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Renyi entropy of the interacting Fermi liquid
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Entanglement properties, including the Renyi α entropies and scaling laws, are becoming increasingly
important in condensed-matter physics because they can be used to determine physical properties and the
“fingerprint” of quantum phases. In this work we use variational quantum Monte Carlo to compute the Renyi α

entropies, their scaling laws, and the relationship between different α entropies for one of the most important
phases in condensed matter, the interacting Fermi liquid. We also investigate the relationship between the scaling
laws and the discontinuity in the momentum distribution at the Fermi surface. Contrary to recent theoretical
predictions, we find that interactions increase the prefactor for the α-entropy scaling laws for all particle interaction
strengths and forms. We also show that a theory of these scaling laws for the interacting systems may be developed
by extending the free theory to incorporate properties of the momentum distribution.
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The Renyi α entropies, which provide a measure of
entanglement between two spatial regions of a system, have
been used to identify exotic phases, emergent Fermi surfaces,
and to locate quantum phase transitions.1–5 Their scaling laws
provide information about whether the system is gapped or
critical, the number of degrees of freedom in the low-energy
theory, and several other fundamental physical properties of
the system.6–8 The relationships between different-order Renyi
α entropies provide the most complete characterization of a
quantum phase and are equivalent to the full spectrum of the
density matrix, the entanglement spectrum.9

In two and three dimensions, quantum Monte Carlo
techniques have recently been proven useful for computing α

entropies for interacting systems.10,11 Much of this work so far
has been focused on exotic phases and critical bosonic systems,
leaving many important phases, including the interacting
Fermi liquid, to be explored.3,10,12,13 The Fermi liquid is one
of the most ubiquitous models in condensed-matter physics
and is thought to represent the ground state of most “normal”
fermionic Hamiltonians.

In addition to being of fundamental importance, the Fermi
liquid is also interesting due to the area law violation of
its α-entropy scaling laws.14,15 In two dimensions (2D), the
Widom conjecture predicts a leading-order L log L scaling
for noninteracting systems with a Fermi surface and has
been verified numerically.16 This conjecture was proposed to
describe the limiting behavior of certain operators that are
identical to those that determine the entanglement scaling
laws for noninteracting systems.14 Furthermore, the conjecture
predicts that the prefactor of the leading scaling term only
depends on the shape of the Fermi surface and the shape of
the real-space surface of the region. Recent theoretical studies
of the interacting Fermi liquid in 2D have predicted that the
leading Renyi α-entropy scaling laws are identical to the free
case.17,18

Although many low-energy properties of the interacting
Fermi liquid are well described by Fermi liquid theory,
we find that the Renyi entropies are not. The prefactor of
the leading scaling behavior of the Renyi entropies for the
interacting Fermi liquid is larger than that predicted by the
Widom conjecture. This result is shown to hold for short- and

long-range interparticle potentials, and all interaction strengths
and Renyi entropies computed in this work. We compute the
quasiparticle renormalization factor Z to quantify interaction
strength in the system and show that the prefactor of the leading
Renyi entropy scaling law increases as interaction strength
increases.

The Renyi α entropies are defined as

Sα(ρA) = 1

1 − α
log

[
Tr

(
ρα

A

)]
, (1)

where ρA is the spatially reduced density matrix of a system
partitioned into two regions, A and B.

Unbiased estimates of these entropies for trial wave func-
tions can be calculated in variational quantum Monte Carlo
(VMC). The VMC method is used for computing observables
from many-body wave functions and does not have a fermion
sign problem. It has been used to calculate accurate energies
and Fermi liquid parameters for the electron gas, helium-3, and
several related Fermi liquid systems.19–21 We use it to compute
the α entropies via the swap operator,10

Tr(ρα
A) = 〈�1 ⊗ · · · ⊗ �α| ̂SWAPα|�1 ⊗ · · · ⊗ �α〉, (2)

for an integer valued α > 1. This operator works by cyclically
swapping coordinates between α statistically independent
copies of the system, each sampling �2.

In practice, the expectation value of the swap operator
Tr(ρα

A) decays rapidly as region A increases in size. To compute
Renyi α entropies for large regions we factorize the swap
operator into two parts: sign and magnitude.3 These two pieces
are computed separately and then summed to obtain the full
value. This factorization is not an approximation and does not
change the values we compute for Sα .

Computational details. In this work the swap operator
for S2 was used without factorization for circular regions A
up to 〈N〉 = 16 for a simulation cell of 137 electrons and
with the sign factorization technique for 〈N〉 = 16, 25, and
36 in 261 electron systems. We computed S2 for regions of
〈N〉 = 1–16 for the 137 particle simulation cell using the
unfactorized estimator for the modified Pöschl-Teller potential
(MPT). When factorization is unnecessary we are able to
increase our computational efficiency by computing the swap
operator for several region sizes at the same time. To increase
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TABLE I. Coulomb potential: rs is the Wigner-Seitz radius of
the electron gas, rs = 0 is the noninteracting system, �S2/L = l +
m log L, and Z is the quasiparticle renormalization factor. Corr=
(EV MC − EHF )/(EDMC − EHF ) is the ratio of correlation energy
the wave function recovers and provides a metric for wave-function
quality.

rs m l Z Corr

1 0.005(1) 0.001(1) 0.755(1) 0.991
5 0.035(1) 0.001(3) 0.450(1) 0.990
10 0.053(2) 0.027(3) 0.295(1) 0.988
20 0.073(2) 0.065(4) 0.134(1) 0.985

the efficiency of the sign factorization technique we moved
pairs of particles, one in each system, together. Approximately
106 CPU hours were spent on the smaller systems and the
same on the larger. For the higher-order α entropies we were
restricted to 〈N〉 = 16 or fewer electrons for the 261 electron
system. All quantum Monte Carlo calculations are performed
in QMCPACK.22 By integrating out regions that are a small
fraction of the system size, we minimize interactions of region
A and its periodic neighbors. For small subregions we see
oscillations, small relative to S2, that decay as the subregion
length increases for both the interacting and noninteracting
cases.23 Fits are performed on �S2/L to minimize the effect
of oscillations on the fitted parameters.

Wave functions. The ground-state wave function for the
noninteracting Fermi gas (FG) Hamiltonian is �FG(R) =
〈R|(∏k<kf

c
†
k|0〉). To this we add a Jastrow correlation factor

and optimize to obtain the trial wave function for the spin-
polarized homogeneous electron gas (HEG), �HEG(R) =
J (R)�FG(R), with J (R) = exp(

∑
i<j U (rij )) and U some

function with optimizable parameters.21 For the modified
MPT, as with the HEG, we use an optimized trial wave function
of the Slater-Jastrow form, �MPT (R) = J (R)�FG(R).

The Slater-Jastrow trial wave function for the interacting
Hamiltonians adds additional correlation between particle
pairs. We parametrize the Jastrow by a flexible B-spline
function with fixed cusp conditions depending on the potential
and optimize them using a variant of the linear method.24 For
the HEG wave function we eliminate the divergence in the
electron-electron energy as rij → 0 by including a cusp in the
Jastrow.21 For the MPT wave function, �MPT (R), there is no
singularity in the potential and therefore no cusp in the Jastrow.

The degree to which the trial wave function represents the
ground-state Fermi liquid in VMC depends on its overlap
with the exact ground-state wave function. We estimate the
quality of our trial wave function by looking at the amount
of correlation energy the wave function recovers in VMC
relative to fixed-node-diffusion quantum Monte Carlo, Ecorr =
EDMC − EHF .21 For exact wave functions this is 100%. We
recover more than 98% of this correlation energy for all
densities and potentials, shown in Tables I and II. Further
tests of the wave-function quality were performed at rs = 5,
with a wave function of the Slater-Jastrow backflow form,19

yielding no significant changes from the results presented
here.

TABLE II. Modified Pöschl-Teller potential. V0 is the strength
of the potential for the modified Pöschl-Teller potential, and all other
labels are as in Table I.

V0 m l Z Corr

10 0.032(1) 0.007(2) 0.504(6) 0.984
20 0.062(1) 0.028(1) 0.316(5) 0.981

The noninteracting reference entropies are computed using
the correlation function technique using the same number
of electrons as the corresponding VMC calculation and are
converged with respect to real-space grid.25

Results. With these techniques, we first consider the Renyi
α entropies of the spin-polarized homogeneous electron gas.
Starting from the noninteracting Fermi-gas Hamiltonian in
hartree units, HFG = −1

2

∑
i ∇2

i , the HEG Hamiltonian is
obtained by adding the Coulomb potential, VC = ∑

i<j r−1
ij +

C(rs), with rij = |ri − rj | the distance between electrons i and
j , and a constant C(rs) due to a uniform positive background
charge.

In Fig. 1 we plot SHEG
2 , the scaling laws for the HEG at

different Wigner-Seitz radii rs = (πν)−1/2 with ν the number
density. For all our scaling-law plots, we rescale all lengths,
L → L/(

√
πrs) = √

π〈NA〉, with NA the average number of
particles in the region, so that Sα(L) for the noninteracting
Fermi liquid has no rs dependence. Under this rescaling,
all interacting Sα will collapse to the noninteracting SFG

α if
interactions are irrelevant. The noninteracting data is then fit by
the leading scaling form predicted by the Widom conjecture,
S(L) = m0(L/l0) log(L/l0), and we find m0 = 0.032(2) and
l0 = 0.113(5).14,23

We define �Sα = SHEG
α − SFG

α as the difference between
the interacting and noninteracting Renyi α entropies for the

FIG. 1. (Color online) Scaling form for the spin-polarized elec-
tron gas. (Main plot) S2/L for the spin-polarized interacting electron
gas at rs = 1,5,10,20 and the noninteracting Fermi liquid. L is scaled
so that without interactions all lines lie on top of �FG results. The
high-density rs = 1 data falls on top of the noninteracting liquid
while the lower-density, more strongly correlated liquids have larger
Renyi 2 entropies. The �FG reference is the exact noninteracting
S2 computed using the same number of particles as the interacting
system for each L. (Inset) �S2/L = (SHEG

2 − SFG
2 )/L plotted against

log L. The 2 entropy for the interacting case scales the same as the
noninteracting case with a larger prefactor. The lines are from a fit to
�S2/L = l + m log L shown in Table I.
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FIG. 2. (Color online) Relationship between α entropies for the
spin-polarized electron gas. (Left) �Sα/L = (SHEG

α − SFG
α )/L for

α = 2,3,4 for region A size log L ≈ 1.5, 〈NA〉 = 6.25. Sα increases
as correlations increase and decreases as α increases. (Right) 2α

1+α

Sα

L

for α = 2,3,4. Besides some small L oscillations, this scaling makes
the noninteracting Renyi α entropies linear in α. Interactions modify
this relationship: the rescaled α entropies decrease as α gets larger.

HEG and plot them as the inset of Fig. 1. We find �S2/L

is well fit to the two-parameter form l + m log L presented
in Table I. These plots demonstrate the extent to which the
scaling laws are changed from the noninteracting case. As
the Wigner-Seitz radius is increased, so too is the prefactor
of the leading scaling term m. This increase in the Renyi
α-entropy scaling laws is a violation of the Widom conjecture
and shows that the interacting system is more entangled than
its noninteracting counterpart.

Changes from the noninteracting theory are also seen
for the higher-order Renyi α entropies. In the left graph of
Fig. 2, �Sα/L is plotted for the higher-order α entropy for a
region of size 〈N〉 = 6.25. The simple relationship between
noninteracting Sα does not hold when Coulomb interactions
are included, as shown on the right graph of Fig. 2. Upon
rescaling, Sα

L
→ 2α

1+α

Sα

L
, the noninteracting Renyi α entropy

is constant as a function of α. The difference between the
interacting and noninteracting Sα decreases as α gets larger. As
α increases the Renyi entropy is more strongly dominated by
the largest eigenvalues in the density matrix spectrum. Because
the interacting and noninteracting entropies converge as α gets
larger, it indicates that the largest values in the spectrum of the
density matrix may be universal.

To determine if these scaling-law changes are due to the
long-range nature of the Coulomb interparticle potential, we
also compute the scaling laws for a Hamiltonian with a
short-range potential, the modified Pöschl-Teller potential.
The MPT, VMPT = V0

∑
i<j cosh−2(rij ), is a well-tested short-

range potential for the Fermi gas that has been used to model
cold atom systems.26,27 The parameter V0 can be tuned to
increase the correlation of the system and the effective range
is set to the Wigner-Seitz radius, rs = 1.26

The fitting parameters of �S2/L for the MPT at all V0

computed are listed in Table II. Despite the short range
of this interparticle potential, we still find modifications to
the noninteracting scaling laws for S2. Because the Widom
conjecture depends on having a discontinuity in occupation
of the momentum states at the Fermi surface, it is interesting
to consider properties of the momentum distribution for these
interacting systems. We do so by computing the quasiparticle

FIG. 3. (Color online) Relationship between particle interaction
strength and modification of leading scaling law for S2. Slope differ-
ence, m: �S2/L = (SHEG

2 − SFG
2 )/L = l + m log L, as a function of

1 − Z for the Coulomb and modified Pöschl-Teller potential at all
correlation strengths considered. Lines are guides to the eye from
linear fits. For all interaction forms and strengths the prefactor of
the leading scaling law is increased. Beyond some minimal Z ≈ 0.8
the relationship for m and 1 − Z is linear within error bars for the
Coulomb potential.

renormalization factor Z.28 Z provides a metric for particle
correlation strength and is equal to the magnitude of the break
in the momentum distribution at the Fermi surface. As shown in
Fig. 3, the scaling laws for the MPT systems show qualitative
agreement with the HEG with the same Z. As interparticle
correlations are strengthened Z decreases, and the prefactor
for the leading scaling behavior of the Renyi α entropies
increases. For the HEG this results in a linear relationship
for Z between 0.2 and 0.8. This result suggests a modification
of the scaling-law prefactor based on the Widom conjecture
due to the momentum distribution of the interacting system.

We consider the possibility that the scaling laws we
observed are due to subleading terms that have not decayed for
our largest calculations. For the data sets we have generated
there is no evidence that, within our error bars, the leading-
order scaling term is actually a decaying subleading term.
Furthermore, there is no theoretical support for a subleading
term which scales as the leading term for small systems but
decays as the system size L gets large.

Conclusions. These fundamentally nonperturbative Renyi
α-entropy results for interacting Fermi liquid show an in-
crease in the leading scaling-law prefactor beyond the one
predicted by the Widom conjecture. These results hold for all
wave-function forms, correlation strengths, and interparticle
potentials considered in this work. This does not rule out
a universal scaling-law theory. However, it may be more
complicated than the noninteracting theory to account for
the modifications to the leading scaling term. Development
of such a theory is likely to benefit from investigation of
momentum distribution properties, such as Z, on the Renyi
α entropies. Further entanglement studies of scaling laws
and Fermi liquid parameters for interacting systems, such as
paramagnetic electron gases, Wigner crystals, and realistic
Coulombic systems, are essential for determining the exact
relationship between them. We expect further studies will help
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resolve this issue and contribute to how we understand the role
of entanglement in condensed-matter physics.
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