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Role of He excited configurations in the neutralization of He+ ions colliding with a HOPG surface
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The very high neutral fractions measured in He+ scattered by graphitelike surfaces, at intermediate incoming
energies (1 keV < Ein < 6 keV), cannot be explained only by the resonance of the He ionization level with
the valence band states of the surface. Excited configurations (1s2s) and (1s2p) appear as possible resonant
neutralization channels together with the ground state one (1s2). We develop, in this work, a time-dependent
quantum-mechanical calculation of the charge-transfer process in He+/HOPG collision, where the resonant
neutralization to the ground and first excited states of He is taken into account. We use an Anderson Hamiltonian
projected on the electronic configurations of the projectile atom which are energetically favorable for the
charge-exchange process. Thus, an exhaustive analysis of different possible approximations to the neutralization
of He+ is performed: the typical neutralization to the ground state by either neglecting or not the electron spin and
finally the one including excited configurations. Our results reproduce the observed experimental trends only when
excited configurations (1s2s) and (1s2p) are involved in the charge exchange between the ion and the surface.
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I. INTRODUCTION

The inelastic interaction of low-energy ions with surfaces
is a very complex process which depends strongly on the
characteristics of the electronic structure of both surface and
ion. It is, on the other hand, the basis of an important surface
characterization technique, low energy ions spectrometry,
being the quality of this specific technique determined by the
balance of the different neutralization mechanisms involved.
The relevant mechanisms are resonant, Auger, and collision
induced processes.1

Resonant processes proceed via electron tunneling between
target conduction band and bound states of the projectile;
their probabilities depend strongly on the distance surface
projectile and on the binding energies of the involved levels. In
a resonant transition only one electron is involved; therefore
the corresponding transition rates (i.e., the probability for a
resonant transition per time unit) are, within linear theory,
proportional to the density of involved electronic states which
is commonly assumed to be high. Thus, resonant processes are
considered to be dominant whenever they are possible.2–9

Many different Auger processes contribute to the Auger
neutralization (AN)10 mechanism: direct AN of the incoming
ion to the ground state by a metal electron, with excitation of
another metal electron or a plasmon; direct Auger deexcitation,
where a metastable atom is first formed by tunneling of a metal
electron to an excited state, which then decays to the ground
state, with excitation of a metal electron or a plasmon; and
finally, indirect Auger deexcitation, where a metal electron fills
the hole in the inner state of the excited atom, with emission
of the electron of the outer level of the atom.11–20

It has been shown by ab initio Hartree-Fock calculations
that collision induced neutralization (reionization) can be
caused by level crossings of the He(1s) level with occupied
(empty) conduction levels of the target, as a consequence of
the antibonding interaction of the He(1s) level with target
core levels.21

The scattering of He+ by an Al surface provides a good
example of a case in which the neutralization occurs due to
Auger and collision induced processes.22,23 Since the helium
ionization level falls below the bottom of the Al valence
band, the Auger process was expected to be the only efficient
neutralization mechanism. But it was found that the ion
level shift due to the short-range interactions between nuclei
and electrons allows a significant overlap with Al(2p) core
electrons at a distance of about 2 a.u. In this form the He(1s)
level is promoted so high that it becomes resonant with the
band states, making the charge exchang possible.

An interesting case is the He+ scattering by HOPG (highly
oriented pyrolytic graphite), where a practically full neutral-
ization is observed.24–26 The wide valence band of HOPG
makes the resonance with the He-1s level possible, therefore it
is expected that the resonant process dominates in comparison
with the Auger process. No collision induced processes are
expected in this system because of the large binding energy of
the target core level, C-1s, and the much localized nature of this
inner state. It has been stated that resonant neutralization to the
first excited level of the noble gas ions is only possible for low-
work-function metals, its extent depending on the ionization
potential of the first excited level and the velocity of the ion.27

There is, however, new experimental evidence showing that
ion neutralization at clean, high-work-function metal surfaces
occurs at much smaller ion-surface separations than inferred
from earlier measurements of ion scattering. Thus, through
the strong short-range chemical interactions between incident
ion and neighboring metal atoms, the energy level shifts
should be more important than previously thought.28,29 Very
preliminary results26 showed that the significant neutralization
observed in He+/HOPG can only be reproduced theoretically
by considering excited states of the neutral He atom. This
calculation was performed by using an infinite-correlation
approach to the Anderson Hamiltonian30 and by considering,
within a simplified picture, the spin component of the first
electron in He+ frozen. Thus, a second electron with the
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same spin component is responsible for the neutralization to
the excited state (1s↑2s↑), while a second electron with the
opposite spin component is responsible for the neutralization
to the ground state (1s↑1s↓). A neutral fraction of 95% was
measured in backscattering conditions and for incoming ion
energy equal to 5 keV, while the calculation predicted a neutral
fraction of 85% when including the excited state He(1s2s) and
of 35% when only the ground state He(1s2) was considered.

In the present work we present an exhaustive study of the
resonant neutralization of positive helium ions in the scattering
by a HOPG surface. First, we performed an analysis of the
most probable atomic configurations to be included as possible
neutralization channels. Then, the Anderson-like Hamiltonian
is projected over this configuration space. In this way, the ion
neutralization is calculated by considering the ground state and
excited states (1s2s) and (1s2p) as probable channels of charge
exchange between the ion and the surface. The spin fluctuation
statistics involved in the He+(1s) to He(1s2) transition via the
surface band states is also taken into account in the present
theoretical proposal. The dynamical collision process is solved
by using the equations of motion of the time-dependent Green
functions proposed by Keldysh31,32 which allow us to treat the
interaction of electronic configurations in a correct way.

The work is organized as follows. In Sec. II we discuss
the electronic configurations defining the atomic part of the
Anderson Hamiltonian; then, the projection of the interaction
Hamiltonian over the selected configurations, and the Green
function formalism used for calculating the physical magni-
tudes of interest are presented. The calculation of the energy
and coupling terms of the Hamiltonian is also discussed in this
section. In Sec. III we discuss our obtained results by going
from the simplest description of the atom-surface interaction
(spinless model) to the improved one involving many corre-
lated charge-transfer channels and including spin fluctuation
statistics. The concluding remarks are presented in Sec. IV.

II. THEORY

The general form of our initial Hamiltonian is the following
extended Anderson Hamiltonian:33

Ĥ =
∑
�k,σ

ε�kn̂�kσ + Ĥatom +
∑
�km,σ

(
V̂ σ

�km
ĉ
†
�kσ

ĉmσ + H.c.
)
. (1)

The preliminary calculation of Ref. 26 based on a very
rough approximation of the correlated ground and excited
neutralization channels, is clearly improved in this work by
correctly considering the possibility of many states in the atom
through the following extended atomic Hamiltonian, which
allows us to perform an interaction of configurations within
the time-dependent collision process:

Ĥatom =
∑
m,σ

ζmn̂mσ +
∑
m

Umn̂m↑n̂m↓

+ 1

2

∑
m�=m′,σ

Jmm′ n̂mσ n̂m′−σ

+ 1

2

∑
m�=m′,σ

(
Jmm′ − J x

mm′
)
n̂mσ n̂m′σ

− 1

2

∑
m�=m′,σ

J x
mm′ ĉ

†
mσ cm−σ c

†
m′−σ cm′σ . (2)

In Eqs. (1) and (2) ĉ
†
�kσ

and ĉ
†
mσ denote the creation operators

of the conduction electrons and the localized electrons in
the atomic orbital m with spin σ , respectively; n̂�kσ (n̂mσ ) is
the occupation number operator for the band (atom) states.
In Eq. (1), the third term is responsible for the resonant
charge transfer via a tunneling process, with V̂ σ

�km
the couplings

between conduction and localized electrons in the atomic
orbital. In Eq. (2), U and J are the intraatomic Coulomb
interactions for the localized m orbitals and J x is the intra-
atomic exchange interaction. The last term, related to spin-flip
processes, restores the invariance under rotation in spin space.
ζm accounts for the kinetic and electron-nucleus interaction
terms. Hamiltonian equation (1) is solved by projecting over
the selected space of electronic configurations that describe
the atom states with a significant probability of occurrence.

A. Electronic configurations of the He atom that can be
probable neutralization channels in the He+

scattering by HOPG

In the following we introduce the atomic configurations
which are going to be considered in the charge exchange
process.

(i) He+(1s) can be neutralized to the ground state (1s2),
meaning the two possible charge-spin fluctuations: 1s↑ ↔
1s↑1s↓ and 1s↓ ↔ 1s↑1s↓. Taking into account that the
one-electron energy levels result from the difference between
the total energies with N + 1 and N electrons, in this case
the one-electron level energy associated with this transi-
tion is ε1s = E(1s↑1s↓) − E(1s↑) = E(1s↑1s↓) − E(1s↓),
which is the energy of a second electron in the He(1s)
orbital.

(ii) He+(1sσ ) can be neutralized either to the excited state
(1sσ2sσ ) with a z component of the total spin Sz = 1, − 1 or to
the excited state (1sσ2sσ̄ ) with Sz = 0, each one representing
two energy degenerate possibilities. The one-electron energies
associated with these charge-spin fluctuations are given by
ε2sσ = E(1sσ2sσ ) − E(1sσ ), ε2sσ̄ = E(1sσ2sσ̄ ) − E(1sσ ),
which is the energy of an electron in the 2s orbital in the
presence of one electron in the 1s.

(iii) He+(1sσ ) can be neutralized to the excited state
(1sσ2piσ ) with a z component of the total spin Sz = 1, − 1,
or to the excited state (1sσ2piσ̄ ) with Sz = 0, each one
representing two degenerate possibilities (pi = px,py,pz).
The one-electron energies associated with these charge-
spin fluctuations are given by ε2pσ = E(1sσ2piσ ) − E(1sσ ),
ε2pσ̄ = E(1sσ2piσ̄ ) − E(1sσ ), which is the energy of an
electron in the orbital 2pi in the presence of one electron
in the orbital 1s.

The atom energy and the hopping terms are obtained from a
model Hamiltonian for the atom-surface adiabatic interaction
based on both the localized atom-atom interactions and the
extended features of the surface states.34 A linear combination
of atomic orbitals φi(�r − �Rs) (LCAO) is used for expanding
the states of the surface, and a mean-field approximation
of the two-electron interaction terms is performed. In this
form, the variation with the distance to the surface of the one-
electron energy levels, which correspond to the atom charge
fluctuations (i)–(iii), is determined by the following short-
range interaction terms (here the charge states of the atoms
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are frozen to their values for the noninteracting situation):

ε̃m = ε0
m −

∑
�Rs

V Zs, �Rs

m,m +
∑
i, �Rs

(
2J̃m,i �Rs

− J x

m,i �Rs

)〈ni〉

−
∑
i, �Rs

Sm,i �Rs
V dim

m,i �Rs
+ 1

4

∑
i, �Rs

S2
m,i �Rs

�Em,i �Rs
. (3)

In Eq. (3), ε0
m are in each case equal to the Hartree-Fock or-

bital energies ε1s ,ε2sσ̄ , ε2sσ , ε2pσ̄ , and ε2pσ of the isolated atom
in the ground and excited electronic configurations discussed
above. The −(

∑
�Rs

V Zs, �Rs
m,m ) term accounts for the one-electron

contributions (electron-nuclei interactions); J̃m,i �Rs
and J̃ x

m,i �Rs

are the direct and exchange Coulomb integrals calculated
up to a second-order expansion in the overlap Sm,i �Rs

of the
symmetric orthogonal basis set.35 �Em,i �Rs

corresponds to the
difference between the projectile atom and surface atom energy
terms, and V dim

m,i �Rs

is the off-diagonal term that also includes the
two-electron contributions to the hopping within a mean-field
approximation. The super index “dim” indicates that it is
calculated within the orthogonal basis set for the corresponding
dimmer (0, �Rs). We used the atomic basis for the C and He
atoms provided in Ref. 36. The 2s and 2p Gaussian orbitals
used for the He atom37 well approximate the energy of the
first excited state 3S of He, 19.73 eV against the experimental
one of 19.82 eV,38 and also the energy of the excited state 3P ,
20.5 eV compared with the experimental value 20.96 eV.38

The effect of the long-range interactions is introduced by
considering the image potential that defines the behavior for
large normal distances (z) to the surface (z > za):

εm(R) =
{

ε̃m(R) + VI (za) for z � za

εm(R) + VI (z) for z > za,
(4)

where

VI (z) = 1

4(z − zI )
,

with zI = 3.16 a.u. (defined as d/2, with d the interplanar
distance) for the HOPG surface, and za = 8 a.u. was chosen to
join the Hartree-Fock result ε̃m(R) with the correct behavior
determined by the image potential contribution at large
distances.

In Fig. 1(a), we show the variation with the distance to
the surface of the one-electron energy levels associated with
the different neutralization channels and referred to the Fermi
energy of HOPG; the local density of states of HOPG39,40

is also included in the figure. In this case we considered the
interaction of the He atom with the scatter C atom and its first
neighbors (see inset in Fig. 1), while in panel (b) of Fig. 1
the energy level variation by including the interaction with
only the scatter C atom is shown. The energy levels have been
rigidly shifted in order to have asymptotically the values of
those for the isolated He atom.38

After the upward shift caused by the image potential at
large distances, the effect of the short-range interactions with
many C atoms, close to the surface, is to diminish the energy
of the levels associated with the neutralization to excited
states, locating them below the Fermi level. This fact makes
possible the formation of excited neutral atoms at distances

FIG. 1. (Color online) (a) The one-electron energy levels as a
function of the distance to the surface by considering the interaction
with the C atom beneath the He and its first neighbors (see inset): ε1s

(solid black line); ε2sσ (solid dark gray line); ε2sσ̄ (dotted dark gray
line); ε2pzσ (solid black line); ε2pzσ̄ (dotted black line); ε2px/yσ (solid
light gray line); and ε2px/y σ̄ (dotted light gray line). (b) The same but
considering the interaction with only the C beneath. In panel (b) the
asymptotic energy values with respect to Fermi energy (εF = 0) are
indicated. The shadowed region corresponds to the local density of
states of HOPG.

close to the surface whose survival probability will depend
mainly on the projectile velocity. Moreover, the small density
of states around the Fermi level of the HOPG allows us to
infer a suppressed electron loss at low exit velocities of the He
projectile. The more localized nature of the He-1s state makes
its energy level practically insensitive to the interaction with
many substrate atoms, as can be observed from Fig. 1.

Therefore, by taking into account the results shown in Fig. 1,
we choose the following electronic configurations: (1s2),
(1s2s), and (1s2pz). The neglected excited states involving
the 2px and 2py orbitals are expected to have a comparatively
smaller probability of occurrence according to the larger
energy of the associated active level.

B. Model calculation

The following notation is defined in order to write the
Hamiltonian equation (1) projected over the space of selected
configurations (α = s,p):

He+(1s) → |1sσ 〉,
He+(1s2) → |1s↑1s↓〉,

(5)
He∗(1sσ2ασ ) → |1sσ2ασ 〉,
He∗(1sσ2ασ̄ ) → |1sσ2ασ̄ 〉.

By projecting the Hamiltonian equation (2), we have

Ĥatom = E(1s↑)
∑

σ

|1sσ 〉〈1sσ |

+E(1s↑1s↓)|1s↑1s↓〉〈1s↑1s↓|
+

∑
σ,α=s,p

E(1s↑2α↑)|1sσ2ασ 〉〈1sσ2ασ |

+
∑

σ,α=s,p

E(1s↑2α↓)|1sσ2ασ̄ 〉〈1sσ2ασ̄ |. (6)

075434-3
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The interaction Hamiltonian written in the projection
operator language takes the form

Ĥint =
∑

�k
[Ṽ�k1s ĉ

†
�k↑|1s↓〉〈1s↑1s↓| + H.c.]

−
∑

�k
[Ṽ�k1s ĉ

†
�k↓|1s↑〉〈1s↑1s↓| + H.c.]

−
∑

�k,σ,α=s,p

[V̂�k2αĉ
†
�kσ

|1sσ 〉〈1sσ2ασ | + H.c.]

−
∑

�k,σ,α=s,p

[V̂�k2αĉ
†
�kσ̄

|1sσ 〉〈1sσ2ασ̄ | + H.c.], (7)

where Ṽ�k1s = V�k1s/
√

N and N accounts for the spin degen-
eration that in this case is 2. The Hamiltonian equation (7)
provides the correct treatment of the interaction of the ground
and excited states of the atom with the surface band states
including the spin component; the first two terms account
for the spin statistic in the ground state of the He atom.
This is clearly an improvement of the rough and not justified
approximation performed in Ref. 26 which includes only two
states: the ground state and the excited one, assimilated to
different spin components.

The quantities of interest are the probabilities of occurrence
of the different He atom configurations which are defined as
follows.

(1) Probability of ionization:

nHe+ =
∑

σ

〈|1sσ 〉〈1sσ |〉.

(2) Probability of neutralization to the ground state:

nHe0(1s2) = 〈|1s↑1s↓〉〈1s↑1s↓|〉.
(3) Probability of neutralization to the excited (1s2α) state

with Sz = 1, − 1:

nHe0(1s2α,1) =
∑

σ

〈|1sσ2ασ 〉〈1sσ2ασ |〉.

(4) Probability of neutralization to the excited (1s2α) state
with Sz = 0:

nHe0(1s2α,0) =
∑

σ

〈|1sσ2ασ̄ 〉〈1sσ2ασ̄ |〉.

The time evolution of the average occupation of each atom
configuration is calculated by using the equation of motion
in the Heisenberg picture (atomic units are used), d〈n̂〉/dt =
−i〈[n̂,Ĥ ]〉. By taking into account the energy degeneration
and the normalization of the selected subspace,

nHe+(1s) + nHe0(1s2) +
∑

α=s,p

[nHe0(1s2α,1) + nHe0(1s2α,0)] = 1,

we need to calculate, for instance, only the time evo-
lutions of 〈|1s↑1s↓〉〈1s↑1s↓|〉, 〈|1s↑2α↑〉〈1s↑2α↑|〉, and
〈|1s↑2α↓〉〈1s↑2α↓|〉. We arrived at the following expressions
by using the Hamiltonian equation (1) with Eqs. (6) and (7),

for the Ĥatom and Ĥint, respectively:

d〈|1s↑1s↓〉〈1s↑1s↓|〉
dt

=4 Im
∑

�k
Ṽ ∗

�k1s
〈|1s↑1s↓〉〈1s↓|ĉ�k↑|〉,

d〈|1s↑2α↑〉〈1s↑2α↑|〉
dt

=−2 Im
∑

�k
V̂ ∗

�k2α
〈|1s↑2α↑〉〈↑0|ĉ�k↑|〉,

d〈|1s↑2α↓〉〈1s↑2α↓|〉
dt

=−2 Im
∑

�k
V̂ ∗

�k2α
〈|1s↑2α↑〉〈↑0|ĉ�k↑|〉.

The crossed terms 〈|A〉〈B|ĉ�kσ |〉 are obtained from the Green
functions:

F|A〉〈B|(ĉ�kσ ) = i〈[|A〉〈B(t ′); ĉ�kσ (t)]|〉
at equal time values t = t ′;

〈|A〉〈B|c�kσ |〉 = (1/2)iF|A〉〈B|(ĉ�kσ )t=t ′ .

The Green functions F|A〉〈B|(ĉ�kσ ) are calculated by using the
equation of motion (EOM) method closed by using a second
order in the hopping term criterion. The final expression is

F|A〉〈B|(ĉ�kσ )t=t ′ = −i

∫ t

t0

dτ V�kβ[F|A〉〈B|(τ,t)

− (2〈n̂�kσ 〉 − 1)G|A〉〈B|(τ,t)]eiε�k (τ−t). (8)

The Green functions F|A〉〈B|(τ,t) and G|A〉〈B|(τ,t) in Eq. (8)
are given by

G|A〉〈B|(τ,t) = i
(t − τ )〈|{|A〉〈B|(t); |B〉〈A|(τ )}|〉,
(9)

F|A〉〈B|(τ,t) = i〈|[|A〉〈B|(t); |B〉〈A|(τ )]|〉,
where [; ] and {; } indicate commutator and anticommutator,
respectively. These Green functions are also calculated by the
EOM method up to a second order in the hopping terms.

C. Time evolution of Green functions G|A〉〈B|(t,t ′)
and F|A〉〈B|(t,t ′)

The equations of motion of the Green functions, Eqs. (9),
start with the expressions

i
G|A〉〈B|(t,t ′)

dt
= δ(t − t ′)〈|{|A〉〈B|(t ′); |B〉〈A|(t ′)}|〉

+ i
(t ′ − t)〈|{|A〉〈B|(t ′); [|B〉〈A|; Ĥ ]t }|〉
i
F|A〉〈B|(t,t ′)

dt
= i〈|[|A〉〈B|(t ′); [|B〉〈A|; Ĥ ]t ]|〉.

The next step in the particular case of G|A〉〈B|(t,t ′) with
A = 1s↑1s↓ and B = 1s↑ leads to the expression

i
d

dt
G|A〉〈B|(t,t ′)

= ε1sG|A〉〈B|(t,t ′) + δ(t − t ′)〈|1s↑1s↓〉〈1s↑1s↓|
+ |1s↑〉〈1s↑|〉+

∑
�kσ

sgn(σ )Ṽ ∗
�k1s

G|A〉〈B|(|1s↑〉〈1sσ̄ |ĉ�kσ )

−
∑

�k
Ṽ ∗

�k1s
G|A〉〈B|(|1s↑〉〈1s↓|ĉ�k↓)

−
∑

�k,σ,α=s,p

V̂ ∗
�k2α

G|A〉〈B|(|1s↑2ασ 〉〈1s↑1s↓|ĉ�kσ ). (10)
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We now have to calculate the new Green functions
appearing in Eq. (10); for instance, the motion equation of
G|A〉〈B|(|1s↑2ασ 〉〈1s↑1s↓|ĉ�kσ ) is

i
d

dt
G|A〉〈B|(|1s↑2ασ 〉〈1s↑1s↓|ĉ�kσ )

= −δ(t − t ′)〈|1s↑1s↑2ασ 〉〈1s↑1s↑|ĉ�kσ 〉
+ (ε�k + ε1s − ε2ασ )G|A〉〈B|(|1s↑2ασ 〉〈1s↑1s↓|ĉ�kσ )

−
∑

�K
V̂ ∗

�K2α
G|A〉〈B|(|1s↑〉〈1s↑1s↓|ĉ†�Kσ

ĉ�kσ ). (11)

From Eqs. (10) and (11) one can infer the following
sequence of electron transitions:

|1s↑〉 → V̂ �K2ασ ĉ �Kσ → |1s↑2ασ 〉 → V̂ ∗
�k2ασ

ĉ
†
�kσ

→ |1s↑〉;

beginning from the ionic state an electron is destroyed in the
band and created in the (2ασ ) atomic orbital, then an electron
is destroyed in this atomic orbital and transferred to a band
state, coming back in this form to the ionic configuration.

A closure criterion based on second-order approximation in
the coupling V̂�kσ is used and mean-field approximations like
the following are performed:

G|A〉〈B|(|1s↑〉〈1s↑1s↓|ĉ†�Kσ
ĉ�kσ ) = 〈ĉ†�Kσ

ĉ�kσ 〉δ �K �kG|A〉〈B|(t,t ′).

By considering the phase transformation

G(F )|A〉〈B|(t,t ′)

= exp

{
−i

∫ t

t ′
[E(|A〉) − E(|B〉)]dτ

}
g(f )|A〉〈B|(t,t ′),

we finally arrived at the expressions

i
d

dt
g|A〉〈B|(t,t ′)

= δ(t − t ′)〈|[|1s↑1s↓〉〈1s↑1s↓| + |1s↑〉〈1s↑|]|〉 + i
∑

�k

[
Ṽ ∗

�k1s
(t)〈|1s↑1s↓〉〈1s↓|ĉ�k↑〉t ′exp

(
i

∫ t

t ′
ε1s dx

)

+
∑

σ,α=s,p

V̂ ∗
�k2α

(t)〈|1s↑2ασ 〉〈1s↑|ĉ�kσ 〉t ′exp

(
i

∫ t

t ′
ε2ασ dx

)]
e−iε�k (t−t ′)

+
∫ ∞

−∞
dτ

{[
�0

1s(t,τ ) + �>
1s,↑(t,τ )

]
exp

(
−i

∫ τ

t

ε1s dx

)
+
∑

σ,α=s,p

�<
2α,σ (t,τ )exp

(
−i

∫ τ

t

ε2ασ dx

)}
g|A〉〈B|(τ,t ′)

(12)

i
d

dt
f|A〉〈B|(t,t ′)

= i
∑

�k

[
〈2n̂�k↑ − 1〉Ṽ ∗

�k1s
(t)〈|1s↑1s↓〉〈1s↓|ĉ�k↑〉t ′exp

(
i

∫ t

t ′
ε1s dx

)

+
∑

σ,α=s,p

〈2n̂�kσ − 1〉V̂ ∗
�k2α

(t)〈|1s↑2ασ 〉〈1s↑|ĉ�kσ 〉t ′exp

(
i

∫ t

t ′
ε2ασ dx

)]
e−iε�k (t−t ′)

+
∫ ∞

−∞
dτ

{
[�0,R

1s (t,τ ) + �
>,R
1s,↑(t,τ )]exp

(
−i

∫ τ

t

ε1s dx

)
+
∑

σ,α=s,p

�
<,R
2α,σ (t,τ )exp

(
−i

∫ τ

t

ε2ασ dx

)}
f|A〉〈B|(τ,t ′)

+
∫ ∞

−∞
dτ

{[
0

1s(t,τ ) + >
1s,↑(t,τ )

]
exp

(
−i

∫ τ

t

ε1s dx

)
+
∑

σ,α=s,p

<
2α,σ (t,τ )exp

(
−i

∫ τ

t

ε2ασ dx

)}
g|A〉〈B|(τ,t ′). (13)

In Eqs. (12) and (13) 〈n�kσ 〉 is given by the Fermi function
at a temperature T . The case A = 1s↑2ασ and B = 1s↑, and
the expressions of the self-energies are presented in Appendix.

D. LCAO expansion of the solid band states: Atom-atom
couplings and density matrix of the solid

The LCAO expansion of the φ�k states allows writing

V̂�kβ( �R) =
∑
i, �Rs

c
�k
i, �Rs

〈φi(�r − �Rs)|V̂ |φβ(�r − �R)〉, (14)

which is a superposition of the atom-atom couplings ( �R is
the projectile atom position with respect to the scatter surface
atom) weighted by the coefficients c

�k
i, �Rs

that define the density
matrix of the solid, ρi �Rs,j �Rs′

. In this form, the localized nature
of the atoms and the extended features of the surface enter
in the calculation of the charge exchange between ions and
surfaces. The Anderson hybridization width associated with
each atomic orbital,

�β(ε, �R) = π
∑

�k
|V̂�kβ( �R)|2δ(ε − ε�k),
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is calculated as

�β(ε, �R) = π
∑

i �Rs,j �Rs′

V ∗
βi, �Rs

( �R)Vβj, �Rs′
( �R)ρi �Rs,j �Rs′

(ε). (15)

The self-energies [Eqs. (A3)–(A8)] and terms like∑
�k V̂ ∗

�k2α
〈|A〉〈B|ĉ�kσ 〉 are calculated in analogous form by

considering the LCAO expansion of the band states of the
solid.

III. RESULTS AND DISCUSSION

The He atom is moving perpendicular to the surface with
a constant velocity vin(out) = v ∗ sin(θin(out)), along a trajectory
described by zin(out) = zrtp + vin(out)|t |, with zrtp the distance
of closest approach to the surface, v the incoming ion velocity,
and θin(out) the angle between the trajectory direction and
the surface. The values of zrtp are obtained from the He-
C interaction potential: zrtp = 0.24 a.u. is considered for
incoming energies between 1 and 1.5 keV and zrtp = 0.14 a.u.
for energy values larger than 1.5 keV. The kinetic energy loss
of helium ions in the elastic scattering by C atoms is taken into
account, Eout = 0.305Ein, with Ein(out) the incoming(exit) ki-
netic energy of the projectile ion. The value 0.305 corresponds
to the classical binary He-C collision for the experimental
geometry (scattering angle =135◦). We consider θin = 45◦ and
θout = 90◦ according to the experimental geometry of Ref. 26.

The atomic hopping integrals Vβj, �Rs′
( �R) are shown in Fig. 2

for helium orbitals β = 1s, 2s, and 2pz and the states j = 2s

and 2pz of the C scatter atom.
We observe from Fig. 2 that the couplings between the

He-1s and the C-2s and C-2p states are stronger than the
corresponding couplings of the 2s and 2pz states of He at
distances close to the surface. For z values larger than 4 a.u. the
atomic hopping integrals involving He excited states become
more significant and show a marked extended behavior. We
found that in the case of He-1s, the couplings with the orbital
states of the nearest C atom (the central one in the inset
of Fig. 1) are practically determining the LCAO expansion

FIG. 2. Atomic coupling terms Vβj, �Rs′ between He and the scatter

C atom ( �Rs = 0); β indicating the He orbitals: 1s (black line), 2s (dark
gray line), and 2pz (light gray line); j indicating the C orbitals: 2s

(solid lines) and 2pz (dotted lines). The inset is a blow up of the large
distance region.

equation (14), while in the He-2s and He-2p cases, it is
necessary to also include the three C atoms nearest to the
central one.

A. The ground state of the He atom as the unique
neutralization channel

1. Spinless approximation

The simplest approximation in this case is to ignore
the spin in the Anderson Hamiltonian: There is only one
active spinless electron involved in the charge fluctuation
He+(1s0) ↔ He0(1s1).41 In Fig. 3 we show the neutral fraction
calculated in this way as a function of the incoming ion energy.
In this figure we compare the results obtained by considering
the interaction with only the scatter C atom with those obtained
by including the interaction with the first neighbors too.

We can see that for incoming energies Ein > 1 keV the
neutral fraction predicted by this simple approximation to the
collision process is between 40% and 50% in the case of
considering the interaction with the four nearest C atoms, while
it varies between 30% and 40% in the case of He interacting
only with the C beneath. A slight oscillatory behavior is
observed in both cases in this energy range. The adiabatic
picture based on the level shift and its width provides a first
attempt to understand the behavior of the neutral fraction with
the incoming energy. The level width calculated as �1s(ε1s ,z)
[Eq. (15)] is shown in Fig. 4. From this figure we can see
that the inclusion of the nearest neighbors in the expansion
LCAO [Eq. (14)] leads to an increase of the He-1s level width
for distances close to the surface, thus explaining the larger
neutral fraction observed in Fig. 3.

The oscillatory behavior of the neutral fraction with pro-
jectile energy (velocity) depends strongly on the z dependence
of the ion energy level (Fig. 4) and of the atomic hopping
terms (Fig. 2), as can be seen in Fig. 5. Figure 5 shows a
comparison with neutral fractions calculated by (i) assuming
that the energy level remains constant for distances z < 3 a.u.

FIG. 3. Neutral fraction as a function of the incoming ion energy
calculated by considering only the He ground state and within the
spinless approximation. Including only the scatter C atom (empty
circles), and the four nearest C atoms (full circles) in the LCAO
expansion equation (14).
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FIG. 4. (Color online) The ionization level (solid line) as a
function of the distance to the surface and the widths calculated
by Eq. (15) shown as error bars: including only the scatter C atom
(gray bars) and the four nearest C atoms (black bars) in the LCAO
expansion [Eq. (14)]. In the inset the same level widths are shown as
a function of the distance to the surface.

and (ii) assuming a constant turning point given by zrtp =
1.3 a.u. in order to have a smoother variation of the hopping
terms along the ion trajectory. The differences are more
pronounced for Ein larger than 4 keV, that is, for these energy
values the neutral fraction is determined at distances smaller
than 3 a.u. where the three calculations differ effectively. We
observe in the evolution of the neutral fraction along the
trajectory (see the inset in Fig. 5) that not only an electron
capture process is occurring but also an electron loss in the
region close to the surface due to the large coupling between

FIG. 5. (Color online) The neutral fraction as a function of the ion
incoming energy within the spinless approximation by considering
only the interaction with the scatter C atom: (i) calculation of
Fig. 3 (solid circles); (ii) by maintaining constant the ionization level
for distances smaller than 3 a.u. (solid up triangles); and (iii) by
considering the turning point equal to zrtp = 1.3 a.u (solid squares).
The inset shows the neutral fraction as a function of the ion trajectory
(z < 0 corresponds to the incoming trajectory and z > 0 to the
outgoing path) at Ein = 1 keV for the same cases: (i) solid black
line, (ii) gray solid line, and (iii) square symbols.

FIG. 6. The neutral fraction as a function of the incoming ion
energy by considering only the ground state: the calculation that
includes spin statistic effects (squares) and the spinless calculation
(circles). Empty symbols correspond to the interaction with only
the scatter C atom, while full symbols correspond to the calculation
including the interaction with the four nearest C atoms.

the He-1s and the C states that allows for promoting the
electron to empty band states.

2. By including the spin statistics

An interesting improvement to the spinless calculation is
to consider the spin fluctuation statistic that is equivalent to
an infinite correlation limit approximation of the Anderson
Hamiltonian.30,42–45 This means, in our proposal, to consider
He0(1s2) ↔ He+(1s) transition, disregarding the possibility
of a double ionized charge configuration (He++). In Fig. 6 we
can see that the neutral fraction does not change appreciably
by including the spin statistic effects through the new con-
tributions to the dynamical level shift and width provided by
the self-energy �>

1sσ [Eq. (A5)]. Nevertheless, the differences
introduced by considering the interaction of He with the
nearest C atoms are more pronounced in this case.

B. The excited states as possible neutralization channels

1. By including the He(1s2s) excited configuration

The results shown in Fig. 7(a) were obtained by considering
the He(1s2s) excited configuration and the interaction with
only the C scatter atom, while in Fig. 7(b) the interaction
of the He atom with the nearest carbon atoms of the HOPG
surface was taken into account.

We can observe marked differences between considering
one and four C atoms in the He-surface interaction. In
Fig. 7(a), the contribution of the ground state to the ion
neutralization, between 40% and 50%, has increased
compared with the values between 30% and 40% in the
case in which the ground state is only one neutralization
channel (see Fig. 6). However, in both cases the slight
oscillatory behavior with the incoming energy is similar.
The contribution of the excited configuration (1s2s) to the
ion neutralization varies between 35% and 10%, showing a
decaying behavior as the incoming energy decreases. We can
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FIG. 7. (Color online) The neutral fraction as a function of
the incoming ion energy: (1s2s) with Sz = 1, − 1 contribution
(solid down triangles), (1s2s) with Sz = 0 contribution (open down
triangles), (1s2) contribution (solid squares), total contribution from
excited states (solid circles), and the total neutral fraction (gray
spheres). (a) The interaction with only the C beneath is considered;
(b) the four nearest C atoms are taken into account.

see from Fig. 7(a) that this decaying with energy behavior
is mainly determined by the probability of neutralization to
the excited (1s2s) configuration with Sz = 0. Thus, the total
neutral fraction nHe0(1s2) + nHe0(1s2s,1) + nHe0(1s2s,0) decays as
energy decreases, varying from 80% to 50%.

In the case of considering the interaction with the nearest
C atoms of the surface [Fig. 7(b)], the probability of neutral-
ization to the ground state nHe0(1sσ ) oscillates slightly at high
energy values around 50% and increases at lower energies
(Ein < 3 keV) arriving at a contribution of 70% at 1 keV.
The total probability of neutralization to the excited states is
nearly constant (between 20% and 30%) for Ein > 3 keV, and
diminishes to zero for incoming energies below 1.5 keV. Both
excited states, with Sz = 0 and 1, show contributions with
similar energy dependence.

2. By including the He(1s2s) and He(1s2 p) excited configurations

The different contributions to the ion neutralization in the
case of also including the excited configuration (1s2p) as a

possible neutralization channel are shown in Fig. 8. In part
(a) of this figure the results were obtained by considering the
interaction with only the C scatter atom, while in part (b) the
calculation includes the four nearest C atoms of the HOPG
surface.

The contribution of the ground state to the neutralization
increases when the interaction with the nearest C atoms
is taken into account, nevertheless the energy dependence
practically does not change. This is not the case for the
excited states contribution; in the case of considering only
the interaction with the scatter C atom, the neutralization
to the (1s2p) is negligible and the total contribution of
the excited (1s2s) configuration is nearly constant with the
incoming energy and larger than in the case of considering
the four nearest C atoms in the LCAO expansion [Eq. (14)].
We can observe from Fig. 8 that the contribution of the
ground state shows an overall increase compared with the
case of considering only the excited (1s2s) configuration
(see Fig. 7).

In Fig. 8(b), we can see that the ground state contribution is
between 60% and 80%, the excited states contribution varies
from 10% to 35%, and the total neutralization shows a slight
oscillatory behavior, reaching the value of 100% for energies
between 2 and 4 keV. The calculated neutral fraction at an
incoming energy of 5 keV is 0.93, which is very similar to
the reported value of 0.95 measured in ion backscattering
experiments.26

A remarkable point is that nevertheless the contribution
of the excited states to the neutralization decreases at low
energies; a larger neutralization to the ground state occurs
when excited states are included in the configuration space, as
shown in Fig. 9 (here the results are obtained by taking into
account the four nearest C atoms).

We can explain the results summarized in Fig. 9 by returning
to the adiabatic picture based on the shift and broadening of
the energy level, extracted from the hybridization function. In
the spinless case, this hybridization function is simply

�0
1s(ω) =

∑
�k

|Ṽ�k1s |2
ω − ε�k − iη

.

By taking into account the contributions from the spin
statistics and excited states, we can define the follow-
ing extended hybridization function [Fourier transform of
Eq. (12)]:

�1sσ (ω) = �0
1s(ω) +

∑
�k

|Ṽ�k1s |2〈1 − n�kσ 〉
ω − ε�k − iη

+
∑

�k,σ ′,α=s,p

|V̂�k2α|2〈n�kσ ′ 〉
ω − ε�k + ε2ασ ′ − ε1s − iη

. (16)

In an approximated way, the real part of Eq. (16) can be
identified with the energy level shift and the imaginary part
with its broadening. In Fig. 10, Re�1sσ (ω) and Im�1sσ (ω)
evaluated in ω = ε1s are shown as a function of the distance
to the surface.

Accordingly to the shifts of the ionization level presented
in Fig. 10, the spinless calculation and that including the spin
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FIG. 8. (Color online) The neutral fraction as a function of
the incoming ion energy: (1s2s) with Sz = 1, − 1 contribution
(solid down triangles), (1s2s) with Sz = 0 contribution (open down
triangles), the total (1s2p) contribution (solid up triangles), (1s2)
contribution (solid squares), total contribution from excited states
(solid circles), and the total neutral fraction (gray spheres). (a) The
interaction with only the C beneath is considered; (b) the four nearest
C atoms are taken into account.

statistic would not differ largely, being less neutralization is
expected in the second case due to the smaller hybridization
width. When including the excited (1s2s) configuration, an
increasing neutralization is expected at low incoming energies
due to a pronounced upward shift of the energy level at large
distances produced by the interaction between the atom excited
state and the surface [third term of Eq. (16)]. The inclusion of
the (1s2p) excited configuration leads to a more pronounced
upward shift of the ionization level and to a larger hybridization
with the band states at distance values between 3 and 5 a.u.
A larger probability of neutralization to the ground state is
expected in the last case in all the energy ranges analyzed. In
this form, we can understand the corresponding results shown
in Fig. 9.

Analogously, the behavior of the contribution to the neutral
fraction by the excited states shown in Figs. 7 and 8 can be
explained taking into account the corresponding hybridization

FIG. 9. The contribution of the ground state to the neutral fraction
as a function of the incoming ion energy: spinless calculation
(empty squares), by including spin statistic effects (full squares),
by considering the excited (1s2s) configuration (full circles), by
considering both, the (1s2s) and the (1s2p) excited configurations
(full up triangles).

self-energy:

�2ασ (ω)=
∑

�k

|V̂�k2ασ |2
ω − ε�k − iη

+
∑

�k

|Ṽ�k1s |2〈n�kσ 〉
ω − ε�k + ε1s − ε2ασ − iη

+
∑

�k,(βσ ′)�=(ασ )

|V̂�k2α|2〈n�kσ ′ 〉
ω − ε�k + ε2βσ ′ − ε2ασ − iη

. (17)

FIG. 10. (Color online) ε1s + Re �1sσ (ω) evaluated in ω = ε1s as
a function of the distance to the surface (the four nearest C atoms are
included): only the noninteracting self-energy (gray solid line), the
self-energy that includes the spin statistic effect (dash-dot-dot line),
by including the contribution to �1sσ (ω) provided by the presence of
the (1s2s) excited state (dashed line), and also the contribution by
the presence of the (1s2p) excited state (dotted line). The horizontal
dashed line indicates the bottom of the valence band. In the inset,
Im �1sσ (ω) is shown by using the same symbols in the different
cases.
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FIG. 11. (Color online) ε2sσ + Re �2sσ (ε2sσ ) as a function of the
distance to the surface: by including the contributions to �2sσ (ω)
provided by the presence of the ground state (1s2) and the (1s2s)
with Sz = 0 excited state (solid line); adding also the contribution by
the presence of the (1s2p) excited state (dash-dotted line). The dashed
line is the energy level ε2sσ . In the inset, Im �2sσ (ε2sσ ) is shown by
using the same type of lines in the different cases. (a) The interaction
with only the C beneath is considered; (b) the four nearest C atoms
are taken into account.

Let us analyze the contribution of the (1s2s) configuration
with Sz = 1, − 1. The Re �2sσ (ε2sσ ) and Im �2sσ (ε2sσ ) are
shown in Fig. 11 in the case of considering the interaction
with only the scatter C atom [panel (a)], and also including the
nearest neighbors [panel (b)].

In the case of considering the interaction with only one C
atom, the shift of the energy level below the Fermi energy due
to the correlation effects explains the significant occupation of
the excited configuration. In this case, the hybridization width
is provided by the imaginary part of the first two terms of
Eq. (17), therefore it is the same including or not the (1s2p)
excited configuration. The more pronounced upward shift of
ε2sσ when including the presence of the excited state (1s2p)
leads to a larger electron loss probability and therefore to a
smaller contribution of the excited (1s2s) state to the neutral
fraction, as can be seen from Fig. 8(a) compared with Fig. 7(a).

In the case of including the interaction with the first
four C neighbors, the different contributions of the (1s2s)
configuration observed by considering [Fig. 8(b)] and not
considering [Fig. 7(b)] the presence of the excited (1s2p)
state, respond quite well to the adiabatic picture described
by the level shift and width [Fig. 11(b)]. A more pronounced
upward shift is associated with a lesser contribution to the
neutralization but a larger broadening is, on the other hand,
favoring electron loss and capture processes when the energy
level is around the Fermi level.

In summary, the behavior of the neutral fraction with the
energy of the incoming ion is consistent with the variation
along the trajectory of the shift and broadening of the involved
energy levels, extracted from the extended hybridization
functions, Eqs. (16) and (17).

The neutralization probability as a function of the ion
trajectory evidences the more complex features of the time
evolution that involves interferences associated with the time
dependence of the coupling terms and the energy phases such
as exp[i

∫ τ

t
dx(ε�k − ε1s)] [see Eqs. (12) and (13)], (A1)–(A8).

In Fig. 12 the contributions to the ion neutralization provided
by the ground and excited channels are shown as a function
of the ion trajectory for an incoming energy of 3 keV. The
results are obtained by including the four nearest C atoms. In
this figure we compare the contributions of the ground state
obtained from the different calculations: spinless, including
spin statistics, and considering the excited configurations.
The spinless case was discussed previously in Sec. III A1:
Electron loss in the region close to the surfaceoccurrs due to
the large coupling between the He-1s and the C states that
allows for promoting the electron to empty band states. The
spin statistic effect does not change this scenario, while the
presence of excited configurations gives to the ionization level
the possibility of a resonant electron capture at distances close
to the surface.

FIG. 12. (Color online) The contribution of the ground state to the
neutral fraction as a function of the distance to the surface for Ein =
3 keV: spinless calculation (gray line), by including spin statistic
effects (dashed line), by considering the excited (1s2s) configuration
(dash-dotted line), and by considering both the (1s2s) and the (1s2p)
excited configurations (dotted line).
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IV. CONCLUSIONS

We performed a time-dependent quantum mechanical
calculation of the charge exchange process in He+/HOPG
collision, by considering the resonant neutralization to the
ground and first excited states of the He atom. The possibility
of many states in the atom is taken into account by an extended
atomic Hamiltonian that allows us to perform a time-dependent
interaction of configurations. This robust theoretical proposal
means a clear improvement of the very approximated treatment
of Ref. 26. The Anderson Hamiltonian is projected on the
energetically favorable electronic configurations of the helium
atom and the occupations of these atomic configurations are
calculated by using appropriate Green functions solved by
the equation of motion method. Our results reproduce the
very high neutral fractions measured in He+ scattered by
HOPG at intermediate incoming energies only when excited

configurations (1s2s) and (1s2p) are considered in the atom-
surface interaction. It is found that the correlation effects act in
order to increase the neutralization to the ground state, and it
is explained in terms of the energy level shift produced by the
interaction between atom excited states and the surface band
states. The contribution to the ground state occupation due to
Auger deexcitation of the excited states is not negligible, and
the AN process is expected to contribute in the range of small
energy values where, according to our results, the resonant
process alone cannot justify a complete ion neutralization.
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APPENDIX: TIME EVOLUTION OF GREEN FUNCTIONS G|A〉〈B|(t,t ′) AND F|A〉〈B|(t,t ′), WITH A = 1s↑2ασ AND B = 1s↑

By following the same procedure of Sec. II C, we arrive at the expressions:

i
d

dt
g|A〉〈B|(t,t ′)

= δ(t − t ′)〈|[|1s↑2ασ 〉〈1s↑2ασ | + |1s↑〉〈1s↑|]|〉 + i
∑

�k

⎡
⎢⎣− Ṽ ∗

�k1s
(t)〈|1s↑1s↓〉〈1s↓|ĉ�k↑〉t ′exp

(
i

∫ t

t ′
ε1s dx

)

+
∑

σ ′,β = s,p;
βα′ �= ασ

V̂ ∗
�k2β

(t)〈|1s↑2βσ ′〉〈1s↑|ĉ�kσ ′ 〉t ′exp

(
i

∫ t

t ′
ε2βσ dx

)⎤⎥⎦e−iε�k (t−t ′) +
∫ ∞

−∞
dτ

⎧⎪⎨
⎪⎩�0

2α(t,τ )exp

(
−i

∫ τ

t

ε2ασ dx

)

+�<
1s,↓(t,τ )exp

(
−i

∫ τ

t

ε1sdx

)
+

∑
σ ′,β = s,p;
βσ ′ �= ασ

�<
2β,σ ′(t,τ )exp

(
−i

∫ τ

t

ε2βσ dx

)⎫⎪⎬
⎪⎭g|A〉〈B|(τ,t ′) (A1)

i
d

dt
f|A〉〈B|(t,t ′) = i

∑
�k

⎡
⎢⎣− 〈2n�k↓ − 1〉Ṽ ∗

�k1s
(t)〈|1s↑1s↓〉〈1s↓|ĉ�k↑〉t ′exp

(
i

∫ t

t ′
ε1s dx

)

+
∑

σ ′,β = s,p;
βα′ �= ασ

〈2n�kσ ′ − 1〉V̂ ∗
�k2β

(t)〈|1s↑2βσ ′〉〈1s↑|ĉ�kσ ′ 〉t ′exp

(
i

∫ t

t ′
ε2βσ dx

)⎤⎥⎦e−iε�k (t−t ′)

+
∫ ∞

−∞
dτ

⎧⎪⎨
⎪⎩�

0,R
2α (t,τ )exp

(
−i

∫ τ

t

ε2ασ dx

)
+ �<R

1s,↓(t,τ )exp

(
−i

∫ τ

t

ε1s dx

)

+
∑

σ ′,β = s,p;
βσ ′ �= ασ

�
<,R
2β,σ ′(t,τ )exp

(
−i

∫ τ

t

ε2βσ dx

)⎫⎪⎬
⎪⎭f|A〉〈B|(τ,t ′) +

∫ ∞

−∞
dτ

⎧⎪⎨
⎪⎩0

2α(t,τ )exp

(
−i

∫ τ

t

ε2ασ dx

)

+<
1s,↓(t,τ )exp

(
−i

∫ τ

t

ε1s dx

)
+

∑
σ ′,β = s,p;
βσ ′ �= ασ

<
2β,σ ′ (t,τ )exp

(
−i

∫ τ

t

ε2βσ dx

)⎫⎪⎬
⎪⎭g|A〉〈B|(τ,t ′). (A2)
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The following self-energies were introduced in Eqs. (12), (13), (A1), and (A2):

�0
i (t,τ ) = i
(τ − t)

∑
�k

V̂ ∗
�ki

(t)V̂�ki(τ )e−iε�k (t−τ ) = [�0,R
i (τ,t)

]∗
, (A3)

0
i,σ (t,τ ) = −i

∑
�k

〈2n�kσ − 1〉V ∗
�ki

(t)V�ki(τ )e−iε�k (t−τ ), (A4)

�>
1sσ (t,τ ) = i
(τ − t)

∑
�k

Ṽ ∗
�k1s

(t)Ṽ�k1s(τ )〈1 − n�kσ 〉e−iε�k (t−τ ) = [�>,R
1sσ (τ,t)

]∗
, (A5)

>
1sσ (t,τ ) = −i

∑
�k

〈2n�kσ − 1〉Ṽ ∗
�k1s

(t)Ṽ�k1s(τ ) × 〈1 − n�kσ 〉e−iε�k (t−τ ), (A6)

�<
iσ (t,τ ) = i
(τ − t)

∑
�k

V̂ ∗
�ki

(t)V̂�ki(τ )〈n�kσ 〉e−iε�k (t−τ ) = [�<,R
iσ (τ,t)

]∗
, (A7)

<
iσ (t,τ ) = −i

∑
�k

〈2n�kσ − 1〉V̂ ∗
�ki

(t)V̂�ki(τ )〈n�kσ 〉e−iε�k (t−τ ). (A8)

In Eqs. (A1)–(A8), 〈n̂�kσ 〉 is given by the Fermi function at a temperature T .
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