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Spin-Hall conductivity and electric polarization in metallic thin films
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We predict theoretically that when a normal metallic thin film (without bulk spin-orbit coupling, such as Cu
or Al) is sandwiched by two insulators, two prominent effects arise due to the interfacial spin-orbit coupling:
a giant spin-Hall conductivity due to the surface scattering and a transverse electric polarization due to the
spin-dependent phase shift in the spinor wave functions.
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Spin-orbit interaction, transferring angular momentum be-
tween electronic spins and orbital motion, has extended the
boundary of the field of spintronics towards a full-electric
manipulation of spins without using magnets. By coupling
the charge and spin currents, spin-orbit interaction has left
its signature in bulk metals1–3 and semiconductors4–8 by the
so-called spin-Hall effect,9 which catches much attention in
academia and industry due to its interesting physics and
potential applications.

In noble metals such as Pt and Au, a strong bulk spin-orbit
coupling drives the (inverse) spin-Hall effect, which has
been thoroughly studied in numerous settings, providing an
alternative to generate or detect spin current.10–13 Theoret-
ical investigations, ab initio calculations in particular, have
strengthened our understanding of the role played by bulk
impurities14,15 and doped surfaces.16 With a series of efforts to
dope Cu using spin-orbit scatterers (see Ref. 17 and references
therein), a large spin-Hall angle has been reported in Cu
thin film with bismuth impurities recently.18 In this Rapid
Communication, we propose an alternative method to realize
the spin-Hall effect in Cu without doping but by sandwiching
the Cu thin film with two dissimilar insulators such as oxides
or even vacua. The inversion symmetry breaking across the
interfaces provides interfacial spin-orbit couplings (ISOCs),
thus allowing metals such as Al or Cu to accommodate a
spin-Hall conductivity that may be even larger than that caused
by a bulk spin-orbit interaction in noble metals. Meanwhile,
we demonstrate that the ISOC also induces an in-plane
wave-vector-dependent spatial separation of wave functions
between opposite spin types along the confinement direction.
Combined with the spin imbalance (between the majority and
minority bands) due to the structural asymmetry, such a spatial
separation induces a transverse electric polarization that is
quadratic in the in-plane electric field.

A schematic picture of the setup is shown in Fig. 1.
The normal metal film has a constant thickness d along the
transverse direction (z), while two interfaces are in the xy

plane located at z± = ±d/2. The confinement of the insulators
is described by finite potential steps,

VC = V+θ (z − z+) + V−θ (z− − z), (1)

where V± is the height of the potential barrier at z± = ±d/2
and θ (z) is the Heaviside step function. We are interested in the
surface scattering by the Rashba-type spin-orbit interaction20

generated at interfaces between a normal metal film and
insulating materials, such as metal oxides. The potential
barriers Eq. (1) generate two electric fields EC = −∇VC that
are localized at the interfaces and aligned oppositely to each
other along the z direction, giving rise to a Rashba-type ISOC,

HR = λ−V−δ(z − z−) − λ+V+δ(z − z+)

h̄
(σ̂xp̂y − σ̂yp̂x), (2)

where λ± is the spin-orbit coupling parameter for the corre-
sponding interface, σ̂ is the Pauli matrix, and p̂ is the canonical
momentum.

Band structure and wave function. The full Hamiltonian
for this system is H = p2/(2m) + VC + HR . We first treat
the ISOC HR with degenerate perturbation. Using the wave
functions of a finite potential well and a standard degenerate
perturbation technique,21 assuming the energy splitting due to
the ISOC is much smaller than the interchannel energy spacing,
we obtain the energy eigenvalue and wave function for an
eigenspinor labeled by spin polarization s = ±, an in-plane
wave vector k, and a transverse channel index n,

Enks = h̄2k2

2m
+ E0n

2 + s
2

de

k|λ+ − λ−|E0n
2, (3a)

ψnks = 1√
Ade

eik·r sin

(
nπ

de

z + δ

) (
1

−iseiθ

)
, (3b)

where tan θ = ky/kx , E0 ≡ h̄2π2/(2md2
e ), and A is the area

of the metal film. A schematic view of the band energy and the
spatial part of the wave function is shown in Fig. 2. The spatial
part of the wave function ψnks in Eq. (3b) is the same for
majority (s = −) and minority (s = +) spins in the first-order
perturbation calculation. The phase shift for both spins is given
by δ = nπ/2 + (d+ − d−)nπ/(2d) with d± = h̄/

√
2mV± the

approximate penetration depth into the barrier. By assuming
high confinement barriers (V± � EF , given EF the Fermi
energy), the effective thickness de = d + d+ + d−. Therefore,
a finite potential well of thickness d can be viewed equivalently
as an infinite well with thickness de. We shall point out that,
although the eigenenergies for majority and minority are
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FIG. 1. (Color online) Left: A metallic film of thickness d is
sandwiched by two dissimilar insulating materials, such as oxides
or vacua. The electric fields (solid blue arrows) at the interfaces
point inward (±z), and the resulting Rashba magnetic fields (dashed
red arrows) point sideward (±y) for an electron moving along the
x direction. Right: The confining potential VC in Eq. (1) along the
confinement direction (i.e., z axis).

different, such a difference does not lead to any magnetism
because of the exact cancellation among spins at different k
directions.

Spin-Hall conductivity. When λ+ �= λ−, for each conduct-
ing channel (or transverse mode), the electron is characterized
by a free Hamiltonian H

(n)
0 = p2/(2m) + E0n

2 augmented
by an effective momentum-dependent Rashba magnetic field
BR

n ( p) = (2λeff
n /h̄)( ẑ × p) with a channel-dependent coupling

constant λeff
n = 2(λ+ − λ−)E0n

2/de. For an electron in band
n carrying an in-plane momentum p, assuming λ+ > λ−, the
majority (minority) spin points to the BR

n (−BR
n ) direction.

When an electric field is applied along the x̂ axis, the Rashba
field BR

n ( p(t)) becomes time dependent since ṗx(t) = −eEx .5

In the rotating frame that follows BR
n ( p(t)), the time depen-

dence is translated into a gauge field BG
n = −eh̄pyEx/p

2 ẑ.19

In the adiabatic limit (eEx�λeff
n k2

F ), the majority (minority)
spins align (antialign) with the total field BT

n = BR
n + BG

n ,
resulting in an out-of-plane (ẑ) spin component

ns
z( p) ≈ s

BG
n

BR
n

= −s
eh̄2pyEx

2λeff
n p3

. (4)

EF

k

E k

FIG. 2. (Color online) Left: Schematic view of the band structure
in metallic thin film with interfacial Rashba spin-orbit coupling,
majority (solid red) and minority (dashed blue). Right: Schematic
picture of the spatial part of the wave function for the first two
subbands; the stepwise curve is the confinement potential profile and
the three different curves are the wave function from the lowest-order
perturbation Eq. (3b) (solid black for both majority and minority)
and the exact wave function from Eq. (10) (solid red for majority
and dashed blue for minority) which shows the spatial separation
of opposite spins. The discontinuity at the interfaces is due to the
δ-function-like potential in HR .

Consequently, in a metal film of volume V = dA, at the Fermi
level, the spin current polarized in the ẑ direction while flowing
in the ŷ direction is

jz
y = 1

V
∑
n, p,s

h̄

2
ns

z( p)
py

m
= − enc

8πd
Ex. (5)

Therefore, the spin-Hall conductivity caused by ISOC is

σ SH = e

8π

nc

d
≈ e

8π2
kF , (6)

where nc = �kF d/π	 is the total number of transverse chan-
nels. The symbol �a	 denotes the largest integer that is smaller
than a. Note that Eq. (6) is obtained for λ+ > λ−, the sign of
σ SH should change when λ+ < λ−, and σ SH = 0 for λ+ = λ−.

To extend the semiclassical picture above, we employ the
Kubo formula to calculate the dc spin-Hall conductivity (i.e.,
ω → 0) in the linear response regime:5 An electric current
flowing along the x direction gives rise to a spin current that is
polarized to the z axis while transporting along the y direction,

σ SH = eh̄

V

∑
k

∑
n,n′

∑
s �=s ′

(fn′ks ′ − fnks)

× Im
[〈ψn′ks ′ |ĵ z

y |ψnks〉〈ψnks |v̂x |ψn′ks ′ 〉]
(Enks − En′ks ′ )(Enks − En′ks ′ − h̄ω − iη)

, (7)

where fnks is the electron spin occupation number. Using the
Heisenberg equation, the in-plane velocity operator is given
by

v̂x(y) = h̄

im
∇x(y) ∓ λ−V−δ(z − z−) − λ+V+δ(z − z+)

h̄
σ̂y(x),

(8)

where the second term is the anomalous velocity due to the
spin-orbit coupling that is localized at the interface. The
definition of spin current polarized along the z direction is
ĵ
z = (h̄/4){σ̂z,v̂}. Using the eigensolutions in Eq. (3), we have

σ SH = e

8π

λ+ − λ−
|λ+ − λ−|

nc

d
= ± e

8π

nc

d
≈ ± e

8π2
kF , (9)

where ± = sgn(λ+ − λ−) and the last approximate value
assumes a large number of transverse channels nc � 1. For
two perfectly identical interfaces λ− = λ+, the spin-Hall
conductivity shall vanish. Equation (9) calculated from Kubo
formula agrees with Eq. (6) derived semiclassically and
comprises one of the main results of this communication.

To describe a spin-Hall system, one quantity often scruti-
nized in experiments is the spin-Hall angle defined as the ratio
between σ SH and the longitudinal conductivity σ N, character-
izing the efficiency of converting charge (spin) current into
spin (charge) current in a (inverse) spin-Hall system. For a
coherent ballistic conductor presented in this communication,
the dc longitudinal conductance (or resistance) measured in
an experiment is dominated by scattering events at contacts.22

Therefore, we expect the spin-Hall angle to depend on the
specific geometry and material selection of the contacts.

Transverse electric polarization. We now turn to an inviting
effect, as caused by ISOC, that has not been discussed before
to our knowledge. The ISOC in Eq. (2) not only gives rise
to an energy splitting for opposite spins, but also separates
the wave functions in real space; i.e., majority and minority
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spins are shifted towards opposite surfaces. This can be
easily understood as the following: Assuming λ+ > λ−, the
potential barrier at surface z+ (z−) is decreased (increased) by
a δ-function Rashba potential for majority spins; therefore
majority spins tend to shift towards surface z+. On the
opposite, the minority spins shift toward surface z−. Therefore,
majority and minority spins are spatially separated along the
transverse direction as shown schematically in Fig. 2. To
quantify such an effect, the approximated wave function in
Eq. (3b) is not enough, and we must seek an exact eigensolution
to the full Hamiltonian H of the following form (inside the
metal film):

ψnks = cnkse
ik·r sin(qnksz + δnks)

(
1

−iseiθ

)
, (10)

with normalization factor cnks and the expression outside the
metal is written similarly but with evanescent wave function
in the z direction. In the limit of λ±k2

F � 1 and EF � V±,

qnks ≈ nπ

d
+ nπ

d2
[sk(λ+ − λ−) − (d+ + d−)], (11a)

δnks ≈ nπ

2
− nπ

2d
[sk(λ+ + λ−) − (d+ − d−)]. (11b)

The spin-dependent transverse wave vector qnks gives the
energy splitting as in Eq. (3a) for the majority and minority
spins with Enks = (h̄2/2m)(q2

nks + k2). The spin-dependent
phase shift δnks means that the wave function for majority
(minority) spins with s = −(+) is shifted toward negative
(positive) z direction. The transverse shift is spin and k

dependent, and can be quantified by the center of probability
in the z direction:

zns(k) =
∫

z|ψkns(z)|2dz ≈ sk
λ+ + λ−

2
. (12)

The last approximation omits a constant (d+ − d−)/2 that
does not contribute to the nonequilibrium properties discussed
below. For highly asymmetric interfaces (i.e., λ+ � λ−), the
transverse shift |zn+(k) − zn−(k)| ∝ η(k)d, where η(k) is the
ratio between the interfacial Rashba energy splitting [third
term in Eq. (3a)] and transverse channel energy spacing
[second term in Eq. (3a)]. Therefore, by a realization of large
η, the majority and minority spin channels can be spatially
separated, and the spin-flip scattering is thus suppressed.

We now discuss the effect of the transverse shift on
the electric polarization. What interests us the most is the
nonequilibrium response of the electric polarization as a direct
consequence of the ISOC. Because of the k dependence, the
transverse shift zns(k) depends on the application of a current;
therefore a nonequilibrium transverse electric polarization
response to the in-plane electric field E can be calculated as
Pz(E) = e

V
∑

nks[zns(k + δk) − zns(k)] with δk = eτ E/h̄:

Pz(E) = −ek3
F

3d

(
eτ

h

)2

(λ2
+ − λ2

−)E·E (13a)

= − m2e3

12π2h̄4 (λ2
+ − λ2

−)
kF

d
V 2. (13b)

The second expression is for a coherent conductor with an
electron dwelling time τ = l/vF and V = El. The quadratic

dependence of E or V is a result of symmetry in the in-plane
dimensions.

In an analogy to Hall effects, the electric polarization
Eq. (13) shall give rise to, across the confinement direction,
a voltage signal that is quadratic in the (in-plane) applied
voltage. The electric polarization Eq. (13) is a combination
of two facts: (1) the spatial separation between majority and
minority spins, which is proportional to λ+ + λ−, and (2) the
spin imbalance between the majority and minority spins, which
is proportional to λ+ − λ−. Equation (13) comprises the other
main result of this communication.

We provide an estimate on the order of magnitude of
the polarization density for the most asymmetric interfaces
(e.g., λ+ �= 0 and λ− = 0). The existing value of Rashba
parameter in literature ranges from αR = 0.16 eV Å23 to
αR = 2.5 eV Å,24 depending on the materials. Here, we
take αR = 0.16 eV Å, corresponding to a Rashba energy
splitting �R = 0.22 eV, for Cu with kF = 1.36 Å−1. We
convert such an energy scale into λ by �R ≈ 4kF λE0/d.
For a thin film of a thickness d = 10 nm and under an
applied voltage, for example V = 100 nV, the polarization
density Pz ≈ 2.1×10−14 C m−2. Such an electric polarization
is measurable (in a circuit enclosing two interfaces) under
an ac in-plane electric field (or current): With a frequency
f = 1 GHz, the magnitude of the induced current density
in the transverse direction is jz ∼ dPz/dt ∼ 10−5 A m−2.
Meanwhile, the frequency of this induced current is doubled to
2f because Pz depends quadratically on V . Such a frequency
doubling, as a consequence of the symmetry of the present
system, is qualitatively different from Pershin and Di Ventra
in Ref. 25, where the frequency doubling effect emerges from
electron-electron interaction. In addition, we emphasize the
electric polarization in our study arises from the phase shift
of a single-electron wave function along the out-of-plane z

direction, while in Ref. 25, the electric polarization arises
from a nonlinear effect due to many-body electron-electron
interaction and an inhomogeneous charge density.

To the best of our knowledge, the transverse electric polar-
ization induced by the ISOC predicted in this communication
is a new effect that has not been discussed previously. This
electric polarization manifests itself as a charge Hall effect
and can be measured as a transverse voltage (or a current in a
close circuit). Being qualitatively different from conventional
charge Hall effects driven by Lorentz force in normal metals
and anomalous Hall effect in ferromagnetic media, the electric
polarization [Eq. (13)] is quadratic (instead of linear) in
the longitudinal electric field and does not require external
magnetic field or ferromagnetism.

Discussion and conclusion. The spin-Hall conductivity
in Eq. (9) is derived for a ballistic sample where the bulk
impurities are scarce. This is generally valid for thin films with
thickness less than the mean free path and spin diffusion length.
In an ultrathin film, surface roughness is a dominating scat-
tering mechanism.26 In the present setting, the electric fields
generated by the potential gradients are normal to interface
while the presence of surface roughness effectively randomizes
the field around an average direction that is still perpendicular
to the average interface. Therefore, we can summarize the
total effect of surface roughness into an effective spin-orbit
coupling λ̃i that is smaller than λi . Since the leading order
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spin-Hall conductivity does not depend on λ’s, we argue
that the spin-Hall effect survives the roughness scattering.
The seemingly abrupt jump in spin-Hall conductivity [i.e.,
Eq. (9)] at the point λ+ = λ− is the manifestation of neglecting
electron momentum relaxation in such a ballistic conductor.
In a realistic setup, the sandwich-type conductor is always
connected to reservoirs where the electrons are relaxed and a
smoother change shall appear.

We need to point out that these results are, in many
ways, different from the seminal works by Sinova et al. in a
two-dimensional electron gas5 and Murakami et al. in a bulk
semiconductor.4 First of all, in the present setup the spin-orbit
coupling is neither intrinsic to the electrons (as in Ref. 5)
nor arising from a particular band structure (as in Ref. 4), but
due to the interface scattering. Second, our treatment to the
spin-Hall conductivity is seemingly two-dimensional but the
outcome highlights a bulk effect with a weak thickness (d)
dependence, as long as the structure can be treated coherently.

Third, and most importantly, because of the finite size in the
z direction, such a sandwich-type structure also accommodates
a transverse electric polarization (being qualitatively different
from the spin polarization studied by Edelstein)27 through the
ISOC, which is unique for the thin-film structure: The out-

of-plane electric polarization along the z direction does not
exist in two-dimensional systems considered, for example, in
Refs. 5,25, and 27.

In conclusion, we predict that in a coherent ballistic
conductor that consists of an ultrathin normal metal (with neg-
ligible bulk spin-orbit coupling) film sandwiched by dissimilar
insulators, the Rashba-type ISOC supports a spin-Hall effect
featured by a large spin-Hall conductivity that is independent
of the interfacial Rashba coupling. The ISOC also causes a
spatial separation in the transverse wave functions of different
spin bands. In response to an in-plane current or electric field,
such a spatial separation gives rise to a transverse electric
polarization that is quadratic in the in-plane field applied. The
sandwich-type structure proposed in this communication has
potential applications to replace noble metals (such as Pt) as a
source and detector for spin currents.
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