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Relaxation of flying spin qubits in quantum wires by hyperfine interaction
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We consider the relaxation of a spin qubit in a quantum dot propagating as a whole in a one-dimensional
semiconductor with hyperfine coupling. We show that motion leads to qualitatively new features in this process
compared to static quantum dots. For a fast straightforward motion, the initial spin density decreases to zero with
the relaxation rate independent of the spatial spread of the electron wave function and inversely proportional to
the electron speed. However, for the oscillatory motion, the qubit acquires memory, and the dephasing becomes
Gaussian rather than exponential. After some time, one-third of the initial spin polarization is restored, as
it happens for static qubits. This revival can occur either through periodic peaks or through a monotonous
increase in the polarization, after a minimum, until a plateau has been reached. Our results can be useful for the
understanding of the spin dynamics and decoherence in quantum wires.
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Semiconductor quantum wires play an important role in
fundamental and applied spintronics. They allow one to study
a variety of interesting phenomena related to spin transport1–11

and open the way to realizations of exotic states such as
Majorana fermions.12,13

One of the most interesting aspects of spintronics is
the hyperfine coupling of spins of carriers to the nuclear
magnetic moments of the host lattice,14–19 strongly dependent
on the spatial extension of the carriers wave functions. In
semiconductor nanostructures, it is enhanced compared to the
bulk due to confined wave functions in quantum dots20–22 and
due to localization by disorder in quantum wires.23 The spin
dephasing times observed in quantum dots21 agree very well
with what can be expected from the theory.20

The observed relaxation times suggest that a single electron
spin could become the physical realization of a quantum
bit (qubit), crucial for quantum information applications.
Unlike the dots, where electrons are well localized, extended
nanowires are natural channels for traveling qubits, hereafter
referred to as “flying” qubits.24,25 Spin decoherence is the
major concern for using qubits in information processing.
At low temperatures, it is mainly caused by spin-orbit and
hyperfine interactions. In the wires, the mechanisms for
spin-orbit relaxation can be canceled out by tuning their
cross section geometries for the wires extended along the
[001] direction (Dresselhaus term) and also by keeping their
environments symmetric (Rashba term). Hyperfine couplings
hence can become the only source of spin depolarization.
Their influence on the spin dynamics of qubits propagating
through nanowires should be deeply understood for spin
transport devices. Recently, Huang and Hu26 have proposed
a formulation of the spin-relaxation problem well suited for
quantum information purposes. This formulation comes from
studying the decoherence of an electron spin that is being
transported in a random electric potential, as enclosed in a
quantum dot with the time-independent shape of the wave
function. The ability of high-fidelity electron transfer between

FIG. 1. (Color online) Schematic plot of a semiconductor quan-
tum wire. Random arrows show the magnetic moments of nuclei.
Dashed lines correspond to density distributions with given expecta-
tion values of the z coordinate at different times: For τ1, of the order of
τξ , the matching of tails yields some correlation; for τ2, considerably
larger than τξ , correlation is negligible.

quantum dots by surface acoustic waves was demonstrated
recently.27–30 Here we apply a similar approach to study the
effects of hyperfine interaction on spins in moving quantum
dots, and show that the dynamics brings about new time scales
and qualitative features compared to the static dots.

We consider nanowires with L × L cross sections (see
Fig. 1), and take GaAs as a representative spintronics material.
Nuclear magnetic moments are considered frozen on the time
scale of the electron precession,20 and are represented as
randomly oriented I = 3/2 spins with the expectation values
of components Ii , where i = x,y,z. Under the assumption of
decoupled spin and orbital motion, valid in the absence of
spin-orbit coupling and for weak hyperfine interaction, we
can factorize the total wave function as ψ(r,t) |φ〉 . Here the
orbital state is ψ(r,t) and the spinor state is |φ〉 . The resulting
Hamiltonian for the spin degree of freedom depends on the
orbital wave function as follows:

Ĥhf = Aν

2

∑
n

|ψ(rn,t)|2
(
I [n]
x σx + I [n]

y σy + I [n]
z σz

)
, (1)

where the summation goes over all nuclei with spin compo-
nents I

[n]
i at sites rn, A = 45 μeV is the typical hyperfine

coupling constant for GaAs,20 ν is the volume per single
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nucleus (one-eighth of the unit cell), and σi are the Pauli
matrices.

Hamiltonian (1) can be rewritten in the form

Ĥhf = h̄

2
(� · σ ) , (2)

where the precession due to hyperfine interaction � is an
integral that depends on the electron position and can be
expressed as

�i = Aν

h̄

∫
V

|ψ(r,t)|2ρi(r)dV. (3)

Here the density of the ith component of the nuclear
magnetic moment ρi(r,t) satisfies the white-noise distri-
bution 〈〈ρi(r)ρi(r′)〉〉 = ρ0δ(r − r′), where 〈〈· · ·〉〉 stands for
the ensemble average and ρ0 = 〈Î 2

i 〉/ν; here ν−1 is the
concentration of nuclei. To describe a moving electron, we
need the characteristic time-dependent correlator which can
be obtained, assuming Gaussian random fluctuations,31,32 as

h̄2

(Aν)2
〈〈�i(t)�i(t + τ )〉〉

=
∫∫

|ψ(r1,t)|2|ψ(r2,t + τ )|2 〈〈ρi(r1)ρi(r2)〉〉dV1 dV2

= ρ0

∫∫
|ψ(r,t)|2|ψ(r,t + τ )|2dV. (4)

Although, due to the isotropy of the random distribution of
nuclear spins, these correlators are i independent, for definite-
ness we consider the z component of the spin below. With the
course of time, the overlap of the electron wave function with
itself decreases and the correlation gradually vanishes, as can
be realized from Fig. 1. The ψ(rn,t) states characterizing the
propagating qubits are defined as ψ(rn,t) = η(zn,t)ϕ(xn,yn),
where ϕ(xn,yn) = (2/L) sin(πxn/L) sin(πyn/L) describes an
electron in a single-mode box, and η(zn,t) is assumed to be
a Gaussian centered at the time-dependent position 〈z(t)〉,
corresponding to the ground state of the moving parabolic
potential:

η(zn) =
(

1

2πξ 2

)1/4

exp[−(zn − 〈z(t)〉)2/4ξ 2]. (5)

For this choice of the wave function, the correlator in Eq. (4)
is expressed as

〈〈�i(t)�i(t + τ )〉〉 = 〈〈
�2

i

〉〉
exp{− [�z(τ )]2 /4ξ 2}, (6)

where 〈〈�2
i 〉〉 = 3 (A/h̄)2 I (I + 1)ν/8

√
πL2ξ and �z(τ ) ≡

〈z(t + τ )〉 − 〈z(t)〉. This correlator reaches the maximum
when the electron is back to the position occupied at
time t . For motion with constant speed, �z(τ ) = vτ and
the corresponding effective correlation time can be defined
(see caption of Fig. 1) as τξ ≡ ξ/v.

Now we analyze the evolution of polarization of static and
propagating wave packets. The spin dynamics is calculated for
ensembles of random wires and averaged afterwards. At the
initial time, qubits are fully polarized in the nonequilibrium
spin state |φ(0)〉 = |1〉. Later on, for t > 0, |φ(t)〉 evolves
following the time-dependent Schrödinger equation

ih̄
∂ |φ〉
∂t

= Ĥhf(t) |φ〉 , (7)

FIG. 2. (Color online) Spin dynamics of static qubits for different
widths ξ as obtained by solving Eq. (8) with the fourth-order Runge-
Kutta method. We print the averages over 4096 realizations of disorder
in the nuclear magnetic moments, with statistical errors of about
1/

√
4096 = 1.6%. Here and below we assume the wire width L = 8

unit cells. For this wire width and ξ = 10 nm, we obtain 1/
√

〈〈�2
i 〉〉 ≈

1.5 ns, corresponding well to the relaxation time in the figure. Since
the GaAs lattice constant is 0.565 nm, the nanowire cross section is
4.5 × 4.5 � 20 nm2.

where the time dependence of Ĥhf(t) is due to the displacement
of the qubit. The resulting spinor |φ(t)〉 is related to the initial
spin state as

|φ(t)〉 = T exp

[
− i

h̄

∫ t

0
Ĥhf(t)dt

]
|φ(0)〉, (8)

where T stands for the time ordering.
We consider three different realizations of spin dephasing:

for static qubits (to have the known system to compare with),
and for straightforward and oscillatory motion. When packets
are fixed to initial positions, the calculated average polarization
decays to a minimum of about 0.1 of the initial value
and monotonically increases up to a constant plateau where
〈〈sz(t)〉〉 = 〈〈sz(0)〉〉/3. We consider packets with widths of ξ =
5, 10, and 20 nm; their spin evolutions, plotted in Fig. 2, look
exactly as expected from the dynamics induced by hyperfine
coupling in quantum dots.20,23 This steady polarization arises
due to the precessional motion of the qubit spin around
the time-independent effective field of the nuclear magnetic
moments.20 The spin evolution presented in this figure is
universal in the sense that it can be fully described by two time
scales originated from the same random position-dependent
spin precession: that for the initial polarization to decay down
to 1/e, and that for reaching the 1/3 plateau. The scale for
the initial decay rate of static electrons is then �st =

√
〈〈�2

i 〉〉,
and the entire time dependence in Fig. 2 can be described
by using this single parameter.20 The dependence of the spin
dynamics on the qubit spatial width is related to the number of
interacting nuclei inside the electron cloud: A smaller amount
of nuclei yields stronger fluctuations in the field resulting in a
faster decay.

In the next, straightforward motion regime, packets prop-
agate along the wire with constant velocities v = 10 and
20 nm/ns, taken here as examples. A behavior considerably
different from the static one emerges when τξ�st is much less
than 1, that is, when the electron moves to a strongly different
realization of the hyperfine field before sufficiently changing
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FIG. 3. (Color online) Average polarization for qubits in straight-
forward motion for different speeds v and widths ξ .

its spin; this behavior is shown in Fig. 3. To gain insight into
the influence of width and speed, we have taken into account,
again, three distinct packet sizes, ξ = 5, 10, and 20 nm. When
v = 10 nm/ns all polarizations decrease below 0.1 after 10 ns
and monotonically tend to zero afterwards. Additionally, the
smaller the qubit width, the faster the dephasing. Similar
calculations for v = 20 nm/ns show a considerably less
efficient decoherence. This behavior can be detailed as follows.
The average spin evolution can be described with32

〈〈sz(t)〉〉
〈〈sz(0)〉〉 = exp

[
−

∫ t

0
dt ′

∫ t ′

0
〈〈�z(t

′)�z(t
′ − t ′′)〉〉dt ′′

]
.

(9)

For the exponentially decaying part of the dynamics, this
expression has the form

〈〈sz(t)〉〉
〈〈sz(0)〉〉 = exp(−√

π�vt), (10)

where the spin-relaxation rate is determined by

�v = 〈〈
�2

i

〉〉
τξ . (11)

Therefore, the fast motion establishes a new and smaller
relaxation rate, �v = �st(�stτξ ), such as �v 	 �st. Here �v

does not depend on the width of the electron wave packet
but only on its speed, as we explain below using a scaling
argument. The electron spin precession rate, due to the frozen
nuclear spins, is of the order of � ∼ (A/h̄) /

√
N, where the

number of nuclear magnetic moments per single electron is
N ∼ L2ξ/ν. From Eq. (11), the resulting �v is proportional
to (A/h̄)2 ν/L2v and, henceforth, also ξ independent. This
argument can easily be applied to other spatial dimensions D in
the following way. The square of the spin precession rate being
of the order of 〈〈�2

i 〉〉 ∼ N−1 ∼ ξ−D, while τ ∼ ξ/v, is D

independent. As a consequence, �v ∼ ξ 1−D/v, which tends to
zero for bulk crystals (D = 3) and two-dimensional structures
(D = 2) when the size of the wave packet is increased.
However, it remains constant in the wires (D = 1), making the
results only weakly dependent on the details of the electron
wave function, provided that it broadens relatively weakly on
the time scale of spin precession in the hyperfine field, such
that the fast motion condition τξ�st 	 1 holds. We notice that,
for the electrons transferred by the surface acoustic waves27–30

with the speed close to 3 × 103 nm/ns, the condition of fast
motion is well satisfied for ξ up to 500 nm. As a result, the

spin states are well protected against relaxation by hyperfine
interactions in these experiments.

A significantly different behavior is obtained when the
packet moves back and forth, in a regime which can
be experimentally achieved by the surface acoustic wave
technique.29 We analyze oscillations with different velocities
and frequencies, which make amplitudes in the range of several
tens of nanometers. We assume that the expectation value of
the qubit z coordinate follows a sawlike function,

〈z(t)〉 = 2�

∣∣∣∣ t

T
−

⌊
t

T
+ 1

2

⌋∣∣∣∣ , (12)

where �· · ·� stands for the floor function, T is the period,
and � = vT /2 is the maximum displacement from the initial
position. Every time the electron returns to the initial position,
once per period, it scans exactly the same effective field.
As a consequence, the spin dynamics experiences strong
correlations which yield the memory effects. In the oscilla-
tory regime, the correlator for the precession rate satisfies
the conditions 〈〈�i(t)�i[T (�2t/T � + 1) − t]〉〉 = 〈〈�2

i 〉〉 and
〈〈�i(t)�i(t + nT )〉〉 = 〈〈�2

i 〉〉, where n � 0 is an integer.
We begin with the regime where T �v is of the order

of 1 and the typical electron spin strongly changes in a
single oscillation. The spin-polarization behavior is shown in
Fig. 4. We begin with the period T = 7.5 ns and velocity
v = 20 nm/ns, where spin relaxation during half a period
is not very strong yet. As a result, the polarization first
decays and then increases to a stable value with tiny sawlike
peaks on the top. For a twice larger period, T = 15 ns and
v = 20 nm/ns, the product T �v is larger by a factor of 2,
spin relaxation per period is considerably more efficient, and
the calculated dynamics already presents clear periodic peaks
above the reached plateau. For a yet smaller frequency and
speed, T = 30 ns and v = 10 nm/ns, one observes an almost
flat stage followed by a series of sharp revivals periodically
repeated in time (see Fig. 4). Here, in the first period, the
polarization relaxes down to zero. Throughout the second
period, the qubits show a revival to 1/3 of the initial spin.
Beyond two periods, relaxation and memory effects both
contribute to yield a periodic picture of revivals up to one-third
and decays down to zero.

In the next case, we consider very high velocity and
frequency, T �v 	 1, resulting in a small spin precession angle

FIG. 4. (Color online) Average polarization for qubits flying
back and forth along the wires for various speeds and periods,
ξ = 10 nm. Note the sharp revivals in the regime when T = 30 ns
and v = 10 nm/ns.
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FIG. 5. (Color online) Average polarization of an oscillating qubit
when T = 2.5 ns, v = 160 nm/ns, and ξ = 10 nm. The inset shows
details of the short-term behavior changing slope every half a period,
shown by vertical dotted lines.

in one period. When v = 160 nm/ns and T = 2.5 ns, the
average spin polarization decays to a minimum of about 10%
of the initial value and monotonically increases up to a constant
plateau of 1/3; the ensemble dephasing time is roughly 14 ns,
as can be seen in Fig. 5. Due to the high speed, the qubit spin
cannot follow, by precessional motion, the fast changes in the
effective nuclear magnetic field. The characteristic behavior
is given in Fig. 5, similar to that depicted in Fig. 2 for static
qubits. Here, the behavior of polarization in time cannot be
modified by tuning the qubit width.

In the oscillatory regime, the relaxation part of the time
dependence is Gaussian rather than exponential,32,33 as we ex-
plain below. At any moment t , the ensemble mean value of spin
z component is 〈〈cos θz〉〉/2, where θz is the corresponding pre-
cession angle; this mean value is 〈〈cos θz〉〉 = exp(−√

π�vt)
for 0 < t < T/2, and is multiplied by factor n, 〈〈cos θz〉〉 =
exp(−√

πn2�vt), at t = nT/2. Thus, in this regime, a new

spin-relaxation rate is established, �mem = √
�v/T  �v ,

similar to the memory effects in the systems with random
spin-orbit coupling subject to external magnetic field.32,34 On
the other hand, since �mem = �st

√
τξ /T 	 �st, this relaxation

is found even slower than for static qubits. Moreover, due to the
memory effects, the slopes of ln (〈〈sz(t)〉〉/〈〈sz(0)〉〉) at t = nT/2
should change following the ratios (2n + 1)/(2n − 1), which
are indeed very close to those obtained from our numerical
data (see inset of Fig. 5).

To summarize, we have investigated the spin dynamics
due to hyperfine coupling of electrons embedded in quantum
dots propagating along quantum wires. This behavior of spins
is qualitatively different from the typical single-parameter
time dependence in static dots. For straightforward motion
with constant velocity, the spin relaxation is close to
Dyakonov-Perel’-type35 exponential decrease towards zero
and, due to motional narrowing, its rate does not depend on
the spatial width of the packets but solely on their speed.
On the contrary, in the oscillatory regime, the decay can
be Gaussian rather than exponential, and the polarization
revives afterwards up to one-third of the initial value. Two
modes characterize the oscillatory regime: The spin revival
can be reached through periodic peaks and valleys, and, in the
other mode, through a monotonous increase of polarization
towards a stable plateau. The shown dynamic trends, especially
interesting for oscillating qubits, add to the knowledge of the
behavior of flying electrons in semiconductor nanowires. They
also broaden the applicability of such nanosystems in the fields
of spintronics and quantum information technology.
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