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Topological phases in ultracold polar-molecule quantum magnets
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We show how to use polar molecules in an optical lattice to engineer quantum spin models with arbitrary spin
S � 1/2 and with interactions featuring a direction-dependent spin anisotropy. This is achieved by encoding the
effective spin degrees of freedom in microwave-dressed rotational states of the molecules and by coupling the
spins through dipolar interactions. We demonstrate how one of the experimentally most accessible anisotropies
stabilizes symmetry protected topological phases in spin ladders. Using the numerically exact density matrix
renormalization group method, we find that these interacting phases—previously studied only in the nearest-
neighbor case—survive in the presence of long-range dipolar interactions. We also show how to use our approach
to realize the bilinear-biquadratic spin-1 and the Kitaev honeycomb models. Experimental detection schemes
and imperfections are discussed.
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Recent advances in ultracold polar molecules,1–3 Rydberg
atoms,4,5 magnetic atoms,6,7 and magnetic defects in solids8–10

have spurred tremendous interest in exotic strongly correlated
many-body phenomena arising from anisotropic, long-ranged
dipole-dipole interactions.11–46 The types of anisotropies
realizable with these interactions are typically limited to simple
changes of the interaction sign and magnitude according to
the spherical harmonic Y2,0 ∝ 1 − 3 cos2 θ , where (θ,φ) are
the spherical coordinates of the vector connecting the two
interacting dipoles.11,13,32,33

In this Rapid Communication we show, in the context of po-
lar molecules, that microwave dressing provides a tremendous
degree of simultaneous control over five independent dipole-
dipole interaction terms whose angular dependences are given
by the rank-2 spherical harmonics. This opens the door to
simulating well-known models including the spin-1/2 XXZ
model with a direction-dependent spin anisotropy, the spin-
1 bilinear-biquadratic model,47 and the Kitaev honeycomb
model.48 Thanks to the use of direct dipole-dipole coupling, the
resulting interactions are stronger and hence easier to observe
experimentally than other—potentially direction-dependent—
spin-spin interactions such as superexchange in ultracold
atoms49 or perturbative dipole-dipole-mediated couplings be-
tween polar molecules.16,17

As a specific example demonstrating the reach of our
method, we show how to design a spin-1/2 XXZ model
with direction-dependent spin anisotropy using a minimal
and experimentally reasonable microwave configuration. In
a two-legged ladder geometry with nearest-neighbor inter-
actions, this model has been shown to exhibit symmetry
protected topological (SPT) phases.50 These phases are exotic
gapped states of matter distinct from trivial gapped phases
when specific symmetries are present. They have recently
attracted extensive interest51–59 because they do not fit within
the framework of Landau symmetry breaking and possess
exotic properties such as topologically protected edge states,60

nonlocal order parameters,61,62 and unique entanglement
properties.57,63 Using the density matrix renormalization group

(DC E-field)ẑ

FIG. 1. (Color online) A lattice of polar molecules in the XY

plane is subjected to a dc electric field along ẑ. We define the xyz

coordinate system as the rotation of the XYZ coordinate system around
Ẑ by �0 and then around ŷ by �0. A vector R with polar coordinates
(R,�) in the XY plane has spherical coordinates (R,θ,φ) in the xyz

coordinate system.

method (DMRG),64 we compute the phase diagram of the
two-legged-ladder model obtained in our polar-molecule
implementation and provide evidence that—at least in this
one-dimensional model—SPT phases also exist in the presence
of long-range dipolar interactions.

In a major advance over Refs. 32, 33, and 65, our proposal
realizes an interacting topological phase. Furthermore, relying
on homogeneous microwave—not optical—dressing, our pro-
posal is much easier to realize experimentally than the one on
topological flat bands.65 Finally, since the relevant motional
energy scale in our setup is the lattice band gap, our proposal
can be realized at much higher motional temperature than the
t-J -type model of Refs. 32 and 33, which relies on tunneling.

Setup. We consider an array of polar molecules confined
to the XY plane and pinned in a deep optical lattice with one
molecule per site [see Fig. 1(a)]. Each molecule is treated as a
rigid rotor with dipole moment operator d, angular momentum
operator N, and a rotational constant B, and is described by
the Hamiltonian H0 = BN2 − Edz in the presence of a dc
electric field E along ẑ. As one turns on E, the simultaneous
eigenstates of N2 and Nz with eigenvalues N (N + 1) and M

adiabatically connect to eigenstates of H0, which we denote
|N,M〉. The dipole-dipole interaction between molecules i and
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j separated by R [see Fig. 1(a)] is66

Hij = −
√

6

R3

2∑
q=−2

(−1)qC2
−q(θ,φ)T 2

q (di ,dj ), (1)

where C2
q (θ,φ) = √

4π/5 Y2,q(θ,φ) and the many-body
Hamiltonian is H = (1/2)

∑
i �=j Hij . Here T 2

q (di ,dj ) is

given by T 2
±2 = d±

i d±
j , T 2

±1 = (d0
i d±

j + d±
i d0

j )/
√

2, and

T 2
0 = (d−

i d+
j + 2d0

i d0
j + d+

i d−
j )/

√
6, where d0 = dz and

d± = ∓(dx ± idy)/
√

2. Thus T 2
q changes the total M of the

two molecules by q. For R ∼ 0.4 μm, the interaction energy
scale is d2/R3 ∼ 1 (100) kHz in KRb (LiCs).

To obtain a spin-S Hamiltonian, we select in each molecule
2S + 1 disjoint sets of |N,M〉 states and couple the states
within each set to form dressed states (∼n microwave fields are
needed to couple n states). We then choose one67 dressed state
from each set to create the spin-S configuration. Projecting
Eq. (1) onto the chosen spin-S basis, the resulting spin-
spin interactions consist of five potentially independently
controllable terms with angular dependences C2

0 , Re[C2
1 ],

Im[C2
1 ], Re[C2

2 ], and Im[C2
2 ]. References 32 and 33 considered

the special case where S = 1/2, total Sz is conserved, and only
C2

0 contributes. Therefore, Refs. 32 and 33 could not realize
interactions featuring a direction-dependent spin anisotropy,
a crucial ingredient of the present proposal. In this Rapid
Communication, we evince the power of the approach beyond
the special case of Refs. 32 and 33.

Interactions featuring a direction-dependent spin
anisotropy. Our first demonstration of direction-dependent
interactions focuses on S = 1/2 and assumes that Hij

connects a pair of molecules in the state |m1〉|m2〉 (|m1〉 and
|m2〉 are dressed states) only to itself and to |m2〉|m1〉, while
all the other processes are off resonant and thus negligible.
Although one may be able to independently control each of
the five C2

q terms, here we will focus on the C2
0,±2 terms since

C2
±1 terms are resonant only at specific values of E.68

Consider the level configuration in Fig. 2(a). We assume the
Rabi frequencies �± are positive and satisfy |�±| � Hij . We
take |↑〉 = |0,0〉 and |↓〉 = α|1,−1〉 − β|1,1〉 as our dressed
spin states, where {α,β} = {�−,�+}/

√
�2

− + �2
+.
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FIG. 2. (Color online) (a) The level scheme and resonant
microwave coupling used to realize the Hamiltonian, Eq. (2).
The dressed states we choose are {|↑〉,|↓〉} = {|0,0〉,(�−|1,−1〉 −
�+|1,1〉)/

√
�2− + �2+}. (b) Microwave-dressed rotational levels for

the SU(2)-symmetric spin-1 model. The dressed states are |1〉 (linear
combination of states indicated by triangles), |0〉 (ovals), and |−1〉
(the rest). The diagram is schematic: The real system is anharmonic
and levels |N,M〉 with the same N are nondegenerate (unless the
levels have the same |M|).

Notice that |↓〉 is a single-molecule eigenstate in the
presence of �±. The spin model is then derived by projecting
Hij onto states |↑〉 and |↓〉 via the same steps as in Ref. 33
with one major difference: d+

i d+
j , featuring a C2

−2 angular
dependence, resonantly couples |1,−1〉|0,0〉 → |0,0〉|1,1〉.
The result is69

R3Hij = Jz(�)Sz
i S

z
j + Jxy(�)

(
Sx

i Sx
j + S

y

i S
y

j

)
, (2)

where Jz(�) = [1 − 3 cos2(�− �0) sin2 �0](μ0 − μ1)2,
Jxy(�) = −μ2

01 [1 − 3 cos2(� − �0) sin2 �0] + 6αβμ2
01[1 −

cos2(� − �0)(1 + cos2 �0)], μ0 = 〈0,0|d0|0,0〉, μ1 =
〈1,1|d0|1,1〉, μ01 = 〈1,1|d+|0,0〉, and Sj is the spin-1/2
operator for molecule j . The spin anisotropy Jxy/Jz of this
XXZ model changes depending on the polar angle � of the
vector R connecting the two interacting molecules. As we
discuss below, Eq. (2) allows one to study SPT phases in
ladders. Another special case is a square-lattice Heisenberg
model with a tunable ratio between coupling strengths on X̂

and Ŷ bonds.70 In the nearest-neighbor limit, this enables one
to study the change from one-dimensional (uncoupled) chains
to a two-dimensional behavior. Such models have also been
used to explore the physics of stripes in high-temperature
superconductors.71,72 While we see that even the simple level
structure of Fig. 2(a) yields a wealth of exotic physics, we
show below that additional features can be accessed with
increased microwave control.

Degenerate dressed states and non-Abelian anyons. To
realize models such as the quantum compass model,73 the
Kitaev honeycomb model,48 and the Yao-Kivelson model,74

we need to go beyond Eq. (2) and realize terms, such as Sx
i Sx

j ,
that do not conserve the total Sz. To do this, we simply tune
|↑〉 and |↓〉 to be degenerate.

As an example, consider the Kitaev honeycomb model,
where interactions along � = π/6, π/2, and 5π/6 are
of the form Sx

i Sx
j , S

y

i S
y

j , and Sz
i S

z
j , respectively.48 At

(�0,�0) = (0,0), the interaction between two molecules i and
j is R3Hij (�) = v(�) · M, where v(�) = {1,−3 cos(2�)/
2,3 sin(2�)/2} and M = {√3/2T 2

0 ,T 2
2 + T 2

−2,iT
2

2 − iT 2
−2}.

Since v(π/6), v(π/2), and v(5π/6) are linearly independent,
it is, in principle, possible to choose the degenerate
dressed states |↑〉 and |↓〉 to ensure that Hij (π/6) ∝ Sx

i Sx
j ,

Hij (π/2) ∝ S
y

i S
y

j , and Hij (5π/6) ∝ Sz
i S

z
j . In Ref. 75, we

show that, with ∼25 microwave fields, such a choice of
dressed states is indeed possible, allowing one to realize the
Kitaev B phase in the presence of a magnetic field. This
gapped phase supports non-Abelian anyonic excitations,
which can be used, for example, for topologically protected
quantum state transfer76 and quantum computing.48

S > 1/2 and the bilinear-biquadratic model. We now
show that one can extend this tremendous control
over spin-spin interactions to S > 1/2. In particular, we
show how to obtain the general SU(2)-symmetric spin-
1 Hamiltonian, i.e., the bilinear-biquadratic Hamiltonian
cos(γ )Si · Sj + sin(γ )(Si · Sj )2, which has a rich phase di-
agram even in one dimension.17,47,77 In particular, γ = π/4
and arctan(1/3) give the SU(3)-symmetric and the Affleck-
Lieb-Kennedy-Tasaki (AKLT)78 Hamiltonians, respectively.
One can also consider generalizations to SU(N ) with arbitrary
N as well as away from SU(2).79
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Ising Néel
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FIG. 3. (Color online) Spin ladder of Ref. 50 and its phase dia-
gram showing SPT phases in the presence of long-range interactions.
(a) The nearest-neighbor model. (b) Phase diagram in the presence of
long-range interactions. The shaded area indicates points achievable
with the simple configuration of Fig. 2(a). The shaded area does not
extend past the limits of the vertical axis, while it extends infinitely
far along the horizontal axis. (c) Entanglement splitting �ES (open
boxes, left axis) and energy gap (solid boxes, right axis) of the SPT
phases along λz = −0.5 cuts (bold, red lines) shown in (b).

We build our spin-1 dressed-state basis {|1〉,|0〉,|−1〉} from
the 15 bare levels shown in Fig. 2(b). For simplicity, the
model presented here will have only the C2

0 term. We work at
E = 3.244B/d [=13 (7) kV/cm in KRb (LiCs)], for which
the bare-states process |1,0〉|1,0〉→|2,0〉|0,0〉 is resonant. Fur-
thermore, we choose the energies of the dressed states to make
the process |0〉|0〉→ |−1〉|1〉 resonant.80 The latter is needed
to engineer the S−

i S+
j term present in the desired Hamiltonian.

Aside from this exception, we again assume that a pair of
molecules in dressed states |m1〉|m2〉 is connected via Hij only
to itself and to |m2〉|m1〉. Using 12 microwaves to create the
dressed states in Fig. 2(b), we find69 that we can achieve any γ

and, thus, any bilinear-biquadratic Hamiltonian. Removing all
five N = 4 states, we are left with just eight microwaves, which
simplifies the experimental implementation but at the cost
of only accessing the γ = 1.1 point. The typical strength of
interactions achieved is R3Hij ∼ 0.01d2. Stronger interactions
and a reduced number of microwaves might be achievable by
further optimizing the choice of levels and microwaves.

SPT phases in spin ladders. We now turn to the focus of
our work: We use Eq. (2) to implement a specific ladder model
[see Fig. 3(a)] introduced in Ref. 50 and shown to support
nontrivial SPT phases for nearest-neighbor interactions. The

symmetries protecting these interacting topological phases are
the exchange σ of the two legs and D2 = {E,Rx,Ry,Rz},
where E is the identity and Rα is a π pulse around the axis α on
all spins. Note that although we focus on a ladder system since
it is amenable to a numerically exact treatment, we expect an
even richer phase diagram in dimensions D > 1.

While for our choice of levels b ≡ μ2
01/(μ0 − μ1)2 satisfies

b ∈ [2.6,∞), any b � 0 can be accessed by using reduced
nuclear spin overlaps between |↑〉 and |↓〉 (see experimental
considerations below) or by choosing |N,M〉 with different
N . To ensure the σ symmetry, we take �0 = π/2. To
ensure a Heisenberg Hamiltonian along � = 0, we choose
αβ = (b + 1)/(6b). Since αβ ∈ [0,1/2] and b � 0, b can go
from 1/2 to ∞. Rescaling the interaction by (μ0 − μ1)2

(which goes up to ≈0.1d2 for our choice of levels), defining
λz = 1 − 3 cos2 �0 (tunable via �0 between −2 and 1),
and λxy = − 2(b+1)

3 − 4b+1
3 λz [see shaded area in Fig. 3(b)],

we obtain Eq. (2) with Jz(�) = 1 − (1 − λz) sin2 � and
Jxy(�) = 1 − (1 − λxy) sin2 �. As desired, at the nearest-
neighbor level, these expressions for Jz(�) and Jxy(�)
reproduce Fig. 3(a).

In our implementation using polar molecules, the nearest-
neighbor interactions are replaced by dipolar interactions,
which give rise to nontrivial longer-range corrections. In order
to investigate the role of these corrections, we numerically
calculate the phase diagram of the spin ladder with long-range
interactions, as shown in Fig. 3(b), using DMRG on 200
rungs with smooth boundary conditions.81 By performing a
finite-size scaling using systems with up to 400 rungs, we
estimate the finite-size effects to be comparable to the size of
the symbols in Fig. 3(b). The phase diagram is qualitatively
similar to the nearest-neighbor case50 and exhibits the same six
phases, including the two SPT phases. In Ref. 50’s language,
the four nontopological phases are the Ising Néel, the Ising
stripe Néel, and two product phases of rung singlets and Sz = 0
rung triplets. The remaining two phases, t0 and tz, are two out
of seven nontrivial SPT phases protected by D2 × σ .50 The
t0 phase can be connected to the Haldane phase82 and to the
AKLT state78 by treating the triplet states on each rung as a
spin-1 particle. Meanwhile, in the nearest-neighbor case, tz is
obtained from t0 by taking |↑〉 → −|↑〉 on one of the legs,
which is the λxy → −λxy symmetry of the nearest-neighbor
phase diagram.50 Long-range interactions break this symmetry
and, in particular, reduce the size of the tz phase relative to
the t0 phase as a result of substantial next-nearest-neighbor
Sx

i Sx
j + S

y

i S
y

j interactions for λxy > 0.
We observe that the tz phase is sensitive to artificial

cutoffs in the interaction range, so we use matrix product
operators within DMRG to provide an efficient description of
interactions without a cutoff ; instead, we fit the long-range
interactions to a sum of exponentials.69,83–86 The boundaries
of the Ising Néel and Ising stripe Néel phases were obtained by
calculating the corresponding order parameters. We identified
the two rung phases by calculating 〈Sx

i Sx
j + S

y

i S
y

j 〉 on the
rungs and by verifying that the gap does not close as |λxy |
increases to large values where the system is ultimately exactly
solvable. The boundaries of the SPT phases were obtained
by computing the entanglement splitting, which we define
as �ES = ∑

j=odd(wj − wj+1), where wj are the eigenvalues
of the reduced density matrix for a bipartition at the center
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of the system, sorted from largest to smallest. Due to their
twofold degenerate entanglement spectrum,63 SPT phases
have �ES = 0, as shown in Fig. 3(c). We have also verified that
all phases are gapped. Interestingly, the energy gap in the SPT
phases, shown in Fig. 3(c), exhibits a cusp indicative of a level
crossing, which deserves further investigation. Finally, using
again systems with 200 rungs, we added to the Hamiltonian a
small term ∝Sx

i ± Sx
j , where i and j are sites on the same edge

rung. Referring to operators that split the edge degeneracy as
active operators, we verified the prediction50 that Sx

i + Sx
j is

an active operator for the t0 phase while Sx
i − Sx

j is not, and
vice versa for the tz phase.

Experimental considerations. By temporarily breaking the
D2 × σ symmetry, the phases t0 and tz can be prepared
from rung phases without closing the gap.59 Turning to the
question of detection, an SPT phase can be classified50 by
finding its active operators, i.e., those operators that split
the edge degeneracy. We propose to diagnose this splitting
by measuring an active operator in linear response to the
application of that same operator at frequency ω and looking
for the zero-bias (ω = 0) peak. Repeating the same procedure
for inactive operators will yield no zero-bias peak. In our
implementation, a z magnetic field proportional to μ2

0 − μ2
1

naturally arises at the edges from dipole-dipole interactions.69

Since such a field constitutes an active operator of the t0 and
tz phases, it is natural to probe the response of the system by
tuning μ2

0 − μ2
1 with the dc electric field. In combination with

a spectroscopic verification of the bulk gap, the response to
active operators allows one to detect and classify SPT phases.
A more modest first experimental step could be to use a
Ramsey-type experiment41 to benchmark how accurately the
molecules emulate the desired Hamiltonians.

Polar alkali-metal dimers have a hyperfine structure
Hhf ,33,87 which we have ignored so far. We will illustrate how to
deal with Hhf for the specific case of S = 1/2. Assuming that
microwave Rabi frequencies �i are much larger than Hhf , we
can project the hyperfine structure on dressed states |↑〉 and |↓〉.
The necessary conditions Hhf � �i � B are easy to satisfy:
For example, in 40K87Rb, Hhf ∼ (2π )1 MHz and the rotational
constant is B ∼ (2π )1 GHz. The simplest situation arises when
an applied magnetic field—of a strength already experimen-
tally used1—makes 〈↑ |Hhf|↑〉 and 〈↓ |Hhf|↓〉 diagonal in the
same basis of decoupled nuclear spins. The nuclear-spin degree

of freedom can then be eliminated by working with a single
state from this basis. For smaller magnetic fields, one could
prepare the system in any pair of nonorthogonal eigenstates
of 〈↑ |Hhf|↑〉 and 〈↓|Hhf|↓〉. An imperfect overlap of these
two states will effectively reduce the transition dipole moment
between |↑〉 and |↓〉, resulting in an additional control knob of
the interactions.

Controlling tens of independent microwave frequen-
cies in the frequency range required by our proposal is
straightforward.88 The two uncertainties involved are in the
generation of the microwaves and in the coupling to molecules.
The latter is dominant: Current ultracold molecule experiments
observe only 0.1% deviations in their ∼1 ms microwave pulses
without any particular optimization,89 and this is expected
to be independent of the number of microwaves applied.
Polarization control is more challenging. However, this should
be attainable, for example, by simply interfering the outputs
of two independently controlled microwave horns.

Outlook. While dipolar interactions did not destroy the SPT
phases in our example, quantum magnets with long-range
interactions have recently been shown to harbor unusual and
often dimension-specific physics.90–96 The polar-molecule ex-
periment we propose could therefore help guide the theoretical
understanding of these effects in two-dimensional and three-
dimensional systems, including SPT phases, where efficient
numerical methods are lacking. In fact, the classification of
SPT phases is yet to be extended to models with long-range
interactions. Finally, we expect our methods to be immediately
extendable to other dipole-dipole interacting systems such as
Rydberg atoms,4,5 magnetic atoms,6,7 and magnetic defects in
solids.8–10
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47U. Schollwöck, T. Jolicoeur, and T. Garel, Phys. Rev. B 53, 3304
(1996).

48A. Kitaev, Ann. Phys. 321, 2 (2006).
49I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885

(2008).
50Z.-X. Liu, Z.-B. Yang, Y.-J. Han, W. Yi, and X.-G. Wen, Phys. Rev.

B 86, 195122 (2012).
51A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig, Phys.

Rev. B 78, 195125 (2008).
52A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig, in

Advances in Theoretical Physics: Landau Memorial Conference,
edited by V. Lebedev and M. Feigel’man, AIP Conf. Proc.
Vol. 1134 (AIP, Melville, NY, 2009), p. 10.

53A. Kitaev, in Ref. 52, p. 22.
54S. Ryu, A. P. Schnyder, A. Furusaki, and A. W. W. Ludwig, New J.

Phys. 12, 065010 (2010).
55Z.-C. Gu and X.-G. Wen, Phys. Rev. B 80, 155131 (2009).
56X. Chen, Z.-C. Gu, and X.-G. Wen, Phys. Rev. B 83, 035107 (2011).
57X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G. Wen, arXiv:1106.4772.
58F. Pollmann, E. Berg, A. M. Turner, and M. Oshikawa, Phys. Rev.

B 85, 075125 (2012).
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