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Theory of the random potential and conductivity at the surface of a topological insulator
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We study the disorder potential induced by random Coulomb impurities at the surface of a topological insulator
(TI). We use a simple model in which positive and negative impurities are distributed uniformly throughout the
bulk of the TI, and we derive the magnitude of the disorder potential at the TI surface using a self-consistent theory
based on the Thomas-Fermi approximation for screening by the Dirac mode. Simple formulas are presented for
the mean squared potential both at the Dirac point and far from it, as well as for the characteristic size of
electron/hole puddles at the Dirac point and the total concentration of electrons/holes that they contain. We also
derive an expression for the autocorrelation function for the potential at the surface and show that it has an
unusually slow decay, which can be used to verify the bulk origin of disorder. The implications of our model for
the electron conductivity of the surface are also presented.
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I. INTRODUCTION

The three-dimensional (3D) topological insulator (TI)1–5

has gapless surface states with a Dirac-like spectrum, which
host a number of interesting quantum transport phenomena.6,7

These surface states are influenced by the presence of a random
Coulomb potential, which is believed to determine the mobility
of surface electrons.8 Recently, the random potential at the
surface of typical TIs was studied directly by spectroscopic
mapping with a scanning tunneling microscope.9 It was
shown that near the Dirac energy random fluctuations of
the potential have a Gaussian-like distribution with a width
∼20–40 meV. For a theoretical interpretation of their results,
Ref. 9 used a model of random charges with two-dimensional
(2D) concentration ni situated in a plane parallel to the surface
at a distance d from it10,11 that is self-consistently screened
by the electrons of the surface Dirac mode. Originally, this
model was suggested to describe disorder in graphene, where
random charges can be assumed to be localized on the surface
of a nearby substrate. It has since been extended to describe
the surface of a 3D TI.12

In this paper, we explore a different model of Coulomb dis-
order in TIs. We assume that the bulk of the TI is a completely
compensated semiconductor with equal 3D concentration N

of donors and acceptors, which are randomly distributed
throughout the bulk. This model is mathematically simpler
than the 2D one10,11 because impurities are characterized by
only one parameter, N , rather than two parameters, ni and d.
An analysis of this 3D model is presented below, but before
turning to it, we would like to give arguments for the 3D model
that are specific for known TIs.

First, such a model is justified by current methods of
preparation of TI crystals. Typically, as-grown TI crystals are
heavily doped n-type semiconductors with N ∼ 1019 donors
per cm3. The Fermi level of such a crystal is high in the
conduction band. In order to bring the Fermi level down to
the middle of the gap and increase the bulk resistivity, the TI
is compensated by acceptors with concentration close to that
of the donors, N . Below, we assume that these donors and
acceptors are randomly distributed in space. This is, indeed,
usually the case for samples made by cooling from a melt,
where the distribution of impurities in space is a snapshot of

the distribution at much higher temperature, when diffusion
of impurities practically freezes.13 In semiconductors with a
narrow enough forbidden gap Eg , at this temperature, there is a
concentration of intrinsic carriers larger than the concentration
of impurities. These intrinsic carriers screen the Coulomb
interaction between impurities, so that the impurities remain
randomly distributed in space. As the melt is cooled to the point
where intrinsic carriers recombine, the impurities are left in
random positions.14,15 If diffusion freezes at T ∼ 1000 K, it is
reasonable to assume that impurities are randomly positioned
in a semiconductor with Eg � 0.3 eV.

Second, the model of a completely compensated TI with
randomly positioned charges was recently tested by calculation
of the activation energy � of its bulk resistivity and comparison
to experiment.16. The standard expectation, which assumes flat
valence and conduction bands, was that when the Fermi level
is moved to the middle of the gap the bulk of the TI becomes a
good insulator with activation energy � = Eg/2. In reality, in
the Bi2Se3 and Bi2Te3 families of TIs, where Eg ∼ 0.3 eV, the
activation energy � was found17 to be frustratingly small, with
� ≈ 0.15Eg . This unexpectedly small activation energy was
shown to be explainable within the model of random 3D donor
and acceptor charges. Specifically, it was shown by numerical
simulation16 that � ≈ 0.15Eg results from band bending by
the potential created by random 3D Coulomb impurities. For
these reasons, we consider our model of 3D randomly situated
donors and acceptors to be an appropriate description of the
TI bulk.

Our primary result for this model is an expression for the
amplitude of fluctuations of the electric potential energy �

at the TI surface as a function of the chemical potential μ,
measured relative to the Dirac point. In particular, for μ = 0,
we show below that

�2 =
3
√

2π

α4/3

(
e2N1/3

κ

)2

(μ = 0). (1)

Here, −e is the electron charge, κ is the effective dielectric
constant, and α = e2/κh̄v is the effective fine structure
constant, where h̄ is the reduced Planck constant and v is
the Dirac velocity. This expression describes screening of
the disorder potential via the formation of electron and hole
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FIG. 1. (Color online) Variance in the disorder potential at the TI
surface as a function of the chemical potential relative to the Dirac
point. The dimensionless variables μ̃ and �̃ are defined in Sec. II. The
dotted and dashed lines correspond to Eqs. (12) and (13), respectively.
Open circles show the result of a numerical solution of Eq. (19); the
error bars are smaller than the symbol size.

puddles at the TI surface. The characteristic size of these
puddles is given by

rs = N−1/3

22/3α4/3
(μ = 0), (2)

and the corresponding total number of electrons (or holes) per
unit area in surface puddles is given by

np =
(

α

16

)2/3

N2/3 (μ = 0). (3)

Equations (1)–(3) are derived below, along with results
corresponding to large μ. Our result for the mean squared
potential, �2, is plotted in Fig. 1 as a function of μ. Below we
also derive a simple relation for the autocorrelation function
of the potential at the TI surface, which has an unusually slow
decay and can be used to verify the bulk origin of disorder.

In addition to describing the disorder potential, we calculate
the corresponding electron conductivity σ of the surface,
and we show that when the average electron concentration
n satisfies n � np, the conductivity is given by

σ � e2

h

2
√

π

α2 ln(1/α)

n3/2

N
, (4)

where e2/h is the conductance quantum. At much smaller
electron concentrations, n � np, the conductivity saturates at
a value σmin, which we estimate as

σmin � e2

h

1

πα ln(1/α)
. (5)

The remainder of this paper is organized as follows. In Sec. II,
we develop our self-consistent theory to describe the screened
disorder potential at the TI surface. In Sec. III, these analytical
results are compared to results from a numerical simulation
of the TI surface. Section IV presents the implications of our
model for the electron conductivity of the surface. We conclude
in Sec. V by comparing our theory with the recent experiments
of Ref. 9 and by discussing the major assumptions of our theory
and its implications for future experiments.

II. SELF-CONSISTENT THEORY OF THE SURFACE
DISORDER POTENTIAL

In the limit where the potential varies slowly compared to
the characteristic Fermi wavelength of electrons at the surface,
the electric potential φ(r) can be described using the Thomas-
Fermi (TF) approach:

μ = Ef [n(r)] − eφ(r). (6)

Here, Ef (n) = h̄v
√

4π |n|sgn(n) = (e2/ακ)
√

4π |n|sgn(n) is
the local Fermi energy and n(r) is the 2D electron concen-
tration at the point r on the surface. The TF approximation is
justified whenever α � 1, as we show below. In TIs, such small
α can be seen as the result of the large bulk dielectric constant
κb � 30. We note here that for describing the properties of
the surface state, which exists at a dielectric discontinuity, one
should use for the effective dielectric constant κ the arithmetic
mean of the internal and external dielectric constants. If the TI
is in vacuum, then κ = (κb + 1)/2 � κb/2.

When the chemical potential is large enough in magnitude
that μ2 � e2〈φ2〉, where 〈...〉 denotes averaging over the
TI surface, the relation Ef (n) can be linearized to read
Ef [n(r)] � μ + δn(r)/ν(μ). Here, δn(r) = n(r) − n0 is the
difference in the electron concentration relative to the state
with zero electric potential, n0 = α2κ2μ2/(4πe4), and ν(μ) =
α2κ2|μ|/(2πe4) is the density of states at Ef = μ. From
this density of states, one can define a screening radius
rs = κ/2πe2ν = e2/α2κμ that characterizes the distance over
which fluctuations in the Coulomb potential are screened by
the surface. The TF approximation is valid when the Fermi
wavelength λf ∼ n

−1/2
0 ∼ e2/ακμ is much smaller than rs ,

which gives the condition α � 1.
One can understand qualitatively the magnitude of the

potential fluctuations, �, using the following simple argument.
For a given point on the TI surface, one can say that only
impurities within a distance R � rs contribute to the potential;
those impurities at a distance R � rs are effectively screened
out (one can say that they are screened by their image charges in
the “metallic” TI surface). Impurities with R < rs , on the other
hand, are essentially unscreened. There are ∼ Nr3

s such impu-
rities, and their net charge is of order Q ∼ e

√
Nr3

s , with a ran-
dom sign. The absolute value of the potential at the surface is
then ∼ Q/κrs , so that � ∼ eQ/κrs ∼ (e2N1/3/κ)(Nr3

s )1/6 ∼√
e2N/κν ∼

√
e4N/α2κ3|μ|. Throughout this paper we as-

sume that all donors and acceptors in the bulk are ionized,
and we ignore the possible effects of bulk screening. This
assumption is generally justified as long as the bulk chemical
potential resides in the band gap, as we discuss in Sec. V.

In order to more accurately derive the value of �, one can
start by considering the potential created by a single impurity
charge +e. When such an impurity charge is placed a distance z

from the TI surface (say, above the origin), it creates a potential
φ1(r; z) that within the TF approximation is given by18

φ1(r; z) = e

κ

∫ ∞

0

exp(−qz)

1 + (qrs)−1
J0(qr) dq, (7)

where J0(x) is the zeroth order Bessel function of the first
kind. At large z/rs , Eq. (7) can be expanded to give

φ1(r; z) � e

κ

zrs

(r2 + z2)3/2
. (8)
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A simple physical derivation of Eq. (8) is based on the notion19

that for a distant impurity, such that z � rs , a surface with
screening radius rs effectively plays the role of a metallic
surface positioned below the real surface at a distance z =
−rs/2. Equation (8) can then be viewed as the sum of the
potentials created by the original charge at a distance z above
the plane and its opposite image charge at a distance z + rs

below the plane, expanded to lowest order in rs/z.
The total potential at the origin is φ(0) = ∑

i qiφ1(ri ; zi),
where the index i labels all impurity charges, qi is the sign
of impurity i, and ri and zi are the radial and azimuthal
coordinates of its position. Under the assumption that all
impurity positions are uncorrelated and randomly distributed
throughout the bulk of the TI, the average of φ2 is given by

〈φ2〉 =
∫

[φ1(r ′; z′)]2 2Nd2r′dz′. (9)

Here, the quantity 2Nd2r′dz′ describes the probability that the
volume element d2r′dz′ contains an impurity charge, and the
integration is taken over the semi-infinite volume of the bulk
of the TI. The width of the disorder potential at the TI surface,
�, is defined by �2 = e2〈φ2〉. Inserting Eq. (7) into Eq. (9) and
taking the integral then gives

�2 = e2N

κν
= 2πe4N

α2κ3|μ|
(

|μ| � e2N1/3

κα2/3

)
. (10)

Equation (10) is correct so long as the fluctuations in the
Coulomb potential energy are small compared to the chemical
potential, or � � |μ|; this gives the condition written in
parentheses.

On the other hand, when |μ| is very small, the fluctuations in
the Coulomb potential become large compared to the chemical
potential, and one cannot talk about a constant density of states
ν or screening radius rs . Instead, the Fermi energy has strong
spatial variations, and the random potential is screened by
the formation of electron and hole puddles at the surface.
Nonetheless, one can define an average density of states
〈ν〉 at the surface, which determines, self-consistently, the
typical screening radius rs and the magnitude of the potential
fluctuations at the TI surface.

Consider, for example, the case μ = 0, where by symmetry
the average value of the potential 〈φ〉 = 0. At any given point
r on the surface, the potential φ(r) is the sum of contribu-
tions from many individual impurity charges, provided that
the characteristic screening radius rs = κ/2πe2〈ν〉 � N−1/3.
This implies that, by the central limit theorem, the value of the
potential across the surface is Gaussian-distributed with some
variance 〈φ2〉 = �2/e2 that remains to be calculated. Within
the TF approximation, the local density of states at the point r
is ν[−eφ(r)] = eα2κ2|φ(r)|/(2πe4), so that one can calculate
the average density of states as

〈ν〉 =
∫ ∞

−∞
ν(−eφ)

exp[−e2φ2/2�2]√
2π�2/e2

dφ

= α2κ2�√
2π3e4

, (μ = 0). (11)

This result for 〈ν〉 can be inserted into the first equality of
Eq. (10), �2 = e2N/κ〈ν〉, to give a self-consistent relation
for the amplitude of potential fluctuations.20 This procedure

gives the result first announced in the Introduction, Eq. (1).
Substituting Eqs. (1) and (11) into the expression for the
screening radius, rs = κ/2πe2〈ν〉, gives Eq. (2).

One can also calculate the total concentration of elec-
trons/holes in surface puddles, np, implied by this result for
�2. This is done by first inverting the TF relation, Eq. (6),
at μ = 0 to give n(φ) = (α2κ2/4πe2)φ2sgn(φ). Integrating
this expression for n(φ) weighted by the Gaussian probability
distribution for φ gives

np =
∫ ∞

0
n(φ)

exp(−e2φ2/2�2)√
2π�2/e2

dφ = α2κ2�2

8πe4
(μ = 0).

Substituting the result of Eq. (1) for �2 then gives Eq. (3).
One can also combine this result for the residual electron/hole
concentration np with the expression for the screening radius
rs to arrive at an estimate for the number of electrons/holes
per puddle: Mp ∼ πnpr2

s ∼ π/16α2. Apparently, at small α,
puddles typically contain many electrons/holes, Mp � 1.

Our primarily results, outlined in Eqs. (1)–(3), are valid
within the TF approximation so long as the typical Fermi
wavelength, λf ∼ e2/ακ�, is much smaller than the typical
screening radius, rs ∼ e2/α2κ�, which again gives the con-
dition α � 1. Equations (1) and (2) were obtained in Ref. 21
without numerical coefficients within the context of graphene
on a silicon oxide substrate.

One can notice that our expressions for �2 can be expressed
more compactly by defining the dimensionless units �̃ =
�/E0 and μ̃ = μ/E0, where E0 = e2N1/3/α2/3κ . In these
units, Eqs. (1) and (10) can be written as

�̃2 = 3
√

2π ≈ 3.96 (μ̃ = 0) (12)

and

�̃2 = 2π/|μ̃| (|μ̃| � 1), (13)

respectively, and the constant α does not enter explicitly.
Equations (12) and (13) are plotted as the red dotted and
dashed lines, respectively, in Fig. 1. One can similarly
define a dimensionless screening radius r̃s = rs/r0, where
r0 = N−1/3/α4/3, so that

r̃s = 2−2/3 ≈ 0.63 (μ̃ = 0) (14)

and

r̃s = 1/|μ̃| (|μ̃| � 1). (15)

At μ = 0, the screening radius rs describes the characteristic
size of electron or hole puddles at the TI surface. More
generally, rs plays the role of a length scale over which
potential fluctuations at the surface are correlated. Such
correlations can be discussed in a quantitative way by defining
the potential autocorrelation function:

C(r) = 〈φ(R)φ(R + r)〉R, (16)

where 〈. . .〉R denotes averaging over the spatial coordinate R,
and where by symmetry the correlation function depends on
|r| = r only. Before proceeding to present numerical results,
we first derive approximate analytical results for C(r), and
show that spatial correlations in the potential have an unusually
slow decay.
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At r = 0, Eq. (16) reproduces the expression for 〈φ2〉, so
that C(0) = �2/e2. At small enough distances that r � rs , one
can expect that the value of C(r) is determined primarily by
unscreened impurities that are within a distance rs from the
surface, as explained above during the derivation of �2. On
the other hand, at r � rs correlations are produced primarily
by impurities that are relatively far from the surface, as can
be seen from the following scaling argument. Consider two
surface points separated by a distance r � rs . One can imagine
drawing a cube of size r that extends into the bulk of the TI
and which contains the two surface points on opposite edges
of one of its faces. Such a cube contains ∼Nr3 impurities, and
has a net impurity charge with magnitude q ∼ e

√
Nr3 and

random sign. These impurity charges are located at a mean
distance ∼ r � rs above the surface and, therefore, by Eq. (8),
contribute a net potential ∼ qrs/κr2 ∼ (e/κ)

√
Nr2

s /r to both
surface points. The square of this potential roughly gives the
autocorrelation of the potential, C(r) ∼ e2Nr2

s /κ2r .
A more careful expression for C(r) can be derived by

writing

C(r) =
∫

φ1(r′; z′)φ1(r′ − r; z′)2Nd2r′dz′, (17)

similar to Eq. (9). Inserting the asymptotic expression of
Eq. (8) for φ1 and evaluating the integral gives

C(r) � 2πe2Nr2
s

κ2r
= �2/e2

r/rs

, (r/rs � 1). (18)

This result is plotted as the dashed line in Fig. 2.
Equation (18) implies an unusually slow decay of potential

correlations at the surface, which, as explained above, arises
from long-range fluctuations of the potential created by deep
bulk impurities. This behavior can be contrasted with the much
faster decay of C(r) that would result from the 2D model of
planar impurities:22 C(r) ∼ e2nidr2

s /κ2r3. Thus, by studying
C(r) experimentally by scanning tunneling microscopy, one
can discriminate between disorder by bulk impurities and
disorder by impurities located in a layer close to the surface.
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FIG. 2. (Color online) The potential autocorrelation function
C(r) as a function of distance. Symbols correspond to data from our
numeric simulation, both at μ = 0 (squares) and at large μ (triangles),
while the dashed line is our analytical theory [see Eq. (18)] for large
r/rs . The vertical axis is scaled by the analytical result for �2 [see
Eqs. (12) and (13)] and the horizontal axis is scaled by the analytical
result for rs [see Eqs. (14) and (15)] without fitting parameters.

III. NUMERIC SIMULATION

So far, we have presented analytical results for the mag-
nitude of the potential at the surface and its autocorrelation
function. These results are derived within the approximation
of linear screening with a self-consistent screening radius rs .
One can question the accuracy of this approach, particularly at
small μ̃, where the density of states varies strongly from one
point to another. Therefore, in order to verify the analytical
results presented above, we implemented a simple simulation
of a TI surface with adjacent pointlike impurities and we
solved numerically for the electric potential φ at arbitrary μ̃

within the TF approximation. In these simulations, a square
planar surface of dimension L × L is placed adjacent to a
volume of size L × L × L/2 with NL3 randomly positioned
impurities, each with a random sign. These impurities create
a bare potential φext(r) at the surface, and the self-consistent
potential φ(r) satisfies

φ(r) = φext(r) −
∫

d2r′ eδn(r′)
κ|r − r′| .

The TF equation (6) can be inverted to read

δn(r) = α2κ2

4πe3
|2μφ(r) + e[φ(r)]2|sgn[φ(r)],

so that the self-consistent equation for the potential φ(r) can
be written as

φ(r) = φext(r) − α2κ

4πe2

∫
d2r′ |2μφ(r′) + e[φ(r′)]2|

|r − r′| sgn[φ(r′)].

(19)

We find a solution φ(r) to Eq. (19) by dividing the surface
into a discrete grid and using numerical iteration. Details of
the iteration scheme, as well as our treatment of finite-size
and finite-resolution effects, are given in the Appendix. Once
we have obtained a numerical solution to φ(r), the resulting
variance of the disorder potential is calculated as

�2 = e2〈(φ − 〈φ〉)2〉, (20)

and the potential autocorrelation function is calculated using
the definition in Eq. (16). All numerical results presented
below are calculated at α = 0.24 (as estimated for the exper-
iments of Ref. 9). Smaller α = 0.12 was also examined, and
when presented in the dimensionless units of Eqs. (12)–(15),
the results were identical to those of Figs. 1 and 2 to within
our numerical error.

In Fig. 1, the calculated value of �̃2 is plotted as a function of
μ̃, along with the analytical asymptotic predictions of Eqs. (12)
and (13). (While Fig. 1 presents results only for positive μ̃,
results at μ̃ < 0 are identical due to electron-hole symmetry
of the Dirac point.) The numerical results closely match the
analytical theory at μ̃ = 0 and at μ̃ � 1. One can notice,
however, that at μ̃ ≈ μ̃∗ = 22/3, where Eqs. (12) and (13)
become equal, �̃2 develops a weak maximum. This maximum
can be understood by considering that at μ̃ ∼ μ̃∗ the typical
magnitude of the disorder potential, �, is similar to the typical
Fermi energy, μ. As a result, screening is strongly asymmetric:
positive fluctuations in potential, which increase the density of
electrons, are screened more rapidly than negative fluctuations
in potential, which deplete the electron density and bring the
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system close to the Dirac point. The resulting distribution of
the potential is skewed toward negative values of φ, and this
skewness produces a larger variance �2 and a nonzero mean
〈φ〉. As μ̃ is increased, of course, the width of the disorder
potential becomes small relative to the typical Fermi energy,
and screening becomes symmetric again.

In Fig. 2, we plot the potential autocorrelation function
C(r), as calculated from our simulation both at zero chemical
potential, μ̃ = 0, and at large chemical potential, μ̃ = 8. In
both cases, the result compares well with Eq. (18) at large r/rs

without the use of adjustable parameters.

IV. CONDUCTIVITY

In the previous sections, we presented results for the
disorder potential at the TI surface. In this section, we discuss
the implications of our 3D model for the conductivity σ of the
surface.

In the limit of large μ, where the electron density is only
weakly modulated by the disorder potential, one can show
using the Boltzmann kinetic equation that for electrons with a
massless Dirac spectrum the conductivity is given by23–25

σ = e2

h

μτ

4h̄
. (21)

Here, e2/h is the conductance quantum and τ is the momentum
relaxation time. In the limit of zero temperature, the scattering
rate 1/τ can be found by integrating the squared scattering
potential produced by a given impurity over all impurities and
over all scattering angles. More specifically, one can arrive at
an expression for 1/τ by taking the result for the scattering rate
of a 2D layer of impurities with concentration ni at distance
z [for example, Eq. (38) of Ref. 23], replacing ni with 2Ndz,
and then integrating over all planes z containing impurities.
This procedure gives

1

τ
= kf ακ

4πh̄e2

∫ ∞

0
2Ndz

∫ π

0
dθ

[
φ̃1

(
2kf sin

θ

2
; z

)]2

× (1 − cos2 θ ). (22)

In this equation, kf = ακμ/e2 is the Fermi wavelength,
φ̃1(q; z) = (2πe2/κq) exp(−qz)/[1 + (qrs)−1] is the screened
potential (in momentum space) created by a single impurity at
position z, and q = 2kf sin(θ/2) is the change in momentum
associated with scattering by an angle θ .

Evaluating the integral of Eq. (22) at small α gives

1

τ
� πα ln(1/α)

e2N

h̄κk2
f

. (23)

Inserting this result for τ into Eq. (21) and substituting
kf = √

4πn yields the result for conductivity announced in
Introduction, Eq. (4). This expression can also be written in
terms of the (dimensionless) chemical potential as

σ � e2

h

μ̃3

4πα ln(1/α)
, (24)

where μ̃ = μ/(e2N1/3/α2/3κ), as defined in Sec. II.
Equation (4) can be contrasted with the widely used

result for the 2D model of charge impurities,10,12,23,25 for
which the conductivity is linearly proportional to the electron

density: σ/(e2/h) ∼ (1/α2)(n/ni). This difference can be un-
derstood conceptually by noting that, for large angle scattering,
only those impurities at a distance smaller than the Fermi
wavelength, λf ∼ n−1/2, contribute significantly to scattering.
One can therefore define, roughly speaking, an effective
2D concentration of scattering impurities as Nλf ∼ N/n1/2.
Inserting N/n1/2 for ni gives σ ∝ (1/α2)(n3/2/N), similar to
Eq. (4). The remaining factor 1/ ln(1/α) in Eq. (4) is related
to low-angle scattering by distant impurities with z � λf . So
far, we are unaware of any transport data for TIs that shows
σ ∝ n3/2. Recent conductivity measurements on ultrathin TIs
(with thickness ∼10 nm � λf ) suggest26 σ ∝ n, consistent
with the 2D model of impurities.

Our 3D model also produces a distinct result for the
minimum conductivity σmin that appears in the limit of small
average electron concentration. At small enough chemical
potential that μ̃ � 1, the surface breaks into electron and
hole puddles, and one can think that the effective carrier
concentration saturates at ∼ np [see Eq. (3)]. An estimate
of σmin can therefore be obtained by setting μ̃ = μ̃∗ = 22/3

in Eq. (24), which gives the result of Eq. (5). 2D models
of disorder impurities also produce a minimum conductivity
that is independent of the impurity concentration, but which
has a different dependence on α. Specifically, at small
α, such models give10,11 σmin ∼ (e2/h) ln(1/α). Our model
suggests a minimum conductivity that is larger by a factor
∼[α ln2(1/α)]−1.

V. DISCUSSION

In Secs. II and III, we derived analytical expressions for the
magnitude of the disorder potential, the screening radius, and
the autocorrelation function, and we showed that these were
consistent with numerical simulations. We now discuss the
magnitude of � and rs implied by these expressions for typical
TIs, which generally have an impurity concentration N ∼
1019 cm−3. Typical values of the Dirac velocity and fine struc-
ture constant for TIs can be taken from Ref. 9, which reports
h̄v = 1.3 eV Å and estimates α = 0.24, which corresponds to
κ ≈ 50 (in agreement with infrared measurements on Bi2Se3,
for example, which yield27 κb ≈ 100). Using these parameters
gives for our unit of energy E0 = e2N1/3/κα2/3 ∼ 20 meV,
and r0 = N−1/3/α4/3 ∼ 30 nm. Thus Eqs. (12) and (14) imply
� ∼ 30 meV and rs ∼ 20 nm at the Dirac point, μ = 0. At
large |μ| � 30 meV, both �2 and rs decay as 1/|μ|.

Throughout this paper we have worked within the assump-
tion that bulk impurities are completely ionized, or in other
words that there is no screening by conduction band electrons
or valence band holes in the bulk. Such an assumption is valid
when the chemical potential resides in the middle of a large
bulk band gap. In this case, donors or acceptors can only
be neutralized by very large band bending,15 which brings
the bulk conduction or valence band edges to the Fermi level
(see, for example, Fig. 1 of Ref. 16). Such fluctuations take
place over a long-length scale Rg that scales as the square
of the distance between the Fermi level and the nearest band
edge. For example, if the Fermi level is in the center of the
band gap, then Rg = E2

gκ
2/8πNe4, which is on the order of

hundreds of nanometers for typical TIs.16 On the other hand,
near the surface of the TI the potential fluctuations are screened
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much more effectively and over a much shorter distance, rs , by
the (ungapped) surface states. As shown above, rs is typically
�20 nm, and the amplitude of surface potential fluctuations
� ∼ 30 meV � Eg ∼ 300 meV. One can therefore safely
assume that near the surface there is no large band bending and
one can indeed treat bulk impurities as completely ionized. The
effect of bulk screening should appear only in the long-range
behavior of the correlation function, r � Rg , where the 1/r

decay of C(r) is truncated and, as one can show, is replaced
with C(r) ∼ e2NRgr

2
s /κ2r2.

We now compare our results for � and rs to the recent ex-
periments of Ref. 9. Those authors examined samples of doped
Bi2Te3 and Bi2Se3 for which μ ∼ 100 meV, and they found
that the electric potential at the surface was well characterized
by a Gaussian distribution with a width ∼20–40 meV, which
corresponds to � ∼ 10–20 meV. The characteristic length
scale of potential fluctuations was measured as rs ∼ 20–30 nm.
Using the estimate above for E0 suggests that for these samples
μ̃ ∼ 6. Equations (13) and (15) then give � ∼ 18 meV and
rs ∼ 5 nm, which is in reasonable agreement with experiment.
Further, evidence from Ref. 9 suggests that the surface disorder
potential originates primarily from impurities deep below the
TI surface, and that its magnitude is relatively independent
of the type of (monovalent) impurity present. These findings
are again consistent with the theory presented here. So far,
measurements of the potential autocorrelation function C(r)
have not been reported, but they can in principle be extracted
from the measurements of Ref. 9 and compared to our
prediction above.

It is also worth mentioning that the theory we have presented
here can be applied to graphene on a substrate having large
dielectric constant (so that α = e2/κh̄v � 1) and embedded
bulk impurity charges. For this application, one should only
replace ν everywhere with 4ν, since graphene’s spin and valley
degeneracy give it a four times larger density of states at a
given energy. This substitution produces values of �2 and rs

for graphene that are four times smaller than what is written
in Secs. I and II.

Finally, we note that our theory ignores the possibility of
screening by material outside the TI. For example, if the TI is
placed next to a metal electrode or an ionic liquid,28 then this
external material can screen the large potential fluctuations
created by the bulk, thereby decreasing � and rs .
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APPENDIX: NUMERICAL SOLUTION OF THE
SIMULATED SELF-CONSISTENT POTENTIAL

In Sec. III, we presented results from a numeric solution
of the potential at a simulated TI surface. In this appendix,
we discuss the details of our numerical method, including our
iteration scheme and our treatment of finite size and finite
resolution effects.

In our simulation, NL3 impurities, each with a random sign
and random position, are placed in a volume with dimensions
L × L × L/2 and open boundary conditions. One of the
square faces of this volume is divided into a square grid with
ρ(L + 1)2 grid points, where ρ is the grid resolution. In order
to solve numerically for the potential at this surface for a
given value of the parameters μ, L, and ρ, we use a numerical
iteration scheme that makes successive approximations φ(n)(r)
for the potential at each grid point r using Eq. (19). The first
approximation is made by evaluating the bare potential φext(r)
at each grid point r, which we equate with φ(0)(r). We then
evaluate the right hand side of Eq. (19) for each r, which we
denote φ(0)

new(r), by inserting φ(0)(r) for φ(r). Rather than setting
φ(1)(r) = φ(0)

new(r) directly, we use a standard under-relaxation
scheme with a damping parameter γ to improve convergence
of the solution:

φ(n+1)(r) = γφ(n)(r) + (1 − γ )φ(n)
new(r). (A1)

This process is continued iteratively, with φ(n)
new(r) evaluated

at each iteration by inserting φ(n)(r) into Eq. (19) and used
to create a revised estimate φ(n+1)(r) according to Eq. (A1).
The iteration is halted when the value of �2 associated with
φ(n)(r) [see Eq. (20)] has converged to within 0.01%. For each
value of the simulation parameters, all results are averaged
over 100 random placements of the bulk impurity charges.
The results presented above use γ = 0.5, but we verified that
our convergent solution is independent of the value of γ chosen
for 0.2 < γ < 0.98.

Because of the long-ranged nature of the potential fluctu-
ations created by bulk impurities, finite size effects in these
simulations can be significant. The ideal numerical result
corresponds to the limit of an infinitely large simulation
volume with an infinitely well-resolved spatial grid, L → ∞
and ρ → ∞. In practice, approaching this limit very closely
can require an unrealistically large simulation. We therefore
make use of an extrapolation method to estimate the value of �2

corresponding to the L → ∞ and ρ → ∞ limits. Specifically,
we find that for a given value of the chemical potential μ and
grid resolution ρ, the variance in the potential can be well fitted
to the equation �2(L) = �2

∞ − A/L, where A is some positive
constant. This dependence can be justified theoretically by
considering that the perimeter of the simulated surface, which
contains a fraction ∝ 1/L of the total number of grid points,
has a smaller amplitude of the potential than the center of the
grid by virtue of being at the edge of the simulation volume.
The value of �2

∞ is then extracted by making a best fit to �2(L)
using a range of simulated sizes. Typically, our simulations
use LN1/3 = 20,25,30,40,50,60 and we see a coefficient of
determination R2 > 0.95 for the linear fit of �2 as a function of
1/L. (For α = 0.24, the theoretical screening radius at μ = 0
is rs ≈ 4.2N−1/3.)

A similar extrapolation is also performed to evaluate the
limit ρ → ∞. The (1/L)-extrapolated values of �2 at a given
grid density ρ are fitted to a linear function of 1/ρ, and the
final estimate of �2 for a given μ is equated with the y

intercept of the corresponding line. The result of both of these
extrapolations produces an estimate for �2 that is at most
11% different from the ones taken directly from our largest
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simulated sizes. A larger �2 generally corresponds to larger
extrapolation.

The correlation function C(r) plotted in Fig. 2 is
not the result of an extrapolation, but is calculated

directly from a single set of simulations with large L ≈
50rs and ρ ≈ (4/rs)2, averaged over 100 random place-
ments of the bulk impurity charges for each value of
μ̃.
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