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We investigate the dynamical purification of maximally entangled electron states by transport through coupled
quantum dots. Under resonant ac driving and coherent tunneling, even-parity Bell states perform Rabi oscillations
that decouple from the environment, leading to a dark state. The two electrons remain spatially separated, one

in each quantum dot. We propose configurations where this effect will prove as antiresonances in transport

spectroscopy experiments.
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Introduction. Quantum coherence allows open multilevel
systems to form superpositions that uncouple from the dis-
sipative dynamics. The system evolves towards a stationary
pure state. These are named dark states from their discovery
as nonabsorbing resonances in illuminated atom gases.! Two
ground states coupled to the same excited state form a
superposition that is not affected by the lasers. The occupation
of orthogonal superpositions which can be excited by the lasers
(often called bright states) decays due to the spontaneous
emission from the excited state. Many applications for optical
systems followed, including laser cooling, lasing without
inversion, and coherent adiabatic passage.’

As for some remarkable quantum optics phenomena, these
applications have found their translation to mesoscopic elec-
tronic circuits.> There, transitions are mediated by coherent
tunneling or by time-dependent electromagnetic fields. In
quantum dot arrays, dark superpositions are essential to
proposals of coherent-state transfer* or current switching
by coherent population trapping.” However, their detection
in transport has been elusive for requiring exquisite con-
trol of complicated multidot arrangements®’ or many level
configurations.® Here we introduce a dark state based on
collective spin dynamics rather than single-electron interfer-
ence. The required technology is the same that has achieved
single electron-spin resonance (ESR)”!? in already a number
of experiments.!®"'* Remarkably, the resulting two-electron
dark state is maximally entangled.

In the solid state, entanglement has been demonstrated
by the violation of Bell inequalities in superconductor phase
qubits'> while quantum dot spin qubits have succeeded in
the performance of essential ingredients as universal quantum
gates'%!% or single shot readout.!” Electronic entanglers have
been proposed based on Cooper pair splitting,'® electron-hole
excitations,'® single-electron emitters,”” parity detection,’' or
purification protocols.””> Quite counterintuitively, entangle-
ment of macroscopic atomic ensembles can be generated by
dissipation.?* A proper engineering of the environment drives
an open quantum system to a pure steady state,>* similar to a
dark state.

In solid-state qubits, the environment can be engineered
by voltages and electromagnetic fields. Here we propose
how to generate a maximally entangled dark state of two
spatially separated electrons stored in a double quantum
dot tunnel-coupled in series to fermionic source and drain
leads. In the Coulomb blockade regime with strong Coulomb
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interactions, electrons are transferred one by one through the
system, which can be tuned to contain up to two conduction
electrons, cf. Fig. 1. We consider a configuration described
by the charge occupation states (N ,Ng) = (0,1),(1,1),(0,2).
In the presence of inhomogeneous in-plane magnetic fields,
odd-parity states, {|1,{),]{,1)}, support a current through the
drain dot singlet |Sg) = |0,1]) from which an electron is
transferred to the drain lead. However, the occupation of the
even parity subspace, {|1,1),]{,))}, suppresses the current
for a forward applied bias (from left to right) due to Pauli
exclusion principle, what is known as spin blockade.?> Thus,
the reduced density matrix of the double quantum dot g evolves
toward a mixed steady state in the even parity subspace:
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FIG. 1. (Color online) Dynamical generation of entanglement.
(a) In a spin blockade double quantum dot, charge flows through
states of two electrons with opposite spins, {|1,]),[{,1)}, coupled
by intradot tunneling 7, to the doubly occupied singlet |Sg), from
where an electron tunnels to the drain lead. (b) The occupation of
the even-parity subspace blocks the current, forming a mixed state
psp With statistical weights p,. Coherent spin rotations by an ac
magnetic field, B,, open the system to transport again. For a particular
frequency €2, an even-parity eigenstate of the magnetic field becomes
a dark state |v,). (c) The system evolves towards a pure steady state
composed of Bell superpositions. Coherence of the steady state is
apparent in the undamped oscillations of the off-diagonal elements.
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psg = prIT {0+ pyL L) (L L with statistical weights
Po- Single electron spin rotations by an ac magnetic field
lift spin blockade and lead to a resonant current when its
frequency matches one of the individual Zeeman splittings,
ho = Ap,Ag.'%'""13 We find that for a particular frequency,
superpositions of even-parity Bell states,

1
ﬁ(IT,TH:Ii,i)), (1
decouple both from the driving field and transport. The system
is thus dynamically driven to a pure dark state, py =~ |¥4)(V4l;
see Egs. (4) and (5) below. Any other superposition decays by
the combined effect of the ac field and tunneling into the
reservoirs.

We investigate the fingerprints that such states leave
in transport spectroscopy experiments as being carried out
nowadays.!%!* Collective rotations of the two electron spins
lead to a resonant current showing a sharp dip which cannot be
explained by the individual electron spin dynamics. This effect
will manifest clearly in the current at the border of the spin
blockade window where the (1,1)—(0,2) tunneling transition
is resonant.

Model. Our system is modeled by a two-site Ander-
son Hamiltonian, H = HDQD + HleadS + Hcoupl, describing the
double quantum dot, the electronic source (S) and drain (D)

reservoirs, Hieads = Y 10 81kd[Tka djo , and their tunneling cou-

V) =

plings, ﬁcoupl = o (A,(ffka ¢ + H.c.), where the fermionic
operators ¢;, and c?lkg annihilate an electron with spin o
in dot i € {L,R} and lead [ € {S, D}, respectively, and A;
is the coupling strength. The double quantum dot term is
given by HDQD = Hy + H,, accounting for the bare energy of
the double quantum dot (including interactions), Ho, and the

coherent interdot tunneling, H, = — Y (té| g, 4+ H.c.).
We consider a single discrete level of energy &; in each
dot which can be occupied by two electrons forming a
spin singlet. Excited states are assumed to be far off in
energy so their contribution—forming on-site triplets that
would lift spin blockade—can be neglected here. Thus we
have Hy = Y,, &i¢l &io + 3 Uihiiriiy, + UpgApfig, where
U; and Uy g descrlbe on-site and interdot Coulomb repulsion,
and 71;, and 7i; are the spin resolved and total number operators,
respectively. The chemical potentials of the leads, u;, are
such that only two electrons are allowed in the system:
& < Mi_ULR <& + U,' and Mmp <& +2ULR' If Er < Up,
the right quantum dot stays occupied. Considering spin, only
seven states with charge distributions described by (0,1), (1,1),
and (0,2) are relevant.

Coherent interdot tunneling will be resonant when the states
(1,1) and (0,2) are degenerate. We parametrize their detuning
by 6e = ¢, — eg + Ug — Urg. The spin blockade window is
hence defined by the region §¢ > 0.

For spin manipulation, we include magnetic fields in an
ESR configuration.”?® It consists of in-plane magnetic fields
with a dc component that creates a Zeeman splitting A in
each dot, and an ac component perpendicular to it whose
frequency is close to the resonance conditions hw = A}.
Since magnetic fields are experimentally hard to localize,
alternatives have been introduced using more tunable gate
voltages. Effective ac magnetic fields are obtained by coupling
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the spin to a pulsed electric signal mediated by either spin orbit
or hyperfine interaction,'>"'* slanting dc magnetic fields,'"-?’
or by spin-phonon coupling in the presence of mechanical
vibrations of the dot.?® For theoretical generality, we consider
the purely magnetic field case glven by the Hamiltonian term:
Hp(t) = >oi(AY coswt 0,A? ) S;, with Al = g;iupBj; and
spin operators S =3 Z ,c +0 0o Cior. The Landé factors g ;
are in general mhomogeneous pup is the Bohr magneton,
Bj; are the magnetic-field j component in dot i, and & are
the Pauli matrices. Different Zeeman splittings are required,
A5 # A%, otherwise the ESR field has no visible effect.?® The

different components A/ can be tuned either by the control of
the Landé factor® or by applying inhomogeneous magnetic
fields: for instance, by means of a micromagnet,“’14 or
pulses of different amplitude in electric dipole spin-resonance
experiments. Such experimental ability allows us to consider
the simplest required configuration, with A} = Ay =y B,
and Aj = aA% = y B;. To ease the notation, we include the
asymmetries in the parameter a, assuming that the magnetic
fields are homogeneous.

The dynamical evolution of the system is described by a
Markovian quantum master equation for the reduced density
matrix 0 obtained by tracing the reservoir degrees of freedom
out:

. i oA A . .
o= _ﬁ[HDQD + Hp(t),pl + Lrp, (2)

where the commutator accounts for the coherent dynamics
inside the double quantum dot. The Liouvillian superoperator
Lr =) ,_ L} describes tunneling events to (+) or from
(—) lead I and 1ncludes decoherence for the finite lifetime of
states coupled to the leads.®?® Spin decoherence is assumed
to be of a longer time scale. The drain current is then given
by I = gtr[(L}, — £)A]. In the high bias regime, transport
is unidirectional with £ = £, = 0. The remaining terms are
fully described by the tunneling rates I'; = 27”|A1|2u,, where
vy is the density of states in the leads, for processes carrying
an electron from the source to the dots and from the dots to the
drain. Processes taking electrons in the backward direction
are negligible, though they are included in the numerical
calculations.

Results. Naively, one would expect that the current spec-
troscopy results from the sum of two Lorentzian reso-
nance peaks centered at iw = Aj,Aj—when the rotation
of each electron spin would lift spin blockade—and is zero
elsewhere. Indeed, this picture agrees with experimental
observations.'"'*1* However, due to the interplay of coherent
spin rotation and interdot tunneling, resonant features of a
nontrivial line shape appear, as shown in Fig. 2. On one
hand, peaks are not necessarily centered at the individual
spin resonances but at points of maximal hybridization which
depend on 7, A{ , and de. On the other hand, and most
importantly, current vanishes for a frequency hw =hQ =
(A3 + A%)/2. Such antiresonant behavior is a clear signature
of dark states. We note that similar current characteristics are
predicted in discrete lattice models of transport*” to which our
system can be mapped.

Analytical understanding of the dynamics at that point can
be obtained within a rotating wave approximation (RWA),
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FIG. 2. (Color online) Current as a function of the driving
frequency w. The collective spin rotation results in a nontrivial
line shape not centered at the ESR conditions (at iw = Aj, A%,
vertical dashed lines) and a vanishing current (dark state) at Q2 =
(A} 4+ A%)/2. Cases for different driving amplitudes B, are vertically
offset. Parameters (for all figures, except where indicated): Al" =
1072 meV, T =20T", y =0.4 meV/T, B,=0.1 T, and a = 0.8.
Interdot tunneling is resonant: 8¢ = (. The inset shows the shift of
the antiresonance frequency w,, with the amplitude of the ac field.
The solid line is a quadratic fit.

when A} <« Af ~ hw. Thus, neglecting the contribution of
counter-rotating terms, we get a time-independent magnetic-
field Hamiltonian:

Aprwa = Y [(Af —hw)$; + AFS;]. 3)

i

We can easily verify that, [¥_) = (|11) — [41))/+/2 is a zero
eigenvalue eigenstate of H B.RWA + I-AIT at w = Q. Therefore
it is decoupled both from the external magnetic field and
from transport, due to parity and spin blockade. Electrons
occupying any other state or superposition will flow to the
drain lead and be replaced. As a consequence, the system will
dynamically evolve towards a stationary solution given by the
Bell state |y_). The density matrix will be then described
by the pure state |y_)(y_|, fulfilling Lrwal|¥—)(¥_| =0,
with the Liouvillian superoperator ERWA@ = —in~! [I:IDQD +
I-AIB,RWA,@] +£r@. In this sense, opening the system to
transport drives it to a maximally entangled dark state, for
any initial state.

In the laboratory frame, the steady state describes Rabi
oscillations of the two even-parity Bell states, |{1), with
frequency Q = (A} 4+ A%)/(2h):

[Wsi(2)) = i sin 2|3y ) + cos S2r|yr), “

within the RWA. Hence we can approximate the stationary
density matrix by |y (7)) (¥ ()|, explicitly:

Pa®) ~ LI+ 1L D) (L
— (A4 + Hee)l ®)

We note that this solution is exact for a circularly polarized
ac magnetic field but, for experimental feasibility, we restrict
our analysis to linear polarization. As known since the work
of Bloch and Siegert,’! counter-rotating terms of linearly
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FIG. 3. (Color online) A pure and coherent steady state. (a) Purity
of the steady state as a function of the driving frequency. At the
antiresonance frequency €2 a pure state is formed. Far from resonance,
the purity tends to 1/2, consistently with a spin blockaded density
matrix pgsz. Here, B, = B,/5. (b) Mean and variance of a state
tomography at @ = 2. Only two-electron states are represented for
clarity. Finite off-diagonal elements reveal a coherent superposition.
Their explicit time dependence [cf. Eq. (5)] will be averaged out in
the mean of any measurement, but will affect its variance.

polarized electromagnetic fields induce a shift of the resonance
condition; see inset in Fig. 2.

A numerical confirmation of our above results, namely that
the system is driven to a pure and maximally entangled steady
state, is shown next. The purity of the steady state is given
by Tr(/?) which is 1 for a pure state. We verify this property
for the stationary solution of the full time-dependent master
equation (2). As shown in Fig. 3(a), the steady state is mixed
[Tr(p?) < 1, as expected for a transport configuration], but is
dynamically purified at w = 2.

A detection scheme for state coherence is quantum state
tomography. A single-shot readout of the two electron spins
can extract the required correlations.!” In our case, the explicit
time dependence of the dark state off-diagonal elements, cf.
Eq. (5), will be averaged out in the mean of any measurement;
see Fig. 3(b). The result would be then similar to that of a
mixed spin blockade state, (5) = (1/2))_, |o,0){0,0|. The
variance of the experimental data will discriminate between
the two for the finite contribution of off-diagonal elements,
cf. Fig. 3(b). It reveals the coherence of the steady state, in
agreement with what is expected from Eq. (5).%?

Experimental discussion. No signature of such a dark
Bell state has been reported so far.''"'* Our results indicate
that the role of coherent tunneling must be emphasized.
Configurations where interdot tunneling is not resonant show
well defined double peak resonances centered at the individual
ESR conditions, 7iw = A3, A%.1171% Thus they splitas Awy ~
(1 — a)y B;. Using realistic parameters, our model reproduces
that behavior for 8¢ > 0; cf. Fig. 4(a). Then, the effect of
coherent tunneling is reduced and only a tiny antiresonance
appears.

We propose that a clearer evidence of the dark Bell state
will appear in the resonant tunneling case, d¢ = 0, due to
the enhanced interplay of coherent tunneling and collective
spin resonance; see Fig. 4(b). For low B,, where tunneling
dominates the coherent dynamics, two peaks appear around
the antiresonance condition, whose splitting weakly depends
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FIG. 4. (Color online) Transport spectroscopy for different dc
magnetic fields, with B, = B? = 0.1T. (a) For finite detuning (§¢ =
2 meV), a double peak structure coinciding with the individual
ESR conditions (iw = A;, marked by color dots) is consistent with
previous experimental observations. (b) Resonant interdot tunneling
(§e = 0) enhances the visibility of the collective features. The dark
antiresonance is robust upon increasing the magnetic field. At low
B, two peaks are visible which do not correspond to individual ESR.
The latter appear as humps for larger magnetic fields. An offset is in-
troduced for clarity. Inset: Frequency splitting of the current maxima,
Awy . In orange, the expected behavior for the individual ESR.

on the magnetic field, cf. inset in Fig. 4(b), and are not centered
at hw = Ar,Ag. At the antiresonance, current vanishes.
As analyzed in Ref. 6, a finite current at the dark state
condition can be used to estimate the effect of other sources
of decoherence different from tunneling. Upon increasing the
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dc magnetic field, the current develops humps that follow the
individual ESR conditions and would be eventually resolved
as separate peaks for larger B,. However, the central structure
is dominant. This peculiar behavior, namely (i) a double peak
which does not follow the individual ESR conditions at low
B; and (ii) a central structure for larger B,, is robust against
decoherence®® and conforms an unambiguous signature of
the collective dark state, even if the antiresonance becomes
faint.

Conclusions. We predict a transport-induced maximally
entangled state of two spatially separated electrons in a
driven double quantum dot. Interplay of coherent interdot
tunneling and collective electron-spin resonance is essential
for leaving clear signatures of the dark Bell state in transport
spectroscopy experiments. The entangled state is decoupled
from its environment by parity symmetry and Pauli exclusion
principle. Thus it is not affected by the decoherence due to
coupling the system to leads. Other sources of decoherence can
be probed and will motivate further investigation. We propose
an experimental setup which is within reach where resonant
interdot tunneling enhances the visibility of the entangled
dark state features. Our work introduces a mechanism to
produce Bell states in open systems for any initial condition. It
will allow for investigations of nonlocal quantum correlations
of two electrons stored in solid-state qubits. Our simple
configuration constitutes an ideal candidate for the detection
of transport dark states.
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