 = Ag + Ag−1. (2.5b)

The total number of sites Ns at generation g + 1 is

Ns(g + 1) = Ag+1 + Bg+1

= 1 + Bg + Bg−1 + Ag + Ag−1

= 1 + Ns(g) + Ns(g − 1). (2.6)

Observe that Ns(g) satisfies the Fibonacci recursion, that is,
Ns(g) = Fg+1 − 1, where Fg is the gth Fibonacci number,
which justifies the name of the tree. The size of this lattice
grows as τ g where τ is the golden ratio τ = (1 + √

5)/2 ∼
1.618. Also, every third generation is unbalanced by 1 and
every other generation is both globally and locally balanced.
Table I shows the sizes of the Fibonacci Cayley clusters along
with the number of sites in the even and odd sublattices for up
to g = 11 generations.
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TABLE I. Number of sites in a Fibonacci Cayley tree as a function
of generation g. Ag is number of A sublattice sites; Bg = Ag except
for the entries marked with ∗, in which case Bg = Ag − 1. The total
count is Ns(g) = Ag + Bg .

g 0 1 2 3 4 5 6 7 8 9 10 11
Ag 1 1 2 4∗ 6 10 17∗ 27 44 72∗ 116 188
Ns(g) 1 2 4 7 12 20 33 54 88 143 232 376

In order to have a balanced cluster at every generation, we
combine two identical generation g Fibonacci constructions
[as in Eq. (2.6)] by introducing a bond connecting their roots
as shown in Fig. 1(c).

III. DENSITY MATRIX RENORMALIZATION GROUP ON
GENERIC TREE GRAPHS

The density matrix renormalization group (DMRG) is
a powerful numerical technique for studying many-body
systems. It was developed by White30 for one-dimensional
systems to remedy the problems associated with the numer-
ical renormalization group (NRG).33 DMRG has also been
generalized to study lattice models (such as the spin-1/2
Heisenberg model20–22 and the fermionic Hubbard34 model) on
the Cayley tree. More recently, Murg et al.35 have also used the
Cayley tree to embed quantum chemical systems to study them
with tree tensor network algorithms (closely related to the
DMRG).

When Otsuka20 and Friedman21 first adapted the DMRG
to the Cayley tree, their procedure was for regular trees and
utilized an infinite-system DMRG. A recent publication by
Kumar et al.22 (for the site-centered lattice) improves upon
the scaling of previous algorithms, by considering an efficient
way to hierarchically construct the lattice. Our implementation
differs from all of the above, as it allows us to study the
properties of any finite tree (and not necessarily regular ones,
e.g., percolation clusters36). We outline the details in the
remainder of this section.

We spell out the notation we have used in this section. d is
the number of degrees of freedom per site. For example, d = 2
for a spin-1/2 Hamiltonian. z is the coordination number of
a site (although our discussion talks in terms of uniform z, a
generalization to site-dependent z is straightforward). M will
be used to denote the number of retained states on a local
cluster of sites (or “block”).

A. Initialization

Our algorithm starts with the generation of a suitable guess
wave function. As Fig. 2 shows, this is done by performing
“energy-based truncations” of the Hilbert space on a successive
hierarchy of clusters of sites (or “blocks”), assuming they
are completely disconnected from the rest of the cluster. By
“energy-based truncation” we mean that on each block we
retain only the M lowest energy states of the local block
Hamiltonian, where M is a parameter that determines the
accuracy of the calculation.

This blocking procedure is carried out at various parts of
the tree, beginning from the boundary sites of the cluster
and terminating when one reaches the geometrically central

FIG. 2. (Color online) Warm-up step of the DMRG involving
multiple independent renormalization procedures on the tree utilizing
energy-based truncation. The “army continues to march in” from all
sides till one reaches the geometrically central point (often called the
“focal point” or “root”). Here we show all stages for a given tree. The
red dots represent renormalized blocks.

point (called the “focal” point or “root”). Thus, at the end
of the initialization calculation, one has a description of the
Hamiltonian of the entire system in terms of the root degree
of freedom surrounded by z blocks.

While the end result of our calculations are expected to be
independent of this initialization, a good choice for the starting
guess wave function can greatly accelerate convergence. In
particular, we modify our criterion for retaining states when
targeting an excited state (say in a high-Sz sector). During the
initialization we introduce a “fake” uniform magnetic field in
the Hamiltonian to favor retention of states that describe the
high-energy wave function.

B. Density matrix based truncation

We will now consider how every “iteration” in the DMRG is
carried out to systematically approach the ground (or excited)
state(s) of the system. For this purpose, we require a description
of the full Hamiltonian in terms of a “site” degree of freedom
[here (↑ , ↓)] and the basis spanned by the Mz states retained
on the z blocks surrounding it.

At every iteration we use the Lanczos algorithm37 to solve
for the lowest energy eigenvector of the entire system (also
referred to as the “superblock”). Then, treating one of the
blocks as the “environment” and the remaining z − 1 blocks
(the “systems”) and the “site” collectively as the “new system”,
we obtain the reduced density matrix, ρRDM, of the “new
system” from the ground state (ψGS) of the superblock by
computing

ρRDM ≡ Trenv (|ψGS 〉〈 ψGS|) . (3.1)

As is illustrated in Fig. 3, each block takes its turn being the
“environment” while the other blocks (the “systems”) together
with the “site” act as the “new system”. (The order of choosing
environments is not very crucial to the final result.)

In addition to the ground-state density matrix, we have also
targeted higher excited states, by performing a state averaging
of the reduced density matrix,

ρ
avg
RDM ≡

∑
i wiTrenv (|ψi 〉〈ψi|)∑

i wi

, (3.2)

where wi is the positive weight given to the density matrix
formed from state |ψi〉. In most cases, we simply used wi = 1
for all states we targeted. An advantage of state averaging is
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CHANGLANI, GHOSH, HENLEY, AND LÄUCHLI PHYSICAL REVIEW B 87, 085107 (2013)

system
Sys Sys

Env

Site

Sys Env

Sys

SiteNew

Sweep Sweep 
New

system

FIG. 3. Division of the Cayley tree locally into site, system(s),
and environment as required by the DMRG. One renormalization
step consists of combining the site and system(s) into a new system,
retaining the states governed by tracing out the environment degrees
of freedom.

that it often helps us to prevent (or get us out of) solutions
which are local (but not global) minima. The reduced density
matrix is diagonalized and only M states with the highest
eigenvalues (out of the total dMz states) are kept on the block.

C. Sweep algorithm

Once the density matrix based truncations with the root
as “site” are completed, the algorithm proceeds to consider a
new division of the lattice into “systems” and “environment”
by considering a site on the shell one step out from the root.
Each of the z sites connected to the original root gets its turn
being the “new root”. (See the arrows in Fig. 3 as an example
of the directions in which the “sweep” algorithm proceeds).

After this stage, we consider the sites which are two steps
away from the root of the tree (i.e., one step away from the
previous sites used to divide the system). This “sweeping
out” process continues till one reaches the exterior of the
cluster. Once we reach the exterior of the cluster, we “sweep
in,” like we did during the initialization procedure. However,
this time (and for all future sweeps) we have an environment
present, whose states we trace over to guide the density matrix
based truncation process. This in-out-in sweep continues till
convergence of the energy is attained. One “complete sweep” is
defined here as a “sweep out” (from the root to the boundaries)
followed by a “sweep in” (from boundaries to the root)
operation.

The scaling of algorithm (per sweep) can be understood as
follows. Each Lanczos diagonalization of the superblock costs
Mzd amount of effort and there are Ns such diagonalizations
needed, where Ns is the number of sites in the tree. For a highly
symmetrical lattice (such as the Cayley tree), one can reduce
this computational cost to O(ln(Ns)Mzd) (however this has
not been implemented).

The reduced density matrix computed from the eigenvector
of the superblock has dimensions Mz−1d × Mz−1d, which
costs M3(z−1)d3 amount of computational effort to diagonalize.
However, one must keep in mind that this reduced density
matrix has a block diagonal structure owing to the fact that the
retained states have definite Sz symmetry, which brings down
the cost associated with this step.

D. Computing expectations

Just as in the usual one-dimensional DMRG, we have an
explicit representation of the wave function in terms of the

TABLE II. Energy (EGS) and Spin gap (�) for the 190-site site-
centered and 176-site Fibonacci lattices for various values of M .

Ns = 190 Ns = 176

M EGS � EGS �

20 −74.54049387 0.9397293 −76.46983049 0.08834668
60 −74.54054021 0.9397198 −76.47071767 0.08725531
100 −74.54054022 0.9397198 −76.47072851 0.08725207

block states and we can efficiently compute various kinds of
correlation functions. For the purpose of this paper, we have
simply measured the spin-spin correlation functions 〈Si · Sj 〉
and the matrix element 〈1|S+

i |0〉, where |0〉 (|1〉) refers to
the ground-state singlet (first excited state triplet) and has the
labels |S = 0,Sz = 0〉 (|S = 1,Sz = 1〉). Both these functions
are needed for calculating the coefficients occurring in the
single-mode approximation, which will be discussed in Sec. V.
The latter is computed by targeting the ground and excited state
in the same DMRG run, so that both states have the same block
representation.

We also compute the eigenvalues of the reduced density
matrix (for a particular division of the lattice), collectively
known as the “entanglement spectrum.” These turn out to be a
very useful probe of the low-energy degrees of freedom (as we
will see in Sec. V C). This needs no extra effort in the DMRG,
since these eigenvalues are computed anyway as part of the
Hilbert space truncation process.

E. Parameters and benchmarks

All calculations reported here are for trees with a maximum
coordination of z = 3. For all systems considered here, the
retained number of states M was less than or equal to 160 and
we observed a reasonable convergence of the energy within
10–20 sweeps.

To benchmark our calculations we have also compared
our results with exact-diagonalization data where possible.
In particular, for the bond-centered tree we considered the
ground-state energies and correlations in all Sz sectors of the
30-site cluster and some high-Sz sectors for the 62-site cluster.

One can see from Table II that the convergence of the energy
(in the Sz sector corresponding to the spin S0 of the ground
state) and the spin gap (defined to be E(S0 + 1) − E(S0)) is
rapid as a function of the number of retained states on a block
(M) for the site centered and Fibonacci trees. However, for
the bond centered tree (see Table III), the convergence with M

TABLE III. Energy (EGS), Spin gap (�), and S+ matrix elements
for the central (c) and boundary (b) sites for the 126-site bond-
centered tree for various values of M . |0〉 and |1〉 refer to the lowest
singlet and triplet, respectively.

M EGS � 〈1|S+
c |0〉 〈1|S+

b |0〉
60 −49.3405119 3.4 × 10−4 0.310 0.370
80 −49.3412938 5.7 × 10−4 0.300 0.344
100 −49.3415002 6.0 × 10−4 0.280 0.337
120 −49.3415347 6.0 × 10−4 0.279 0.335
140 −49.3415521 6.0 × 10−4 0.278 0.335
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is comparatively slower. Based on our data, we conclude that
while larger M calculations are certainly desirable, the present
calculations are reasonable and confirm the existence of a
low (and anomalously scaling) energy scale in the many-body
spectrum of the bond-centered tree.

The question of finite-size scaling can be considered tricky
given the small magnitude of the singlet-triplet gap of the bond-
centered clusters. However, by computing the ground-state
energy in every Sz sector and fitting the “tower of states” (to
be discussed in Sec. IV B), we believe the errors in estimation
of this scaling behavior are mitigated.

IV. GROUND AND EXCITED STATES

Using the DMRG algorithm presented in Sec. III, we
calculate the ground-state energy and spin gap and point out
the differences between the bond- and site-centered clusters.
To highlight the role of local imbalance, we also compare the
excited states of the bond-centered and Fibonacci trees, both
of which are globally balanced.

A. Ground-state energy, spin-spin correlations, and spin gap

We consider the bond-centered, site-centered, and
Fibonacci clusters and compute the lowest energy EGS(S)
for various spin sectors S. The notation S0 will be used to
refer to the spin of the ground state. In order to compute the
ground-state energy per site in the infinite lattice limit e0 we
fit EGS(S0)/Ns to the functional form

EGS

Ns

= eo + a

Ns

+ b

N2
s

. (4.1)

For bond-centered clusters we found e0 = −0.393855(2) and
for the site-centered clusters e0 = −0.393854(2), both of
which are consistent within error bars of extrapolation and
with the value of e0 = −0.39385 reported for site-centered
clusters by Ref. 22.

In comparison, as Table IV shows, the energy per site of the
Fibonacci tree is significantly lower than either of the bond- or
site-centered trees. This is achieved by the formation of very
strong nearest neighbor dimers (especially on the boundary,
as the degree of dimerization dies down as one proceeds
inwards). The degree of boundary dimerization is more limited
in the site- and bond-centered trees. Despite the dissimilarities
between the three lattices, the “bulk limit” of the estimated en-
ergy per bond, based on taking an average of nearest neighbor
〈Si · Sj 〉 over the innermost bonds, is roughly identical for all
three kinds of Cayley trees and equals about −0.35J .

TABLE IV. Ground-state energy per site (e0), finite-size scaling
parameters for the ground-state energy (a,b) [from Eq. (4.1)], and spin
gap (�+1) [from Eqs. (4.2), (4.3)] for the bond-centered, site-centered,
and Fibonacci clusters. We also record the gap �−1 ≡ EGS(S0 − 1) −
EGS(S0) for the site-centered cluster.

Cluster −e0 a b �+1 �−1

Bond centered 0.393855(2) 0.29 −1.0 ∼N−2
s

Site centered 0.393854(1) 0.29 +0.1 0.73 + 2.86/N0.5
s 2.19/Ns

Fibonacci 0.435433(1) 0.17 −0.4 ∼N−0.6
s
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1
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a
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1/NS
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FIG. 4. (Color online) Ground-state energy per site for the bond-
centered and site-centered Cayley trees for various lattice sizes. The
Fibonacci Cayley tree energies are out of the scale considered. A
fit to the bond-centered results given by Eq. (4.1) has been shown.
Inset: Finite-size scaling of the energy gap � plotted on a log-log
scale. The bond-centered and Fibonacci clusters appear gapless in
the infinite lattice limit, with a finite-size scaling exponent of α ≈ 2
and α ≈ 0.6. However, the site-centered clusters have a finite � in
the infinite lattice limit in concordance with the results of Ref. 22.
The lines shown are fits to the DMRG data using Eqs. (4.2) and (4.3).

We now turn to a discussion of the spin gap. For the
site-centered tree there are two possible spin gaps �(S0 →
S0 ± 1) that can be considered, corresponding to S0 → S0 ± 1
magnetic transitions (as a shorthand we refer to these gaps
as �±1). In the limit of a small magnetic field, for finite
system sizes, we get a discrete set of energy levels and the
lowest excitation involving a single spin flip is S0 → S0 + 1
transition. This excitation has a gap in the infinite lattice limit,
which we obtained by fitting to

�(S0 → S0 + 1) = �∞ + c

Nα
s

(4.2)

and found �∞ to be 0.731(4) and α ∼ 0.5. Interestingly,
the spin gap �(S0 → S0 − 1) is found to be gapless in the
thermodynamic limit as seen from the finite-size fit in Table IV.

The bond-centered and Fibonacci clusters appear to be
gapless in the infinite lattice limit, based on cluster sizes up
to 254 and 464 sites, respectively. We computed the finite-size
scaling of this gap using

�(0 → 1) ∼ N−α
s . (4.3)

Empirically, the value of α ∼ 0.6 for Fibonacci and α ∼ 2 for
the bond-centered clusters matches rather well with our data
(see inset of Fig. 4).

Denoting the ground state as |0〉, we also compute the
ground state connected correlation function defined here as

Gij ≡ 〈0|Si · Sj |0〉 − 〈0|Sz
i |0〉〈0|Sz

j |0〉. (4.4)

For the bond-centered and Fibonacci clusters, 〈0|Sz
i |0〉 = 0 for

all i, and hence we have

Gij = 〈0|Si · Sj |0〉. (4.5)
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FIG. 5. (Color online) Ground-state spin-spin correlations Ga,i ,
as in Eq. (4.4), for the three kinds of Cayley tree. One (reference)
spin a is held fixed while the other spin i is take at distance a

along the highlighted path. In (a) and (c), the reference spin is at
a tip (a → tip), and DMRG results are compared with numerical
solutions of Schwinger-boson mean-field theory (SBMFT) from
Sec. VI. In (b), the reference spin is at the central (“root”) site (a → 0).
(a) Bond-centered tree with Ns = 126 sites. The SBMFT correlations
shown have been scaled up by an overall factor of 1.8 to take into
account corrections beyond mean field (in the broken-symmetry
phase). The DMRG and SBMFT results show good agreement,
asymptoting to a constant. (b) Site-centered cluster with Ns = 190
sites, in the maximum Sz member of the ground-state multiplet
(Sz = S0). The magnetization |〈Sz

i 〉| is also shown, as a function
of distance from the center. Even though the connected correlation
function decays to zero exponentially fast, the long-range order
is encoded in the fact that that the magnetization is nonzero.
(c) Fibonacci tree with Ns = 40 sites. For the “quantum disordered”
phase, the SBMFT correlations were scaled up by an overall factor
of 3/2 (for details see Sec. VI B). Correlations appear to be decaying
exponentially with distance.

Figure 5 shows some sample correlation functions on
all three lattices. The marked difference in the behavior
of the spin gap and the spin correlations between the
site- and bond-centered clusters can be attributed to a different
manifestation on the two types of clusters of the spontaneous
spin symmetry breaking occurring in the thermodynamic limit.
First, the behavior of the spin correlations can be understood
in the following way: On the site-centered clusters, the system
has an extensive total spin S = 2g−1 in the ground state.
By choosing a particular state out of this large multiplet
it is possible to orient the Néel vector at no energy cost
in this finite-size system. In particular, if one considers the
Sz = S state of the multiplet, the local 〈Sz

i 〉 expectation values
will reflect the ordering pattern directly. This situation is
somewhat analogous to ferrimagnetic systems. In the case of
the bond-centered clusters we have a unique S = 0 ground
state, which forbids finite 〈Sz

i 〉 expectation values on a finite
system, and the long-range order then has to be coded in
the correlation functions leveling off to a finite value at long
distances.

B. Low-energy tower of states

For the balanced Heisenberg antiferromagnet (nA = nB

with a singlet ground state) on a regular unfrustrated lattice
(e.g., square in 2D or cubic in 3D), with number of sites
Ns , it has been noted and argued17,18 that the low-energy
Hamiltonian can be described by a rigid rotor model,

Hrot = S2

2I
= S(S + 1)

2I
, (4.6)

where S it the total angular momentum (spin), and

I ∼= χNs, (4.7)

where χ is the susceptibility of S to a field coupling to it.
Thus, we have a sequence of multiplets, popularly referred to
as the “Anderson tower of states,” which become degenerate
in the limit Ns → ∞ thus making SU (2) symmetry breaking
possible in this limit. However, contrary to the effects of
spontaneous spin rotational symmetry breaking on regular
lattices, the Cayley tree does not have any Goldstone modes.23

To observe the Anderson tower of states on the Cayley tree,
we compute the ground-state energy in every Sz sector. This
may be identified with the multiplet energy E(S), since E(S)
is monotonic in S and S � Sz.

For the bond-centered clusters, a tower of states exists, but
an anomalous one. In Fig. 6 we observe that in the bond-
centered case, the E(S) curve consists of two linear pieces,
joined at a critical spin S∗ which depends on the cluster size.
In effect, the system has two moments of inertia, Ilow for
S < S∗ and the (much smaller) Ihigh for S > S∗. Finite-size
fits of the moment of inertia show that Ilow ≈ 0.191N2

s while
Ihigh ≈ 0.358Ns ; it will be our task in Sec. V C to explain this
difference. We also observe that

S∗ = 2Ib, (4.8)

where Ib is the sublattice imbalance on one half of the bond-
centered cluster as defined in Eq. (2.3).

For the Fibonacci tree, we do not find a clear distinction
between the two linear pieces as seen in Fig. 6. The scaling
of the energy gaps [E(S + 1) − E(S)] changes from N−0.6

s
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FIG. 6. (Color online) Lowest energy level in every Sz sector for
the 108-site Fibonacci and the 126-site bond-centered Cayley trees.
The range of S from 0 to S∗ has been magnified and shown in the
inset for the 126-site cluster. It shows a tower of states with a much
larger moment of inertia than expected from the Anderson tower.
This is seen as a sharp kinklike feature at S∗. In contrast, for the
Fibonacci tree, the transition from the low to high S behavior is less
well defined.

for small S to the 1/Ns Anderson scaling for large S. In
contrast with the gapless spectrum of the bond-centered and
Fibonacci clusters, the site-centered case has a finite spin gap
(see Table IV) in the infinite lattice limit.

A complementary probe of the low-energy physics is the
magnetization (m) defined as

m = 1

Ns

∑
i

〈
Sz

i

〉
GS

, (4.9)

as a function of a uniform applied magnetic field h. For the
bond-center clusters, we observe (see Fig. 7) a rapid increase in
magnetization for small h and it seems the saturation magne-
tization is about m∗ ∼ 1/6 (i.e., m∗/msat ∼ 1/3). Beyond this
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FIG. 7. (Color online) Magnetization curves for bond-centered
Cayley trees of various sizes obtained using DMRG. Inset: The rapid
rise of the magnetization with application of a small magnetic field
indicates a susceptibility diverging with system size.
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FIG. 8. (Color online) Magnetization curves for sites on various
shells of the 62-site bond-centered Cayley tree. The subscript refers
to the shell on which the site is present; that is, 0 refers to the central
two sites and the 4 refers to the boundary.

rapid rise of the magnetization at small field, the magnetization
curve displays a surprisingly rich structure, with several
plateau-like features at intermediate magnetization, linked by
more susceptible parts of the magnetization curve. We note
that the first plateau at m∗ seems to have an extent in magnetic
field similar to that for the site-centered clusters studied in
Ref. 22. The detailed characterization of the magnetization
curve as Ns → ∞ appears to be an interesting problem for
future studies.

In Fig. 8, we also show the magnetization curves for sites
on various shells of the 62-site bond-centered Cayley tree. For
small Sz (or equivalently small magnetic fields), we infer that
while the boundary spins are most susceptible, the spins in
the interior also have a comparably high susceptibility, which
decreases as we go inwards.

V. SINGLE-MODE APPROXIMATION FOR
THE EXCITED STATE

Can we understand the origin of the “anomalous” states in
the low-energy spectrum for the bond-centered tree? In order
to address this question, we study the nature of the triplet
excited state and its relation to the ground state using the
single-mode approximation38 (SMA for short). Assuming the
knowledge of the ground-state wave function |0〉 (analytically
or from a numerical method), the SMA ansatz for the trial state
|1′〉 ≡ |S = 1,Sz = 1〉 state is given by

|1′〉 = 1

N1′

Ns∑
j=1

ujS
+
j |0〉, (5.1)

where uj are variational parameters and N1′ is a normalization
factor given by

N1′ ≡
√∑

k,l

u∗
kul〈0|S−

k S+
l |0〉. (5.2)

Using the spin symmetry of the Hamiltonian (and hence its
eigenfunctions) and the fact that the ground state has Sz = 0,

085107-7
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the normalization factor N1′ (5.2) can be written as

N1′ =
√∑

k,l

2

3
ukulGkl, (5.3)

where Gkl is the spin-spin correlation function previously
defined in Eq. (4.5).

For a singlet ground state, observe that there is a gauge
degree of freedom in the choice of the SMA wave function
(5.1), an arbitrary constant shift u, i.e.,∑

i

uiS
+
i |0〉 =

∑
i

(ui + u)S+
i |0〉, (5.4)

since for a ground state with total spin S = 0,

u
∑

i

S+
i |0〉 = uS+

tot|0〉 = 0. (5.5)

It can also be shown39 that the normalization N1′ in Eq. (5.3)
is invariant under the transformation ui → ui + u.

For a given trial state ψT which is a function of some
parameters uj , the variational principle guarantees that

ET ≡ 〈ψT ({uj })|H |ψT ({uj })〉
〈ψT ({uj })|ψT ({uj })〉 , (5.6)

where E0 refers to the energy of the lowest lying state with
the same symmetry as the trial wave function. The best wave
function is obtained by optimization of parameters {uj } by
minimizing the variational energy ET . Note that within the
SMA formalism, the ground state (and hence the ground-state
energy) is assumed, which implies that the SMA spin gap is
also a variational estimate for the true spin gap.

Here we will show that the SMA does turn out to be a
very good ansatz for this system based on the close to 100%
overlap of the SMA wave function with the wave function from
DMRG. Our procedure does not require explicit knowledge
of the wave function; rather only certain matrix elements and
correlation functions are necessary. We will derive our intuition
from numerical calculations; we construct coefficients uj

occurring in Eq. (5.1) to obtain a simple variational state with
a gap that goes to 0 faster than 1/Ns . The aim of this section
is thus to understand the operator that creates the triplet wave
function from the ground-state singlet. This in turn will tell us
how the spins collectively act, which will be used to understand
the existence of an “anomalous” energy scale.

A similar SMA calculation was performed by Laumann
et al.,40 who considered AKLT models on the Cayley tree,
where the analytical form of the correlation functions is known.
Instead, we use the values of 〈1|S+

i |0〉 and Gij from our DMRG
calculations as inputs for our analysis. In addition, we make
no assumptions about the variational parameters {uj }.

A. Obtaining the SMA coefficients from maximization of
overlap with the true wave function

The overlap of an approximate wave function with the
exact one can serve as a good measure of its quality. Thus
we consider the overlap of the SMA wave function with the

true triplet state |1〉 ≡ |S = 1,Sz = 1〉, i.e.,

O ≡ 〈1|1′.〉

=
∑

j ujfj√∑
k,l

2
3ukulGkl

, (5.7)

and try to maximize it. We have defined fi to be

fi ≡ 〈1|S+
j |0〉. (5.8)

We christen this term the “flippability” of a spin. This is
motivated from its very definition: The more easily flipped
spins have a larger contribution to the formation of the first
excited triplet.

Now we present a method to obtain the optimal parameters
uj to construct |1′〉. To meet the requirements of a high overlap
of the SMA wave function |1′〉 with the exact many-body triplet
|1〉, subject to the constraint that it is normalized, we devise a
cost function CSMA, defined as

CSMA = −
∑

j

ujfj + λ
(
N 2

1′ − 1
)
, (5.9)

where we have introduced λ as a Lagrange multiplier. Taking
{uj } as our variational parameters, and setting the derivatives
of CSMA to 0, we get

∂CSMA

∂ui

= −fi + 4

3
λ

∑
l �=i

ulGil + λui = 0. (5.10)

Thus we get the set of equations (one equation for each i)

fi = 4

3
λ

∑
j

Gijuj . (5.11)

To explicitly obtain a state |1′〉 which has a high overlap with
|1〉, we solve the above linear equations for ui numerically.
Note that the matrix G always has exactly one zero eigenvalue
because of the gauge degree of freedom (5.4). Hence we cannot
simply invert G to obtain ui ; instead, we directly solve the
linear system of equations (5.11) using DGESV in LAPACK.

A natural choice of gauge for the parameters {uj } is to
satisfy ∑

i

ui = 0. (5.12)

Our observation from the numerical solution of Eq. (5.11) for
the bond-centered Cayley tree is that ui > 0 for i on one side
of the central bond and ui < 0 on the other side. We have also
plotted the amplitudes of the optimal SMA coefficients for the
30, 62, and 126 site bond-centered Cayley trees in Fig. 9.

B. Comparison of various SMA wave functions

We next try to understand the qualitative nature of the SMA
solution from the perspective of minimizing the triplet energy.
We consider various functional forms for ui and numerically
compute their overlap with the exact triplet and compare SMA
gap estimates.

For the nearest neighbor Heisenberg model, the SMA gap
is given by (for a derivation refer to Appendix A)

�SMA = −∑
〈k,l〉(uk − ul)2Gkl

2
∑

ij uiujGij

. (5.13)
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FIG. 9. (Color online) Amplitude of the SMA coefficients ui for
various shells (normalized with respect to amplitude on the boundary)
for the Ns = 30, 62, and 126 site bond-centered lattices. Inset: The
sign structure of ui is the same as Eq. (5.14). Dark (red) and light
(green) indicates negative and positive ui , respectively.

Observe that the numerator and denominator (being propor-
tional to N 2

1′) are invariant under the transformation ui →
ui + u.

To minimize the SMA gap, one would like to minimize
the numerator and maximize the denominator of Eq. (5.13)
(note both the numerator and denominator are positive). To
minimize the numerator, we can try to keep uk ≈ ul for as
many bonds as possible, and hence consider the “left-right”
ansatz,

ui =
{+1 i ∈ left of central bond,

−1 i ∈ right of central bond,
(5.14)

which is consistent with the gauge condition (5.12). This sign
structure is in concordance with the numerical solution of
Eqs. (5.11) for the bond-centered Cayley tree.

Note that this is quite contrary to the “staggered pattern”
one obtains by solving Eqs. (5.11) for the square lattice. The
staggered pattern is defined as

ui =
{+1 i ∈ even sublattice,

−1 i ∈ odd sublattice.
(5.15)

The staggered pattern is an energetically expensive solution
for the bond-centered Cayley tree. Even though it maximizes
the denominator making it O(N2

s ), the numerator is also large,
i.e., O(Ns). Thus the SMA gap scales only as O(1/Ns).

Table V verifies the arguments presented above by explicitly
listing out the SMA gap and overlap with the exact wave
function for the various choices of ui we have considered here.
Our inference is that the optimal and the “left-right” ansatz are
qualitatively similar and yield a much smaller SMA gap than
the “staggered” ansatz.

The SMA calculations suggest that all the spins are involved
in the construction of the first excited state from the ground
state. The ui corresponding to the central spins is roughly
a third of the ui of the boundary spins in the “optimal
solution” and exactly as much as the boundary spins in the
“left-right” ansatz. The point to note here is that in either case
the contribution of the spins in the interior is not small. This
suggests that the antiferromagnetic bonds between successive

TABLE V. SMA gap and wave function overlap with excited state
from DMRG for various functional forms of ui

Ns ui SMA Gap Overlap

30 Optimal 0.0135 0.998
Left-Right 0.0341 0.993
Staggered 0.2680 0.912

62 Optimal 0.0039 0.999
Left-Right 0.0116 0.997
Staggered 0.1612 0.946

126 Optimal 0.0010 ≈1
Left-Right 0.0028 ≈1
Staggered 0.0905 0.975

shells do a reasonable job of locking spins together (within
each half of the bond-centered tree), resulting in an emergent
degree of freedom which is what we call a “giant spin.” This
interpretation will be established next in Sec. V C.

C. The “giant spins” picture

As we inferred previously, there are indications that strong
antiferromagnetic correlations force all spins in one half of the
bond-centered cluster to act collectively as a single magnetic
moment. We make this understanding more concrete in the
present section.

We divide the bond-centered Cayley tree into two equal
halves at the central bond. Using the ground state, we compute
the reduced density matrix ρRDM [see Eq. (3.1)] of one of the
halves and diagonalize it. The corresponding eigenvalues are
arranged by total Sz and the resultant plot is the “entanglement
spectrum.” Appropriate cuts are also chosen for the site-
centered and Fibonacci trees as shown in Fig. 10.

The entanglement spectrum shows a copy of the largest
eigenvalue in every Sz sector ranging from −Ib to +Ib, where
Ib is the net sublattice imbalance and is given by (2g ± 1)/6
as mentioned in Eq. (2.3). This indicates the presence of a
“giant spin” of spin length Ib whose multiplet is given by the
eigenvectors corresponding to these large eigenvalues. Given
this picture, we explain the existence of the “anomalous” scale
of energies.

1. Bond-centered tree

The Heisenberg Hamiltonian on the bond-centered Cayley
tree may be rewritten as

H = Hleft + Hright + JS0 · S1. (5.16)

where 0 and 1 refer to the central two sites of the tree (as has
been schematically represented in Fig. 11). We treat the term
corresponding to the central bond JS0 · S1 as a perturbation
within degenerate first order perturbation theory. The many-
body ground state on each half is a degenerate multiplet of spin
Ib. Since all spins on the left and right contribute in a definite
proportion to the “giant spin” operators TL and TR , one can
reexpress the expectation values of the JS0 · S1 in terms of
TL and TR . Note that expectation values of the term JS0 · S1

are computed in the product basis of the two systems given by
|TL,T z

L〉 ⊗ |TR,T z
R〉.
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FIG. 10. (Color online) The entanglement spectrum for the bond-
centered, site-centered, and Fibonacci trees as shown in the inset.
λ refers to the eigenvalue of the reduced density matrix of the
shaded area. The ground state for the bond-centered and Fibonacci
clusters was a singlet and only the Sz > 0 sectors are shown. For the
site-centered cluster we chose to work with the maximal Sz sector
(which is the Sz = 16 for the 94-site cluster). Ib and Is denote the
“imbalance” metric defined in the introduction [refer to Eq. (2.3)].
For the bond-centered case, the largest degenerate eigenvalues of the
reduced density matrix indicate a multiplet whose spin length exactly
equals the imbalance Ib. For the site-centered case, the density matrix
has largest weight in a state whose spin is Is . For the Fibonacci case,
a spin-1/2 state has the largest weight in the density matrix.

If all the spins in one half of the cluster had equal
participation in their collective multiplet (observed in the
entanglement spectrum), then

〈
TL,T z

L

∣∣So

∣∣ TLT
′z
L

〉 = −〈
TL,T z

L

∣∣Se

∣∣TLT
′z
L

〉
, (5.17)

FIG. 11. (Color online) Schematic of the “giant spins”, which are
the low-energy degrees of freedom for the bond- and site centered
clusters (and which are absent for the Fibonacci tree).The numbering
of sites shown here is used for the purpose of explaining our arguments
in the text.

where e (o) refers to any even (odd) sublattice site in the
same half of the bond-centered cluster. Therefore, if one were
to create the equally weighted spin operator TL = ∑

i Si and
consider its matrix elements one would get

〈TL〉 = ±2Ib 〈S0〉 , (5.18)

where 0 refers to the central site in one half of the bond-
centered cluster. The sign depends on whether the central site
and the boundary sites are on the same (+) or opposite (−)
sublattices.

What happens when the spins are not equally participating
in the multiplet? The simplifying assumption we make here is
that within the projected low-energy subspace, each individual
spin-1/2 operator at lattice site i, Si , is proportional to the
operator TL/Ib.

Using the fact that Ib ∼ Ns , this relation can be expressed
as

S0 = γb

Ns

TL, (5.19)

where the constant γb has been used to denote the propor-
tionality factor. A similar relation exists for S1 and TR . From
Eq. (5.19) it follows that

J 〈S0 · S1〉 = Jγ 2
b

N2
s

〈TL · TR〉 . (5.20)

The Hamiltonian TL · TR is diagonalized by coupling the
left and right “giant spins” into a spin for the whole system,
i.e., T = TL + TR , whose eigenstates are given by |T ,T z〉:

〈TL · TR〉|T ,T z〉 = 1
2

〈
T2 − T2

L − T2
R

〉
(5.21)

= 1
2T (T + 1) − Ib(Ib + 1), (5.22)

where T varies from 0,1.....,2Ib. Note that TL and TR are
constant and equal to Ib. The term Ib(Ib + 1) is a harmless
constant energy shift to all states. Thus, the energy spectrum
(up to a overall shift) as a function of T is simply

E(T ) = Jγ 2
b

2N2
s

T (T + 1). (5.23)

This is exactly the Hamiltonian of a quantum rotor with an
“anomalous” moment of inertia scaling as N2

s . This simple
picture, hence, rather remarkably explains our numerical
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observations in Sec. IV B. We find γb to be ∼3.24 from fits to
our numerical data based on finite-size scaling of the moment
of inertia.

Note that though the giant spins are interacting via a weak
bond, the fact that they are paired up in a singlet ground state
makes the state highly entangled. In comparison, as we shall
soon see, the ground state of the site-centered tree (in the
Sz = S0 sector) is closer to a product state of the giant spins
and hence has a lower degree of entanglement. (This also
explains why the convergence of DMRG calculations is more
rapid with the number of states M for the site-centered case as
compared to the bond-centered case.)

2. Site-centered tree

Let us now perform essentially the same analysis for
the site-centered Cayley tree to further shed light on (and
validate) the “giant spins” picture. Rewriting the Heisenberg
Hamiltonian we get,

H = H1 + H2 + H3 + JS0 · (S1 + S2 + S3) . (5.24)

where 0 refers to the central site and 1, 2, 3 refer to the
sites connected to it (as has been schematically represented
in Fig. 11). As before, make the substitution of S1, S2, S3 in
terms of the giant spins T1, T2, T3 each of which has spin
length Is . Then couple the three giant spins into a bigger giant
spin T. The Hamiltonian now reads as

H = H1 + H2 + H3 + Jγs

Ns

S0 · T, (5.25)

where γs is a constant and T = T1 + T2 + T3. Note that the
angular momentum coupling rules predict that the value of T

is in the range from 0, 1, ..., to 3Is .
Let us now couple the giant spin T to the spin-1/2 degree

of freedom at the center of the cluster. The energy (in units of
Jγs/Ns and up to a constant of − 3

4 ) for the S = 3Is + 1
2 and

3Is − 1
2 states is given by

E
3Is+ 1

2
3Is

=
(

3Is + 1

2

)(
3Is + 3

2

)
− 3Is (3Is + 1) , (5.26a)

E
3Is− 1

2
3Is

=
(

3Is − 1

2

)(
3Is + 1

2

)
− 3Is (3Is + 1) , (5.26b)

where the superscript indicates the global value of the spin S

and the subscript is used to indicate the T value it was made
of. Similarly we have

E
3Is− 1

2
3Is−1 =

(
3Is − 1

2

) (
3Is + 1

2

)
− 3Is (3Is − 1) , (5.27a)

E
3Is− 3

2
3Is−1 =

(
3Is − 3

2

) (
3Is − 1

2

)
− 3Is (3Is − 1) . (5.27b)

Simplifying equations and incorporating the constant of
− 3

4 , we get

E
3Is+ 1

2
3Is

= 3Is, (5.28a)

E
3Is− 1

2
3Is

= −3Is − 1, (5.28b)

E
3Is− 1

2
3Is−1 = 3Is − 1, (5.28c)

E
3Is− 3

2
3Is−1 = −3Is . (5.28d)

Observe that E
3Is− 1

2
3Is

is the lowest energy. This is in
concordance with the Lieb-Mattis theorem;32 i.e., the ground
state has total spin S0 = 3Is − 1

2 . The energy gap (now in
absolute units) of the S0 to S0 + 1 transition is given by

� (S0 → S0 + 1) = Jγs

Ns

(6Is + 1) . (5.29)

Since Is is approximately Ns/18 for large Ns we get a gap of

� (S0 → S0 + 1) ≈ Jγs

3
. (5.30)

This is consistent with our numerical observation that the gap is
finite in the large-Ns limit. Since the measured gap is ∼0.73J

we infer that γ must be ∼2.19.
We give further credibility to our giant spin interpretation by

testing the prediction of the gap for the S0 to S0 − 1 transition.
This turns out to be gapless in the large-Ns limit,

� (S0 → S0 − 1) ≈ Jγs

Ns

, (5.31)

which is consistent with our DMRG calculations The measured
γs from the fit of the DMRG data to � = Jγs/Ns is found to
be ∼2.19, consistent with the estimate from Eq. (5.30), serving
as another check of the theory.

3. Fibonacci Cayley tree

The entanglement spectrum of the Fibonacci Cayley tree
[see Fig. 10(c)] indicates the creation of a spin-1/2 degree
of freedom as opposed to the “giant spins” encountered
previously. The cut shown in Fig. 10(c) shows a region having
an imbalance of one, which is the maximum possible for any
cut.

We believe the lowest energy excitation of this system
involves a breaking of a dimer and creation of two unpaired
spins. Since the bonds in the interior have a decreasing dimer-
ization strength, the energy required to create this excitation
is expected to be vanishingly small in the infinite-lattice limit.
This is seen in the spin gap in Table IV, but an explanation
of the observed numerical exponent is a subject of further
investigation and beyond the scope of this paper.

VI. SCHWINGER-BOSON MEAN-FIELD THEORY FOR
SINGLET GROUND STATES

Can we understand the presence or absence of long-range
order on these trees at the mean-field level? For this we appeal
to the Schwinger-boson mean-field theory5 which is capable
of describing quantum disordered and ordered states within
the same framework.4,41 In this section we will see that this
theory is a good description of the singlet ground states of the
bond-centered and Fibonacci trees. This section also serves
to expand the domain of application of the Schwinger-boson
formalism to situations where multiple parameters need to be
optimized simultaneously42 (such as nonuniform systems or
systems with very few symmetries).
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A. Notation and formal setup

The SU (N ) Heisenberg Hamiltonian is expressed in terms
of Schwinger bosons by defining a bond operator

Aij =
N∑

m=1

bimbjm, (6.1)

where each Schwinger-boson operator bim carries two labels
i or j for site indices and m for flavor index. The physical
Heisenberg model Eq. (2.1) corresponds to N = 2. The
procedure is to decouple the quartic bosonic Hamiltonian into
a one-body mean-field Hamiltonian by doing an expansion
in 1/N . Solving the mean-field Hamiltonian and putting in
N = 2 allows us to compare the SBMFT results with DMRG
calculations.

The SU (N ) Hamiltonian in terms of Schwinger bosons is

HHeis = − J

N

∑
〈ij〉

(A†
ijAij − 2S2). (6.2)

The mapping of the spin Hamiltonian to Schwinger bosons is
exact if we meet the condition site by site,

N∑
m=1

b
†
imbim = NS, (6.3)

which ensures that the Hilbert space of the bosons is restricted
by the spin size S (and the corresponding |S,Sz〉 states).
However, we will impose this constraint only on the expec-
tation b

†
imbim → 〈b†imbim〉MF . As a result of not satisfying

Eq. (6.3) exactly, the mean-field energy EMF and correlations
differ from exact results (DMRG calculations) by overall scale
factors.5,43

The decoupled mean field Hamiltonian HMF is expressed
in terms of the following variational parameters: a set of bond
variables Qij for every bond i,j , Lagrange multipliers λi which
impose Eq. (6.3), and a condensate field βi = δ1,m〈bim〉/√N

which develops a nonzero value in a phase with LRO.41 HMF

is then given by6

HMF =
Ns∑
i=1

λi

(
N∑

m=1

b
†
imbim − NS

)
+ N

J

∑
〈ij〉

|Qij |2

+
∑
i<j

(QijA†
ij + Q∗

ijAij ) + 1√
N

Ns∑
i=1

(φ∗
i bi1 + φib

†
i1).

(6.4)

The field φi couples linearly to Schwinger bosons and is
conjugate to δ1,m〈b†im〉. As a result of this parametrization,
the lowest spinon frequency mode ω0 of the m = 1 flavor
develops a macroscopic occupation of Schwinger bosons on
Bose condensation. At the mean-field level the different boson
flavors decouple and the part of the mean-field Hamiltonian
quadratic in bosonic operators bim,b

†
im (m = 2,...,N ) can be

expressed as N − 1 copies of a quadratic Hamiltonian Hm
MF .

Hm
MF is given by

Hm
MF =

Ns∑
i=1

λib
†
imbim +

∑
i<j

(Qijb
†
imb

†
jm + H.c.). (6.5)

Integrating out the bosonic fields then gives us a set
of single-spinon frequency modes and the total mean-field
energy EMF . Since we do not have the luxury of momentum
space, we adopt a real-space Bogoliubov diagonalization
procedure.44 Since Hm

MF is block diagonal in the flavor basis
(the Hamiltonian is the same for all N − 1 flavors) we can now
drop the flavor index m and express it as

Hm
MF = 1

2
(b† b)

(
� Q

Q �

) (
b

b†

)
, (6.6)

where m �= 1, b = (b1,b2,...,bNs
), and � and Q are Ns × Ns

matrices given by �ij = λiδij and Qij = Qij for nearest
neighbor sites i,j . Hm

MF can now be diagonalized by intro-
ducing Bogoliubov transfomation matrices U and V defined
as follows: (

b

b†

)
=

(
U V

V∗ U∗

) (
α

α†

)
, (6.7)

where α = (α1,α2,...,αNs
) is a vector of Bogoliubov quasi-

particle annihilation operators. Each quasiparticle creation
(annihilation) operator α†

μ (αμ) creates (destroys) a bosonic
quasiparticle in the single-particle mode μ, where μ goes from
1 to Ns . The transformation (6.7) allows us to switch to the
Bogoliubov quasiparticle basis where Hm

MF becomes

Hm
MF =

Ns∑
μ=1

ωμ

(
α†

μαμ + 1

2

)
. (6.8)

We can now perform a Legendre transformation to replace the
field φi by βi , allowing us to express EMF as

EMF

N
=

Ns∑
μ=1

1

2
ωμi

+ 1

J

∑
i>j

|Qij |2 −
(
S + 1

2

) Ns∑
i=1

λi + Econd,

(6.9)
and Econd is given by

Econd =
Ns∑
i=1

λi |βi |2 +
∑
i<j

(Qijβ
∗
i β∗

j + H.c.). (6.10)

We now consider the case of N = 2. The variational
parameters {λi},{Qij }, and {βi} are determined by minimizing
EMF with respect to each of them giving the following
constraints:

∂EMF

∂λi

= 0 ⇒ |βi |2 + 〈b†i2bi2〉 = S, (6.11a)

∂EMF

∂Qij

= 0 ⇒ β∗
i β∗

j + 〈Aij 〉
N

+ 1

J
Qij = 0, (6.11b)

∂EMF

∂βi

= 0 ⇒ λiβ
∗
i +

∑
j nni

Q∗
ij β

∗
j = 0. (6.11c)

One of the obvious considerations of applying this theory to
such a nonuniform lattice is the large number of variational
parameters which, in general, scale with the system size Ns .
However, due to the symmetries of the Cayley tree the number
of independent parameters are reduced to order g. The task
then is to find an optimal set of parameters {λ∗

i ,Q
∗
ij ,β

∗
i }

which satisfy the constraints in (6.11a), (6.11b), and (6.11c).
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This is done numerically and is discussed in Sec. VI C.
The resulting optimal EMF (λ∗

i ,Q
∗
ij ,β

∗
i ) can be related to the

physical Heisenberg energy via

EHeis = 2EMF +
∑
〈ij〉

JS2. (6.12)

A note on the βi minimization constraint (6.11c): A trivial
solution of this equation is to choose βi = 0 for all sites. This
is the quantum disordered phase. A nonzero value of βi signals
condensation of Schwinger bosons and long-range order.

For finite uniform systems there is no spontaneous symme-
try breaking and correspondingly no condensation of bosons.45

Introduction of the condensate field βi is analogous to applying
a staggered field in the system that couples to the staggered
magnetization. This breaks the degeneracy of the single-
particle energies corresponding to the two boson flavors (for
N = 2). The condensate fraction begins to build up in the
flavor mode with the lowest frequency.

The algorithm tries to initially find a self-consistent mean-
field solution by varying only the set of λi and Qij ’s. However,
if we cannot satisfy the constraints in Eqs. (6.11a) and (6.11b)
(with βi = 0), we resort to adding the condensate field βi , as
an additional set of variational parameters. While we cannot
completely rule out the possibility of a solution with βi = 0,
we believe that the appearance of a condensate is physical.

B. Correlation functions in quantum disordered
and LRO phase

Here we compute correlation functions that enter into the
self-consistency equations (6.11a), (6.11b), and (6.11c). The
boson density of a given flavor at site i is given by (suppressing
the flavor index)

〈b†i bi〉 =
Ns∑

p,q=1

〈(U∗
ipα†

p + V∗
ipαp

) (
Uiqαq + Viqα

†
q

)〉

=
Ns∑

p,q=1

V∗
ipViq〈αpα†

q〉

= (
V∗VT

)
ii

. (6.13)

The indices p,q run over all single-particle modes and
we made use of 〈αpα

†
q〉 = δp,q which follows since the

SBMFT many-body ground state is the vacuum of Bogoliubov
quasiparticles. Similarly,

〈bibj 〉 = (UVT )ij . (6.14)

Spin correlation functions Gij can be computed in a sim-
ilar fashion. The only complication arises in the SU (2)
broken-symmetry phase where, due to loss of spin rotational
invariance, we need to compute the 〈Sz

i S
z
j 〉 correlations. This

involves evaluating a quartic expectation which we decouple
into a series of 2-point functions using Wick’s theorem. For
simplicity of notation we define the following combinations
of U and V matrices:

Q̃ ≡ UVT ,

Ũ ≡ UU†, (6.15)

Ṽ ≡ VVT .

Spin correlations in the quantum disordered and the broken-
symmetry LRO phase are then given by

(
Gij

)
Q.dis.

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− 3
2 Q̃†

ij Q̃ij

for i ∈A,j ∈ B,

3
2 Ṽij Ũij

for (i,j ) ∈ A or B,

(6.16a)

(
Gij

)
LRO

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−Nβiβj Q̃ij − 1
4 Q̃†

ij Q̃ij

for i ∈A,j ∈ B,

1
2Nβiβj

(
Ũ + Ṽ

)
ij

+ 1
4 Ṽij Ũij

for (i,j ) ∈ A or B.

(6.16b)

In the quantum disordered phase SBMFT overestimates Gij

by an overall scale factor5 of 3/2. We normalize the SBMFT
correlation function by this factor to take into account the 1/N

fluctuation effects for N = 2. Similarly, in the phase with LRO
we find that we need to scale up Gij by a factor of 1.8 to make it
agree quantitatively with DMRG results. Similar overall scale
factors have been reported previously.43 These overall scale
factors can be suppressed by using Gutzwiller projected mean
field wave functions,46 which is feasible only for small system
sizes. Such projected wave functions have also been shown to
give energies in agreement with exact results.43,46

C. Numerical implementation

Using the symmetry of the bond-centered Cayley tree, we
reduce the number of variational mean field parameters. A
first simplification results from the fact that all sites within
a given shell on the lattice are equivalent and are therefore
assigned the same λi and βi . Similarly, all bonds connecting
two successive shells are equivalent and have the same Qij ’s.
For the Fibonacci cluster there are fewer exact symmetries
(only reflection about the central bond) compared to the Cayley
tree and therefore a larger number of variational parameters
are required.

We use the Nelder-Mead simplex optimizer from the GSL

library to minimize the following weighted combined cost
function which aims to reduce (6.9) subject to the constraints
(6.11a), (6.11b), and (6.11c). Since each of these constraint
equations are obtained by minimizing (6.9) with respect to
the variational parameters λi , Qij , and βi , enforcing the
constraints will minimize EMF :

C({λi},{Qij },{βi}) = μ0Cλ + μ1CQ + μ2Cβ, (6.17)

where {μ0,μ1,μ2} are relative weights of terms in the cost
function and the costs are given by

Cλ =
Ns∑
i=1

[(|βi |2 + 〈b†i2bi2〉) − S]2, (6.18a)

CQ =
∑
i<j

(
βiβj + 1

N
〈Aij 〉 + 1

J
Qij

)2

, (6.18b)

Cβ =
Ns∑
i=1

⎛
⎝λiβ

∗
i +

∑
jnni

Q∗
ij β

∗
j

⎞
⎠

2

. (6.18c)
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In practice, to minimize the weighted cost function (6.17),
tolerance values for the Cβ and Cλ are set at 10−8 and 10−14

respectively and the Qij ’s are solved for self-consistently. A
good initial guess for the Qij ’s is a pattern that favors dimer-
ization as suggested by results from exact diagonalization for
small clusters. A good rule of thumb for the bond-centered
cluster is to begin by dimerizing (assigning a high value of Qij )
the outermost bond and to create a pattern, moving inwards,
of alternating bond strengths.

For cases requiring a larger number of variational parame-
ters (like in the case of the Fibonacci cluster) it helps to guide
the Nelder-Mead optimization using a “relaxation” algorithm.
The algorithm starts with an initial guess for the Qij ’s and
allows the optimizer to find an optimal set of λi’s. If the
tolerance level for Cλ is not met, the Qij ’s are allowed to
relax; i.e., the best set of λi’s is taken as an initial guess
in an optimization where the Qij ’s are now taken to be the
variational parameters. Thus, by alternating in the choice of
variational parameters between the λi and the Qij for each
optimization cycle we converge to the desired tolerance limit.

The stability of the obtained mean-field solution was
checked by adding small random perturbations to the optimal
mean-field parameters. In the quantum disordered phase, the
saddle point was checked to correspond to a maximum in the
λi and a minimum in the Qij .

Every optimization cycle scales as ∼N3
s τ , where τ is the

total time for functional evaluation taken by the optimizer
to converge to a solution. A typical optimization time for the
Ns = 126 cluster is about 20 minutes on a personal workstation
(2.7 GHz Intel Core i7).

D. Results

The landscape of the cost function (6.17) in parameter space
has many local minima with very similar mean-field energies
(differing by 1% or less). As a result, we get a zoo of physically
plausible mean-field solutions, all of which satisfy (6.11a) and
have comparable EMF . To choose the optimal solution from
among these, we look at the βi minimization constraint (6.11c)
and hand pick the one which has the lowest Cβ . In other words,
the chosen solution has the lowest spinon frequency ω0.

The mean-field energy and correlation functions for the
bond-centered Cayley trees suffer from significant finite-size
effects (number of sites on the boundary scales as the system
size Ns). As a result, for the finite systems considered above,
the lowest spinon frequency is always gapped ω0 �= 0 in spite
of a very low βcost (∼10−8). However, with increasing system
size, ω0 lowers and spinons begin to condense in this lowest
frequency mode. A good (to within 5%) fit to the lowest spinon
frequency versus system size Ns plot is given by the function
ω0(Ns) = 0.067/Ns + 1.626/N2

s . Spinon condensation and a
very small ω0 suggest long-range order in the thermodynamic
limit.

Since condensation of spinons signals long-range order,
sites with a higher condensate fraction have a greater partici-
pation in establishing Néel order on the cluster. By mapping out
the condensate fraction on different radial shells in Fig. 12(b)
we notice the strong correspondence between sites with large
condensate densities and those with a high “flippability” as in
Eq. (5.8).

0.55

0.7

0.85

1

0 1 2 3 4 5

fi
|βi|

2

FIG. 12. (Color online) (a) Heuristic for computing the number
of “dangling spins” as proposed by Wang and Sandvik. (b) The
magnitude of the “flippability” as in Eq. (5.8) computed from
DMRG and the condensate fraction |βi |2 computed from SBMFT
on every shell of the bond-centered Cayley tree. Both quantities are
qualitatively consistent with each other and confirm the “dangling”
spin heuristic shown above.

Our results can be put in perspective with respect to
a heuristic for computing the number of “dangling spins”
proposed by Wang and Sandvik19 who encountered the role
of sublattice imbalance in the context of percolation clusters
on the square lattice. In their picture, geometric constraints
of a diluted square lattice forbid spins from pairing up with
their neighbors into dimers, leaving some of them unpaired
or “dangling.”19 They believed these emergent spins to be the
effective low-energy degrees of freedom. In a similar spirit
we “dimerize” the lattice maximally as shown in Fig. 12(a)
and the spins that remain are called “dangling.” These are the
representative spins participating as the low-energy degrees of
freedom. (Note that the choice of maximal dimer covering is
not unique but the number of uncovered spins is the same in
all such coverings.)

VII. CONCLUSION

In this paper, we have explored the relationship between
sublattice imbalance and nature of the low-energy spectrum of
the bond-centered, site-centered, and Fibonacci Cayley trees.
For the bond-centered Cayley tree, we find that the spin gap
scales with size as 1/Nα

s where α was found to be ≈2. We
discover an entire tower of states (Fig. 6) with a much larger
moment of inertia (Sec. IV B) than the Anderson tower of
states. This low-energy scale persists up to a spin value of
S∗ = 2Ib, where Ib refers to a measure of the imbalance (or
the number of “unpaired spins”) on the bond-centered tree [as
in Eq. (2.3)].
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To highlight the role of sublattice imbalance, we introduced
the Fibonacci Cayley tree in Sec. II, which does not have any
locally unpaired spins. We found it lacks the low-lying states
characteristic of the bond-centered tree (see Fig. 6). Instead,
the spin gap vanishes as ≈1/N0.6

s . However, both trees have
similar susceptibilities (∼Ns) at sufficiently large magnetic
fields. This is because the strength of the dimerization is
relatively weak at sufficiently high energy scales (comparable
to J ), allowing all spins to lock together, leading to an extensive
susceptibility.

For the site-centered tree, our results are in good agreement
with a recent study.22 We report a finite spin gap of � =
0.731(4) in the infinite-lattice limit and a ground-state energy
of e0 = −0.393854(1).

Our results can be explained within a unifying framework
of individual spins coupling together to form collective spin
degrees of freedom which we refer to as “giant spins.” The
idea for coupling big sublattice spins is well known15 in the
context of regular lattices. However, we emphasize that the
“giant spins” are created by coupling all spins (both even
and odd sublattice spins) in regions with large local sublattice
imbalances. For the bond- and site-centered lattices, we find
that all lattice sites have a (nearly) uniform participation in the
“giant spins.” This picture is developed in Sec. V using the
single-mode approximation for the excited (triplet) state and
observing the entanglement spectrum.

In a broader context, our study aims to understand the nature
of unpaired spins coupling in a strongly dimerized background.
Such spins, termed as “dangling spins,” have been predicted
from numerical simulations19 for systems with quenched
random dilution. Thus, a natural extension of our study is
to consider such dangling spins on percolation clusters where
we expect that they couple hierarchically to form emergent
giant spins at different length scales. This will be the subject
of a future publication.36

In this paper, we have explored several techniques to
develop our understanding. To begin with, we obtain accurate
many-body wave functions and their expectations using an
implementation of the density matrix renormalization group
(DMRG) procedure (described in Sec. III) that works for
generic trees. In general, this procedure is expected to be
well suited to hierarchical lattices and those with few or no
loops, such as the Husimi cactus,47,48 a lattice of corner-sharing
triangles (whose centers form the vertices of the Cayley tree),
and which is locally like the kagome lattice.

To have an understanding at the mean-field level, we
adapted Schwinger-boson mean-field theory (SBMFT) to
a larger number of variational parameters than considered
previously.43,46,49 We were able to study spin correlations of
the bond-centered and Fibonacci trees (singlet ground states).
Rather remarkably, the theory is quite accurate quantitatively
in predicting ground-state spin-spin correlation functions (see
Fig. 5), up to overall multiplicative scale factors (as discussed
in Sec. VI). The recipe outlined in Sec. VI can be used to
navigate through the zoo of feasible mean-field solutions by
giving relative weights to the constraint equations (6.18a),
(6.18b), and (6.18c).

We believe that most applications of SBMFT have focused
on quantum disordered phases,50,51 but the broken-symmetry
phase has received less attention. The setup can also be

generalized to handle frustrated spin systems without the need
to have an ansatz for the mean-field fluxes or the decoupling
parameters.50 This might lead to novel spin liquid ground states
with new kinds of broken symmetries.42

Recently we came across results by Misguich,42 who has
done an extensive numerical study of SBMFT formalism
for spatially inhomogeneous states, mostly concentrating on
gapped systems. However, his study differs from ours in that
we include the condensate field as a variational parameter. It
will be interesting to apply our formalism to further investigate
his proposed set of ground states.
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APPENDIX A: DERIVATION OF THE SMA GAP EQUATION
FOR THE HEISENBERG MODEL

In Sec. V, we introduced the single-mode approximation
(SMA) for the excited state in terms of the ground state,

|1′〉 =
∑

i

uiS
+
i |0〉, (A1)

where |0〉 is the singlet ground state and |1′〉 is the approximate
triplet excited state. i refers to a site index. In this Appendix,
we will derive an expression for the SMA energy gap �SMA in
terms of the ground-state correlations and the parameters ui .

The expression for the gap between the ground and first
excited state is

� = 〈1′|H |1′〉
〈1′|1′〉 − E0, (A2)

where E0 is the ground-state energy. Plugging in the expression
for |1′〉 from Eq. (A1) we have

�SMA = 〈0| ∑ij uiujS
−
j HS+

i |0〉
〈0| ∑ij uiujS

−
j S+

i |0〉 − E0 (A3)

=
∑

ij uiuj 〈S−
j [H,S+

i ]〉∑
ij uiuj 〈S−

j S+
i 〉

+
∑

ij uiuj 〈S−
j S+

i H 〉∑
ij uiuj 〈S−

j S+
i 〉 − E0 (A4)

=
∑

ij uiuj 〈S−
j [H,S+

i ]〉
2
∑

ij uiuj 〈Sz
jS

z
i 〉

. (A5)
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Next, consider the nearest neighbor Heisenberg Hamilto-
nian,

H = J

2

∑
〈k,l〉

(
Sz

kS
z
l + 1

2 (S+
k S−

l + S−
k S+

l )
)
, (A6)

where 〈k,l〉 refer to nearest neighbor pairs. We have included
a factor of 1/2 outside to compensate for counting each nearest
neighbor term twice.

We now calculate [H,S+
i ] occurring in Eq. (A5). To do so,

we calculate [Sk · Sl ,S
+
i ] as

[Sk · Sl ,S
+
i ] = Sz

k [Sz
l ,S

+
i ] + Sz

l [Sz
k,S

+
i ] +

× 1
2S+

k [S−
l ,S+

i ] + 1
2 [S−

k ,S+
i ]S+

l

= δilS
z
kS

+
l + δikS

z
l S

+
k

− δilS
+
k Sz

l − δikS
z
kS

+
l . (A7)

The numerator of Eq. (A5) involves the term 〈S−
j [H,S+

i ]〉.
Hence we now consider the action of the S−

j operator on the
simplified expression for [Sk · Sl ,S

+
i ] in Eq. (A7). Consider

only the terms that have j = k or j = l (since k = l terms do
not occur in the Hamiltonian we do not have to worry about the
possibility j = k = l). In addition, time-reversal symmetry of
the ground-state wave function (equivalent to simply asserting
the Sz→ −Sz symmetry of the ground state) ensures that if
both j �= k and j �= l then the three-point correlation function
is exactly 0. This latter point is rather subtle and so we expand
on this in Appendix B.

Thus the expression for S−
j [Sk · Sl ,S

+
i ] (after retaining only

the j = k and j = l terms) is

S−
j [Sk · Sl ,S

+
i ]

= −δikδjl

(
1

2
− Sz

l

)
Sz

k − δikδjk

S−
k S+

l

2

− δilδjk

(
1

2
− Sz

k

)
Sz

l − δilδjl

S−
l S+

k

2
+ δjkδil

S−
k S+

l

2

+ δjlδil

(
1

2
− Sz

l

)
Sz

k + δjkδik

(
1

2
− Sz

k

)
Sz

l

+ 1

2
S+

k S−
l δikδjl . (A8)

Inserting (A8) into the expression for the SMA gap (A5) for
the Heisenberg Hamiltonian and utilizing 〈Sz

i 〉 = 0 for all i,
we obtain

�SMA = −
∑

〈k,l〉(uk − ul)2
〈
Sz

kS
z
l

〉
2
∑

ij uiuj

〈
Sz

i S
z
j

〉 . (A9)

APPENDIX B: WHY IS 〈ψ|S−
j S+

k Sz
l |ψ〉 = 0

FOR DISTINCT j,k,l?

To derive the SMA gap equation in Appendix A, we used

〈ψ | S−
j S+

k Sz
l |ψ〉 = 0 (B1)

for distinct site indices j,k,l. In this Appendix, we will prove
this statement for any wave function which is invariant under
time reversal.

Consider three distinct spins i,j,k. Express the wave
function in the basis spanned by the three spins at sites j,k,l

and the rest of the spins (collectively termed as “environment”
e),

|ψ〉 =
∑
s ′
j s

′
ks

′
l

∑
e

w
s ′
j s

′
ks

′
l

e |s ′
j s

′
ks

′
l〉 ⊗ |e〉. (B2)

Since this wave function is an eigenstate of the Heisenberg
model (with no external magnetic fields), it follows that under
time reversal (denoted by operator T ) we have

ψ → zψ, (B3)

where z is ±1.
This implies that the coefficients in the wave function satisfy

the relation

w
s ′
j s

′
ks

′
l

e = zw
−s ′

j −s ′
k−s ′

l

−e . (B4)

The action of the operator S−
j S+

k Sz
l on |ψ〉 from Eq. (B2)

yields

S−
j S+

k Sz
l |ψ〉 =

∑
s ′
l

∑
e

w
↑↓s ′

l
e S

′
l | ↓↑ s ′

l〉 ⊗ |e〉. (B5)

Now acting Eq. (B5) with 〈ψ | from the left and using the
orthogonality of the basis, we get

〈ψ |S−
j S+

k Sz
l |ψ〉 =

∑
s ′
l

∑
e

w
↓↑s ′

l
e w

↑↓s ′
l

e S
′
l (B6)

= 1

2

∑
e−

w↓↑↑
e− w↑↓↑

e−

− 1

2

∑
e+

w↓↑↓
e+ w↑↓↓

e+ , (B7)

where e+ (e−) reflects the fact that the environment carries a
net Sz of +(−) 1

2 since the wave function consists of Sz
tot = 0

terms only. Under inversion of all spins in e+ we get e−. With
this in mind, consider the second sum on the right. Using
the time-reversal symmetry of the wave function, i.e., w↓↑↓

e+ =
zw

↑↓↑
e− and w

↑↓↓
e+ = zw

↓↑↑
e− [as seen from Eq. (B4)], in Eq. (B7)

TABLE VI. Optimal SBMFT parameters for bond-centered clus-
ters of various sizes.

Ns Q∗
ij λ∗

i β∗
i Ns Q∗

ij λ∗
i β∗

i

14 0.672 1.639 0 126 − 0.568 1.893 0.43
0.539 2.318 0 − 0.622 1.656 0.445
0.676 0.523 0 − 0.579 2.026 0.392

30 0.561 1.921 0 − 0.622 1.497 0.42
0.633 1.487 0 − 0.55 2.32 0.353
0.543 2.345 0 − 0.677 0.546 0.443
0.673 0.536 0 254 − 0.631 1.669 0.495

62 0.646 1.72 0 − 0.56 1.986 0.454
0.57 1.975 0 − 0.622 1.537 0.504
0.63 1.514 0 − 0.571 1.965 0.455
0.551 2.345 0 − 0.622 1.495 0.497
0.68 0.544 0 − 0.55 2.263 0.449

− 0.671 0.563 0.56
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we get

〈ψ |S−
j S+

k Sz
l |ψ〉 = 1

2

∑
e−

w↓↑↑
e− w↑↓↑

e−

− 1

2
z2

∑
e−

w↓↑↑
e− w↑↓↑

e− (B8)

= 0, (B9)

where we have used z2 = 1.

APPENDIX C: SCHWINGER-BOSON MEAN-FIELD
THEORY CALCULATIONS

As mentioned in Sec. VI, optimization of multiple parame-
ters occurring in the Schwinger-boson theory for nonuniform
systems was quite a challenging task. Hence, for interested

readers, we report the exact values of the parameters obtained
from our calculations, so that they may be able to reproduce
our results.

The optimal mean-field parameters are tabulated in Table VI
for different lattice sizes. In each column (from top to bottom)
the parameters label inner to outermost most bonds/sites. The
Qij ’s alternate in strength across successive bonds consistent
with the location of unpaired spins. Similar alternation in the
condensate field βi indicates the variation in the density of
dangling spins across shells.

The ground-state energy from SBMFT for the 126-site
cluster was found to be ≈−0.533J . This is lower than
the DMRG estimate −0.39385J . This can be attributed
to the well-known fact45,49 about the nonvariational nature
of SBMFT energies. This is because of not satisfying the
constraints in Eq. (6.3) exactly.
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CHANGLANI, GHOSH, HENLEY, AND LÄUCHLI PHYSICAL REVIEW B 87, 085107 (2013)

∑
ij Gij = S(S + 1) which equals zero for a singlet state. Second,∑
ij ujGij = ∑

j 〈S tot
z Sz

j 〉 which equals zero for a state with S tot
z = 0.

40C. R. Laumann, S. A. Parameswaran, S. L. Sondhi, and F. Zamponi,
Phys. Rev. B 81, 174204 (2010).

41S. Sachdev, Phys. Rev. B 45, 12377 (1992).
42G. Misguich, Phys. Rev. B 86, 245132 (2012).
43L. Messio, O. Cepas, and C. Lhuillier, Phys. Rev. B 81, 064428

(2010).
44See, for example, E. R. Mucciolo, A. H. Castro Neto, and Claudio

Chamon, Phys. Rev. B 69, 214424 (2004).

45A. Auerbach, Interacting Electrons and Quantum Magnetism
(Springer-Verlag, New York, NY, 1994).

46T. Tay and O. I. Motrunich, Phys. Rev. B 84, 020404(R) (2011).
47P. Chandra and B. Doucot, J. Phys. A 27, 1541 (1994).
48H. J. Changlani, R. Lamberty, and C. L. Henley (unpublished).
49L. Messio, B. Bernu, and C. Lhuillier, Phys. Rev. Lett. 108, 207204

(2012).
50X. G. Wen, Phys. Rev. B 65, 165113 (2002).
51F. Wang, Phys. Rev. B 82, 024419 (2010); F. Wang and

A. Vishwanath, ibid. 74, 174423 (2006).

085107-18

http://dx.doi.org/10.1103/PhysRevB.81.174204
http://dx.doi.org/10.1103/PhysRevB.45.12377
http://dx.doi.org/10.1103/PhysRevB.86.245132
http://dx.doi.org/10.1103/PhysRevB.81.064428
http://dx.doi.org/10.1103/PhysRevB.81.064428
http://dx.doi.org/10.1103/PhysRevB.69.214424
http://dx.doi.org/10.1103/PhysRevB.84.020404
http://dx.doi.org/10.1088/0305-4470/27/5/019
http://dx.doi.org/10.1103/PhysRevLett.108.207204
http://dx.doi.org/10.1103/PhysRevLett.108.207204
http://dx.doi.org/10.1103/PhysRevB.65.165113
http://dx.doi.org/10.1103/PhysRevB.82.024419
http://dx.doi.org/10.1103/PhysRevB.74.174423



