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We study low-energy transport through a quantum dot coupled to one normal and two superconducting (SC)
leads in a Y-shaped junction. In this geometry a crossover between Kondo-dominated and Cooper-pairing-
dominated states occurs by tuning parameters such as the quantized energy level εd of the dot and the Josephson
phase φ, which induces a supercurrent flowing between the two SC leads through the dot. Furthermore, Andreev
scattering takes place at the interface between the dot and normal lead. The low-lying energy states of this system
can be described by a local Fermi-liquid theory for interacting Bogoliubov particles. In a description based on an
Anderson impurity model, we calculate transport coefficients, renormalized parameters, and spectral function,
using Wilson’s numerical renormalization group approach, in the limit of a large SC gap. Our results demonstrate
how the Andreev resonance level approaches the Fermi level in the crossover region between the Cooper-pairing
singlet state and the strong-coupling situation as εd or φ are varied. The strong-coupling situation shows a Kondo
effect with a significantly renormalized resonance width. The crossover is smeared when the coupling between the
dot and the normal lead is large. Furthermore, asymmetry in the Josephson junction suppresses the cancellations
of the SC proximity for finite φ, and it favors the SC singlet state rather than the Kondo singlet.
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I. INTRODUCTION

The Kondo effect in superconducting (SC) materials has
been one of the major topics in condensed-matter physics
for over 40 years. The energy gap �SC of a superconductor
suppresses the magnetic screening of the conduction electrons
at low temperatures below the Kondo temperature TK . The
competition of these effects causes a quantum phase transition
(QPT) between magnetic-doublet and nonmagnetic-singlet
ground states, which emerge at �SC � TK and �SC � TK ,
respectively.1–9

The QPT has also been studied intensively for quantum
dots,10 and experiments have been carried out for carbon-
nanotube and semiconductor quantum dots.11–15 One of the
merits of quantum dots is high tunability, and various types of
configurations can be examined. For instance, for a quantum
dot (QD) embedded between two superconducting leads in
a SC/QD/SC configuration, competition between the Kondo
and Josephson effects has also been expected to occur.16–28

Furthermore, an interplay between Andreev scattering and
the Kondo effect has been studied experimentally29,30 and
theoretically31–44 for a QD connected to a normal-metal (N)
lead and a SC lead in a SC/QD/N configuration.

An interesting extension, which is also relevant
experimentally,45–47 is a Y-shaped junction, at which a single
QD is coupled to one normal and two SC leads as shown
in Fig. 1. This system has been studied by Pala, Governale,
and König, using a real-time diagrammatic approach based
on a perturbation expansion with respect to the tunneling
matrix elements.48,49 Their calculations reveal precise features
of the Josephson current and Andreev bound states both
in equilibrium and nonequilibrium situations where a finite
bias voltage is applied between the dot and the normal lead.
However, their approach is not applicable at low temperatures

(T < TK ), and thus the competition between superconductiv-
ity and the Kondo effect occurring in this system has been
left to be explored. Specifically, in the Y-shaped junction the
conduction electrons from the normal lead can screen the local
moment induced in the QD. This changes the sharp transition
between the magnetic and nonmagnetic ground states into
a crossover between a Kondo singlet and a Cooper-pairing
singlet. Furthermore, the Andreev scattering, which takes place
between the QD and the normal lead, can be controlled through
the phase difference φ between the order parameters of two
SC leads. This is because the SC proximity on the QD depends
sensitively on the properties of the junctions, and thus on φ.
Conversely, the Josephson current flowing between the two SC
leads is affected by the Andreev scattering of the conduction
electrons from the normal lead.

The purpose of the present work is to study these interplays
of the Kondo, Andreev, and Josephson effects which can be
observed for the QD embedded in this three-terminal system.50

To this end, we explore a wide region of the parameter space
of this Y-shaped junction, varying the position of a quantized
energy level εd of the QD modeled with an Anderson impurity,
and also examine how an asymmetry of the Josephson junction
affects the low-temperature properties. Specifically, we focus
on the crossover between the ground states which can be
classified into a Kondo singlet and a local Cooper-pairing
singlet according to the fixed points of Wilson’s numerical
renormalization group (NRG).51,52

For strongly correlated systems the Coulomb interaction
U is larger than the other energy scales, and for such cases
the critical behavior near the QPT is scaled by a single
parameter �SC/TK . In systems with QDs, however, some of
the parameters can be tuned experimentally, and U is not
always the largest energy scale. Therefore, the ground-state
properties depend on the other parameters, such as εd , U , and
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FIG. 1. Anderson impurity (•) coupled to one normal and two
superconducting leads: εd and U are the level position and Coulomb
interaction. �ν ≡ πρ v2

ν with ρ the density of states of the leads
and vν the tunneling matrix element (ν = L, R, N ). The complex
SC gap �L/R = |�L/R| eiθL/R causes the Josephson current for finite
φ ≡ θR − θL.

the hybridizations between the dot and the leads. Specifically,
for small interactions U < �SC, the SC pair correlations can
penetrate into the QD and create a local Cooper pair, consisting
of a linear combination of an empty state and a doubly occupied
state. The essential physics of the local Cooper pairing can
be deduced from the fixed point of the NRG in the limit of
�SC → ∞, where the coherence becomes of the order of the
lattice constant. We consider in detail this large SC gap limit
in the present work.

The low-lying energy states of this Y-shaped junction can be
described by a local Fermi liquid of the interacting Bogoliubov
particles. This is because the normal lead, coupled to the
QD, has a continuous energy spectrum at the Fermi level.
Furthermore, the local SC pair potential �d is induced in
the QD by the proximity effect. This �d also plays a central
role, and it varies sensitively with εd and φ. For instance, the
conductance due to Andreev scattering can be expressed at
T = 0 in terms of phase shift δ for the renormalized quasipar-
ticles and the angle �B of the Bogoliubov rotation determined
by �d , and is enhanced at the crossover region between
the Kondo singlet and local Cooper pairing singlet.42–44 We
also calculate the renormalized parameters for the interacting
Bogoliubov particles. The results of the renormalization factor
z, the Wilson ratio R, and the renormalized Andreev level ẼA

that corresponds to quasiparticle peak position appearing in
the spectral function of the QD provide us with sufficient
information to understand the ground-state properties of the
system thoroughly.

This paper is organized as follows. In Sec. II, we introduce
the single impurity Anderson model for the Y-shaped junction
and provide some examples which capture typical behavior
near the QPT occurring in a SC/QD/SC junction with a finite
SC gap. In Sec. III, we give a local Fermi-liquid description
for the interacting Bogoliubov particles in the large-SC-gap
limit and present the expressions of the correlation functions
in terms of the renormalized parameters. Then in Sec. IV we
provide the NRG results for the spectral function, transport
coefficient, and renormalized parameters. A summary is given
in Sec. V.

II. MODEL AND FUNDAMENTAL ASPECTS

A. Model

We start with the Anderson impurity model for a single
quantum dot coupled to one normal (N ) and two supercon-

ducting (SC) leads,

H = Hd +
∑

ν=N,L,R

Hν +
∑

ν=N,L,R

HT,ν + HSC. (1)

The explicit form of each part is given by

Hd = ξd (nd − 1) + U

2
(nd − 1)2,

Hν =
∑
k,σ

εkc
†
ν,kσ cν,kσ ,

HT,ν =
∑

σ

vν(ψ†
ν,σ dσ + d†

σ ψν,σ ), (2)

HSC =
∑

k

(�L c
†
L,k↑ c

†
L,−k↓ + H.c.)

+
∑

k

(�R c
†
R,k↑ c

†
R,−k↓ + H.c.).

Here, ξd ≡ εd + U/2, and U is the Coulomb interaction. The
operator d†

σ creates an electron with energy εd and spin σ

at the dot, and nd = ∑
σ d†

σ dσ . The operator c
†
ν,kσ creates

an electron with energy εk in the leads ν (=N,L,R). The
couplings between the dot and leads are described by the
tunneling matrix elements vν and a linear combination of
the conduction ψν,σ ≡ ∑

k cν,kσ /Nν with Nν the number of
the states in each lead. We assume that the density of states
ρ(ε) ≡ ∑

k δ(ε − εk)/Nν and �ν(ε) ≡ πv2
ν ρ(ε) are constants

independent of the frequency ε at |ε| < D, where D is the
half band-width for the leads. The complex s-wave BCS gap,
�L/R = |�L/R|eiθL/R for the SC leads on the left (L) and right
(R), induces a Josephson current when the phase difference
φ ≡ θR − θL is finite. In this three-terminal system, the current
Jν flowing from the dot to the lead ν is given by

Jν = ie

h̄

∑
σ

vν(ψ†
ν,σ dσ − d†

σψν,σ ). (3)

Here, −e denotes the electron charge with e > 0.
The Hamiltonian H contains a number of parameter

regimes to be explored. We mainly consider the case where
the couplings and the amplitude of the SC gaps are symmetric:
�L = �R (≡ �S/2) and |�L| = |�R| (≡�), for simplicity.
The asymmetry in the Josephson coupling �L 	= �R is also
examined in the last part in Sec. IV C.

B. QD connected to two SC leads (�N = 0)

Before discussing the three-terminal case, we first of all
consider a simpler case with �N = 0, where the normal lead is
disconnected and the QD is coupled only to the two SC leads,
in order to review some typical features of the competition
between the Kondo and Josephson effects.8,22,23,25–27 In this
case the QPT occurs as a level crossing of the lowest two
energy states of H , and thus the expectation value for the
Josephson current and that for the order correlation functions
show a discontinuous jump at the critical point.

In Fig. 2, the NRG results for the phase diagram of the
ground state in the electron-hole symmetric case εd = −U/2
are plotted in a U/� vs �S/� plane for several values of
φ. The upper (lower) side of each boundary corresponds to
the parameter region where the ground state is a nonmagnetic
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FIG. 2. (Color online) NRG results for the ground-state phase
diagram of the Anderson impurity connected to two SC leads for
several values of φ ≡ θR − θL in the electron-hole symmetric case
εd = −U/2. In the upper and lower sides of each boundary the ground
state is a nonmagnetic singlet and magnetic doublet, respectively. The
Josephson junction is assumed to be symmetric �L = �R (≡ �S/2)
and |�L| = |�R| (≡ �). The normal lead is not connected (�N = 0)
in this case.

singlet (magnetic doublet). These results clearly show that the
magnetic-doublet region, appearing for large U/� or small
�S/�, expands as φ increases. Therefore, the phase difference
φ between the two SC order parameters tends to suppress the
Kondo screening,22,23,25,26 which in this case is carried out
also by the quasiparticle excitations above the SC energy gap.
As the value of φ increases from 0 to π , the SC proximity
effect penetrating from the left lead and that from right lead
cancel each other at the impurity site. This is because the SC
proximity is determined by a superposition of �L and �R ,
which can be explicitly seen in the impurity Green’s function
given in Eqs. (A2) and (A3). This suppression of the proximity
effect leads to a reduction of the parameter region for singlet
formation, as seen in Fig. 2. Specifically, at φ = π the system
is equivalent to an Anderson impurity model with an insulating
bath,25,53 where for the particle-hole symmetric case and U >

0 the ground state is always a doublet because the impurity
level situates just on the Fermi level in the middle of the band
gap.

Figure 3 shows the Josephson current J and the SC
correlation 〈d↑d↓〉 in the impurity site as functions of φ

for several values of U . These ground-state averages vary
discontinuously at the QPT and take small negative values in

FIG. 3. (Color online) NRG results for the Josephson current and
〈d↑d↓〉 for the Anderson impurity connected to two SC leads plotted as
functions of φ for several values of U in the electron-hole symmetric
case εd = −U/2. The other parameters are chosen such that �L = �R

(≡ �S/2), |�L| = |�R| (≡ �), �S = 2.0�, θR = −θL (≡ φ/2), and
�N = 0. In this case the critical current is given by JC = e�/h̄.

the magnetic doublet ground state for finite SC gaps �. These
two expectation values in the doublet state are determined by
the quasiparticle excitations above the SC energy gap |ω| > �

and vanish in the limit of � → ∞. The small negative values
in the doublet state can be explained, for instance, using the
perturbation expansion with respect to 1/� from the large-gap
limit.8

III. LARGE-SC-GAP LIMIT

We consider the large-gap limit, |�L/R| → ∞, in the
following since important features of the interplays between
the Kondo effect and superconductivity in the Y-shaped
junction can be observed in this case although the quasiparticle
excitations to the continuum-energy region above the SC
gap have been projected out. For instance, the Andreev
resonance state emerging inside the SC gap remains near the
Fermi level, and thus the essential physics of the low-energy
transport can be extracted from this case. Specifically, this
limit describes reasonably the situation where the gap is
much greater than the other energy scales, namely |�L/R| �
max(�L,�R,�N,U,|εd |).

In the limit of |�L/R| → ∞, the Hamiltonian H can be
mapped exactly onto a single-channel model,10,42,54

Heff = HdS + Hd + HN + HT,N , (4)

HdS = �d d
†
↑d

†
↓ + �∗

d d↓d↑, (5)

�d ≡ �ReiθR + �LeiθL = |�d | eiθd . (6)

Thus, the SC proximity effect becomes static in this case
and can be described by an additional term HdS with the
pair potential �d penetrating into the QD. This term emerges
because the Cooper pairs can be transferred between the dot
and the SC leads even for large SC gaps, whereas the unpaired
quasiparticles cannot. The amplitude of �d depends on the
Josephson phase and decreases as φ increases,

|�d | = �S

√
1 − T0 sin2 (φ/2), (7)

�S ≡ �R + �L, T0 ≡ 4�R�L

(�R + �L)2
. (8)

Specifically for the symmetric coupling �R = �L, the trans-
mission probability in the normal-state case takes the value
T0 = 1, and the amplitude is given simply by |�d | =
�S cos (φ/2) for −π < φ � π .

A. Bogoliubov particles

The effective Hamiltonian Heff can be transformed into an
asymmetric Anderson model for the Bogoliubov particles, the
total number of which is conserved.25,42,43 In order to carry
this out, we rewrite Heff such that

Heff = [d†
↑,d↓]

[
ξd �d

�∗
d −ξd

] [
d↑
d
†
↓

]
+ U

2
(nd − 1)2

+
∞∑

j=−1

∑
σ

tj (f †
j+1σ fjσ + f

†
jσ fj+1σ ). (9)
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Here, the summation over j describes the HT,N + HN part
with f−1σ ≡ dσ , f0σ ≡ ψN,σ , and t−1 ≡ vN . The operators
fjσ for j � 0 correspond to a Wannier basis set for the
conduction band. The explicit expression for fjσ and tj can
be generated successively from the initial operator f0σ and the
energy spectrum εk of the conduction band, carrying out the
Householder transformation.52 Therefore, no approximation
has been made to obtain Eq. (9) from Eq. (4).

The effective Hamiltonian Heff has a global U(1) sym-
metry in the Nambu pseudospin space along the direction
n ∝ (|�d | cos θd, − |�d | sin θd, ξd ). Thus, one can choose
this direction n to be the quantization axis, carrying out a
pseudospinor rotation[

γj↑
(−1)j+1γ

†
j↓

]
= U†

[
fj↑

(−1)j+1f
†
j↓

]
, (10)

where

U =
[

ei
θ
d
2 0

0 e−i
θ
d
2

] [
cos �B

2 − sin �B

2

sin �B

2 cos �B

2

]
, (11)

cos
�B

2
=

√
1

2

(
1 + ξd

EA

)
, cos �B = ξd

EA

, (12)

sin
�B

2
=

√
1

2

(
1 − ξd

EA

)
, sin �B = |�d |

EA

, (13)

EA ≡
√

ξ 2
d + |�d |2. (14)

Then, in terms of the Bogoliubov particles γjσ , the effective
Hamiltonian takes the form

Heff = EA(nγ,−1 − 1) + U

2
(nγ,−1 − 1)2

+
∞∑

j=−1

∑
σ

tj (γ †
j+1σ γjσ + H.c.). (15)

Here, nγ,j ≡ ∑
σ γ

†
jσ γjσ , and εeff

d ≡ EA − U/2 corresponds
to a bare impurity level for the Bogoliubov particles. This
representation of the Hamiltonian clearly shows that the total
number of Bogoliubov particles,

Nγ ≡
∞∑

j=−1

nγ,j , (16)

is conserved in the large-gap limit as a result of the global U(1)
symmetry. Furthermore, the Friedel sum rule holds:

〈nγ,−1〉 = 2

π
δ, (17)

where δ is the phase shift of the Bogoliubov particles.55,56 Note
that even in the case of ξd = 0 whereHeff in the form of Eq. (9)
has an electron-hole symmetry, the Bogoliubov particles do not
have the particle-hole symmetry in the sense that EA 	= 0, and
thus 〈nγ,−1〉 	= 1, as long as |�d | is finite.

At low energies the interacting Bogoliubov particles,
described by Eq. (15), show Fermi-liquid behavior that is
characterized by the renormalized parameters:

δ ≡ cot−1

(
ẼA

�̃N

)
, z−1 = 1 − ∂�(ω)

∂ω

∣∣∣∣
ω=0

, (18)

�̃N ≡ z �N, ẼA ≡ z[EA + �(0)], (19)

Ũ ≡ z2�↑↓;↓↑(0,0; 0,0). (20)

Specifically, the Kondo energy scale can be deduced from the
renormalization factor as TK = π�̃N/4. Furthermore, from the
residual interaction Ũ between the quasiparticles, the Wilson
ratio R can be deduced through

R ≡ 1 + Ũ

π�̃N

sin2δ. (21)

We calculate these renormalized parameters with the NRG
through the convergence of the finite-size energy spectrum
near the fixed point.51,57 In Eqs. (18)–(20), �(ω) and
�↑↓;↓↑(ω1,ω2; ω3,ω4) are the self-energy and vertex function,
respectively, for the Bogoliubov particles, the retarded Green’s
function for which is defined by

Gγ (ω) = −i

∫ ∞

0
dt eiωt 〈{γ−1,σ (t),γ †

−1,σ }〉. (22)

Here, the spin suffix σ is suppressed on the left-hand side
because the Green’s function for σ =↑ and that for ↓ are
identical due to the SU(2) symmetry for the real spin. The
retarded Green’s function for the electrons on the dot can be
deduced from Gγ (ω) via the inverse Bogoliubov transform,

Gdd (ω) ≡ −i

∫ ∞

0
dt eiωt 〈{dσ (t), d†

σ }〉

⇒ Gγ (ω) cos2 �B

2
− {Gγ (−ω)}∗ sin2 �B

2
. (23)

B. Conductance and current

The low-energy transport, deduced from Eq. (15), can
also be described by the local Fermi-liquid theory. At T =
0, the occupation number of the electrons 〈nd〉 and the
SC pair correlation 〈d↓d↑〉 in the QD are determined by
the occupation of the Bogoliubov particles 〈nγ,−1〉 = 2δ/π

defined in Eq. (17), and the Bogoliubov angle �B ,

〈nd〉 − 1 = (〈nγ,−1〉 − 1) cos �B, (24)

〈d↓d↑〉 = 1
2 (〈nγ,−1〉 − 1) eiθd sin �B. (25)

Note that cos �B = ξd/EA, eiθd sin �B = �d/EA, and the
phase of 〈d↓d↑〉 is given by θd , which coincides with
the phase of the local gap �d . The occupation number
of the electron 〈nd〉 − 1 and 〈d↓d↑〉 correspond to the z

component and the projection on the x-y plane of the
local pseudospin moment induced on the impurity site.25

Specifically, in the electron-hole symmetric case ξd = 0, the
local level is given by EA = |�d | and thus the Bogoliubov
angle is locked at �B = π/2.

The dc conductance gNS due to the Andreev scattering
between the dot and the normal lead can also be expressed,
at T = 0, in terms of the phase shift δ and Bogoliubov angle
�B ,42

gNS = 4 �2
N |{Gr

dd (ω = 0)}12|2

= 4e2

h
sin2 �B sin2 2δ. (26)
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Here, {Gr
dd (ω)}12 = 〈〈d↑; d↓〉〉ω is the off-diagonal (anoma-

lous) component of the retarded Green’s function in the
Nambu pseudospin formalism, the corresponding Matsubara
function of which is defined in the Appendix. Therefore, the
zero-temperature conductance gNS is determined by the value
at the Fermi level ω = 0. The argument 2δ in Eq. (26) appears
as a difference between the phase shift for the quasiparticle
+δ and that for the quasihole −δ.

In the large-gap limit, the Josephson current flowing
through the dot can also be expressed in terms of the
Bogoliubov angle �B and the phase shift δ, or 〈nγ,−1〉 [see
the Appendix],

〈J 〉 = JC T0
|〈nγ,−1〉 − 1| sin �B sin φ

2
√

1 − T0 sin2(φ/2)
. (27)

Here, JC ≡ e�S/h̄ is the critical current. Note that 〈J 〉 shows
a nonsinusoidal dependence on φ in general because �B ,
〈nγ,−1〉, and the denominator of Eq. (27) that arises through
|�d | varies as a function of φ.

C. Kondo singlet vs local Cooper pairing

The ground state of the asymmetric Anderson model, given
in Eq. (15), can be classified according to the fixed points of
the NRG.51,52 Among them the strong-coupling fixed point
describes the Kondo singlet, for which the impurity site is
singly occupied. The frozen-impurity fixed point describes a
different situation, where the impurity level is far away from
the Fermi level and the impurity site becomes empty or doubly
occupied. In our case, the frozen-impurity fixed point is defined
with respect to Eq. (15) for the Bogoliubov particles, and
thus this describes a singlet state by a local Cooper pairing
that consists of a linear combination of the empty and doubly
occupied impurity states of the electrons represented in Eq. (9).
We refer to this fixed point as local Cooper pairing in the
following.

The ground state of Heff varies continuously between the
Kondo singlet and the local Cooper pairing, depending on
the Hamiltonian parameters EA, U , and �N . A rough sketch
of the ground-state phase diagram can be obtained quickly
from that in the atomic limit �N → 0, where the normal lead
is disconnected. In this limit the dot is occupied by a single
Bogoliubov particle with spin 1/2 for EA < U/2, whereas
the dot is empty with no Bogoliubov particle for EA > U/2.
Thus, the phase boundary is given by a simple semiellipse

of
√

ξ 2
d + |�d |2 = U/2, which is plotted in Fig. 4 for several

values of φ. The ground state is a singlet due to the local
Cooper pairing outside the semiellipse. In contrast, inside the
semielliptic boundary the ground state is a doublet and thus
the local moment arises in this limit of �N → 0. However, the
local moment is screened when the normal lead is connected
(�N 	= 0), and then the ground state inside the semiellipse
changes to the Kondo singlet. The coupling to the normal
lead also changes the sharp transition at the boundary to a
continuous crossover between the local-Cooper-pairing singlet
and the Kondo singlet.42

There are further quantitative corrections when the SC gap
� is finite. This was also examined for the �N = 0 case, using
the NRG.6,7 The results showed that the region of the magnetic

1.5 1.0 0.5 0.0 0.5
0.0

0.5

1.0

1.5

2.0

∋

d U

S
U

0.9π

0.75π

0.5π

0.0

doublet

singletsinglet

FIG. 4. (Color online) Ground-state phase diagram in the limit
of �N → 0 and |�L/R| → ∞ plotted in εd vs �S plane for several
values of φ. The couplings between the QD and SC leads is chosen
to be symmetric �L = �R (≡ �S/2). In this case the local SC gap
is given by �d = �S cos φ/2 for |φ| � π . The ground state is a
singlet due to the local Cooper pairing outside the semiellipse of√

(εd + U/2)2 + |�d |2 = U/2. Inside this semiellipse the ground
state is a magnetic doublet, which for finite �N changes to a Kondo
singlet due to the conduction-electron screening of the local moment.
Note that at εd = −0.5U the system has electron-hole symmetry, and
the results for this case are given in Fig. 2 at finite SC gaps.

doublet state becomes small as � decreases. This is because
also the excited states in the SC leads above the gap |ω| > �

contribute to the screening of the local moment for finite �.

IV. NRG RESULTS

In this section, we provide the NRG results for the ground-
state properties of the Y-shaped junction in the large-gap limit
|�L/R| → ∞.

A. Spectral function

We first of all discuss the impurity spectral function for
electrons, Add = (−1/π ) Im Gdd , that can be deduced from
the one for the Bogoliubov particles, Aγ = (−1/π ) Im Gγ :

Add (ω) = Aγ (ω) cos2 �B

2
+ Aγ (−ω) sin2 �B

2
. (28)

Specifically, the spectrum is symmetric, Add (−ω) = Add (ω),
in the electron-hole symmetric case, where �B = π/2. Note
that the single-electron spectrum Add (ω) consists of a su-
perposition of a single-Bogoliubov-particle part Aγ (ω) and
a single-Bogoliubov-hole part Aγ (−ω). This can be deduced
from the Lehmann representation that is expressed in terms
of the matrix element 〈m,N ′

b|d†
↑|GS,Nb〉 between the ground

state |GS,Nb〉 and an excited state |m,N ′
b〉 of Heff , where Nb is

an eigenvalue of the total number of the Bogoliubov particles
Nγ defined in Eq. (16). This matrix element can be finite
not only for the single-particle excitations with N ′

b = Nb + 1
but also for single-hole excitations with N ′

b = Nb − 1 of
the Bogoliubov particles because the electron d

†
↑ can be

decomposed into a superposition of the annihilation γ
†
−1,↑ and

creation γ−1,↓ of the Bogoliubov particles.
The low-energy spectral weight is dominated by the

renormalized Andreev resonances that appear in Add (ω) as

075432-5



AKIRA OGURI, YOICHI TANAKA, AND JOHANNES BAUER PHYSICAL REVIEW B 87, 075432 (2013)

a pair of quasiparticle peaks:

Add (ω) � z

π

[
�̃N cos2 �B

2

(ω − ẼA)2 + �̃2
N

+ �̃N sin2 �B

2

(ω + ẼA)2 + �̃2
N

]
.

(29)

The peak position ±ẼA, width �̃N , and renormalization factor
z vary as the Coulomb repulsion increases from U = 0, for
which we have ẼA = EA, �̃N = �N , and z = 1.

The high-energy part of the spectral weight away from the
Fermi level can be inferred from the one in the atomic limit
�N = 0. For weak repulsions EA > U/2, the ground state is
a singlet, and Add (ω) has two peaks at ω = ±(EA − U/2).
This is because in this case Aγ (ω) has a single peak at
ω = EA − U/2, which moves towards the Fermi level as U

increases. On the other hand, for strong repulsions EA < U/2
in the �N → 0 limit, the ground state is a magnetic doublet,
and then Add (ω) has four peaks emerging at ω = ±εUP
and ±εLW. These peaks are caused by the excitations to
the upper εUP ≡ U/2 + EA and lower εLW ≡ −(U/2 − EA)
atomic peaks defined with respect to the Bogoliubov particles,
and each of the two final states consists of a linear combination
of an empty and doubly occupied states of the original
electrons. These peaks correspond to the original Andreev
bound states typically found in situations of a QD coupled only
to a superconductor, and they are δ functions in the limit �N =
0. For a finite superconducting gap their position and the oc-
currence of the ground-state transition change quantitatively.7

In this situation in the doublet phase it is possible that
the higher excitations ±εUP are not found within the gap
anymore.

Figure 5 shows the spectral function for φ = 0 in the
electron-hole symmetric case, where EA = �S . In the upper
panel Add (ω) in the case of relatively small �N with EA =
5�N is plotted for several values of the Coulomb repulsion:
U/�N = 0, 5, 10, 15, 20. In these examples, at U = 10�N

the bare parameter takes the value EA = U/2, and thus the
dash-dotted line represents the results obtained at the crossover
region between the Kondo and local SC singlet states. The
pair of renormalized Andreev resonances at ω � ±ẼA, which
correspond to the peaks described in Eq. (29), shift closer to
the Fermi level ω = 0 as the Coulomb repulsion U increases
from 0 to 2EA. Then, for U > 2EA five peaks emerge as seen
in the curves for U = 15�N and 20�N . Among them, the
central peak near the Fermi level ω = 0 corresponds to the
Kondo resonance for the Bogoliubov particles, which appears
for Aγ (ω) at small positive frequency ω � ẼA. However, for
the electron spectral function Add (ω), this peak at ω � ẼA and
the counterpart for holes at ω � −ẼA overlap to form a single
peak at the Fermi energy ω = 0. The other four peaks represent
the electron and hole components of the excitations to the
upper and lower atomic levels of the Bogoliubov particles.
For instance, in the curve for U = 20�N , the broad peak at
ω � −5�N and the one at ω � +15�N correspond to upper
and lower atomic peaks appearing in Aγ (ω), respectively.

The lower panel of Fig. 5 shows the spectral function,
obtained at EA = �N where the bare Andreev level and the
hybridization energy due to the coupling to the normal lead
coincide. The Coulomb interaction is chosen to be U = 5�N

FIG. 5. (Color online) NRG results for the spectral function
Add (ω) = (−1/π ) Im Gdd,σ (ω), in the large-gap limit |�L/R| → ∞
at φ = 0, plotted for several values of U , choosing the couplings to the
SC leads such that (top) �S/�N = 5.0 and (bottom) �S/�N = 1.0.
The other parameters are taken to be �L = �R (≡ �S/2), assuming
the electron-hole symmetric εd = −U/2. In the present case the local
SC gap in the impurity site is given by �d = �S , and EA = �S .

and 10�N , so that EA < U/2 for these two cases. As the
coupling to the normal lead �N is relatively large in these
cases the subpeaks of the Coulomb oscillation are smeared,
especially in the curve for U = 5�N . Nevertheless, in the other
curve for U = 10�N , the sharp central peak and two subpeaks
of the atomic nature are distinguishable. The central peak
emerges as a result of the superposition of the two renormalized
Andreev levels at ω � ±ẼA close to the Fermi level, whereas
each of the subpeaks at ω � ±4.0�N emerges as a sum of the
subpeaks in Aγ (ω) and that in the counterpart for the holes
Aγ (−ω).

The results which we have presented in Fig. 5 are the
ones obtained at φ = 0, where there is no phase difference
between the two SC order parameters. As we have chosen
the parameters such that ξd = 0 and �L = �R , the dependence
of Add (ω) on φ enters only through the bare Andreev level
EA = �S cos φ/2 in this case. Therefore, the results capture
essential features common to the case for finite φ. In the
electron-hole asymmetry case ξd 	= 0, however, Add (ω) is no
longer a symmetric function of ω. The asymmetry in the ω

dependence enters through �B as it deviates from π/2 for
ξd 	= 0.
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B. Transport properties and Fermi-liquid behavior

In this section we present the NRG results for the ground-
state properties of the Y-shaped junction for symmetric
coupling �L = �R (= �S/2), where T0 = 1. The Josephson
phase is chosen such that θR = −θL (= φ/2), which makes
the local SC gap �d and pair correlation 〈d↓d↑〉 real θd = 0
as shown in the Appendix. We consider the electron-hole
symmetric case ξd = 0 in Sec. IV B1 and then discuss the
gate voltage dependence varying ξd in Sec. IV B2.

1. Electron-hole symmetric case

Figure 6 shows the results of the phase shift δ, the SC
pair correlation 2|〈d↓d↑〉|, the conductance gNS , and the
Josephson current J as functions of φ for several values
of �N/�S in the electron-hole symmetric case, where the
Bogoliubov angle is locked at �B = π/2 and 〈nd〉 = 1, as
mentioned. Thus, the ground-state properties are determined
by the phase shift δ, which depends on the Josephson phase
through EA = �S cos(φ/2). The Coulomb repulsion is chosen
to be U = 1.5�S , and for this interaction the QPT occurs at
φ � 0.46π in the �N → 0 limit.

The coupling to the normal lead makes the excitation
spectrum of the dot gapless and changes the sharp QPT into a
continuous crossover between the two different singlet states,
namely the Kondo and local SC singlets. For φ � 0.46π , the
ground state is the local Cooper pairing consisting of a linear
combination of the empty and doubly occupied impurity states
with small δ. For larger phase difference, φ � 0.46π ; however,
the ground state is a Kondo singlet state, for which δ � π/2.

The phase shift shown in the top left panel of Fig. 6 can
be expressed as the number of Bogoliubov particles on the
impurity site, 〈nγ,−1〉 = 2δ/π , due to the Friedel sum rule
given in Eq. (17). Furthermore, in the electron-hole symmetric
case, the SC pair correlation defined in Eq. (25) is given simply

FIG. 6. (Color online) Phase shift and some related ground-state
averages plotted vs Josephson phase φ for several values of �N in
the electron-hole symmetric case εd = −U/2: (top) phase shift δ and
pair correlation 2

∣∣〈d↓d↑〉
∣∣, (bottom) conductance gNS and Josephson

current J in units of JC = e�S/h̄. The other parameters are chosen
such that �L = �R (= �S/2), and U = 1.5�S in the large-gap limit
|�L/R| → ∞.

by 2〈d↑d↓〉 = 1 − 〈nγ,−1〉. Therefore, the pair correlation is
suppressed in the Kondo regime for φ � 0.46π , as seen in the
top right panel.

The Andreev conductance gNS , shown in the bottom left
panel of Fig. 6, also varies as a function of the Josephson
phase φ. At the crossover region between the Kondo-singlet
and local Cooper-pairing states, the conductance due to the
Andreev scattering gNS has a sharp peak for small �N . The
crossover behavior, however, is smeared as �N increases.
The conductance takes the unitary limit value 4e2/h at
δ = π/4 where the renormalized resonance width and the
renormalized Andreev level coincide such that �̃N = ẼA. This
happens in Fig. 6 at φ � 0.0 for �N = 0.5�S .

The Josephson current, in the bottom right panel, also shows
the crossover behavior near φ � 0.46π and decreases at φ �
0.46π when �N is small. The value of the current approaches
zero in the Kondo-singlet region since in this case the large-gap
limit has been taken. For finite SC gaps, however, a weak
current will flow in the opposite direction, as seen in Fig. 3 for
the magnetic-doublet state. Similarly, for finite SC gaps, the SC
pair correlation 〈d↑d↓〉 will also change the sign at crossover
and has a small negative value in the magnetic ground state.

We have also deduced the renormalized parameters for
the local Fermi liquid of the interacting Bogoliubov particles
from the convergence of the finite-size energy spectrum in
the successive NRG steps.51,57 Figure 7 shows the results
for the renormalized Andreev level ±ẼA, the wave-function
renormalization factor z, and the Wilson ratio R. We see for
small �N (= 0.05�S) that the parameters are significantly
renormalized in the Kondo singlet state for φ � 0.46π , where
z � 1.0, R � 2.0, and the pair of renormalized Andreev peaks

FIG. 7. (Color online) Renormalized parameters plotted vs
Josephson phase φ for several values of �N in the electron-hole
symmetric case εd = −U/2: (top) renormalized Andreev level ±ẼA,
(bottom) renormalization factor z and Wilson ratio R. The other
parameters are chosen such that �L = �R (= �S/2), and U = 1.5�S

in the large-gap limit |�L/R| → ∞.
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±ẼA lies close to the Fermi level ω = 0. This indicates
that the Bogoliubov particles are strongly correlated in the
Kondo regime. In contrast, in the local Cooper-pairing state
for φ � 0.46π , the parameters are not renormalized so much
(z � 1.0, R � 1.1), and the renormalized Andreev peaks ±ẼA

situate away from the Fermi level. As the coupling �N between
the QD and normal lead becomes large, these two singlet states
become indistinguishable, as those for �N = 2.5�S seen in
Fig. 7.

2. Electron-hole asymmetric case

We next consider the electron-hole asymmetric case, in
which the Bogoliubov angle �B = cot−1(ξd/|�d |) deviates
from π/2 as ξd varies. Furthermore, the phase shift δ also
varies as a function of ξd since the bare position EA − U/2 of
the Andreev level depends on ξd . Through these changes of
the phase parameters �B and δ, the ground-state properties of
this Y-shaped junction depend on the gate voltage εd .

In this section we examine the εd dependence for several
values of the Josephson phase, φ = 0.3π, 0.46π , and 0.6π ,
choosing the Coulomb repulsion to be U = 1.5�S as that in the
half-filled case discussed above. The phase boundary between
the singlet and doublet ground states moves in the �S vs εd

plane as φ increases, as shown in Fig. 4. In our parameter
set �S/U = 0.666, and the QPT occurs for φ = 0.6π when
εd varies in the range −1.0 � εd/U � 0.0, whereas the level
crossing does not occur for φ = 0.3π . A marginal situation
is realized for φ � 0.46π ; in this case the system approaches
very closely the phase boundary near the symmetric point
εd � −U/2.

In Fig. 8, the correlation functions for φ = 0.6π are plotted
vs εd/U . The ground state changes discontinuously in the
limit of �N = 0, at εd � −0.82U and −0.18U . The sharp
transition becomes a continuous crossover for finite �N , and
at −0.82U � εd � −0.18U the ground state is a Kondo singlet
consisting of the strong correlated Bogoliubov particles, and

FIG. 8. (Color online) Phase shift and some related ground-state
averages plotted vs εd/U for φ = 0.6π for several values of �N :
(top) phase shift δ and electron occupation number 〈nd〉, (bottom)
conductance gNS and Josephson current J in units of JC = e�S/h̄.
The parameters are chosen to be �L = �R (= �S/2), and U = 1.5�S .

the electron filling is almost 〈nd〉 � 1.0, as shown in the top
right panel. In the top left panel, we can see that in this region
of εd the occupation number of the Bogoliubov particles at
the impurity level, 〈nγ,−1〉 = 2δ/π , decreases as �N increases
from zero to an intermediate value �N � 0.5�S . Then 〈nγ,−1〉
increases, as seen in the results obtained for �N = 2.5�S , and
approaches 1.0 in the limit of large �N where this coupling
dominates all the other effects. The bottom right panel of
Fig. 8 shows the Josephson current. This supercurrent, flowing
between the two SC leads, is suppressed due to the electron
correlation in the Kondo regime at −0.82U � εd � −0.18U .
Outside of this region the ground state is characterized by
the local Cooper pairing, and the current is less suppressed
although the coupling to the normal lead �N smears the
structure due to the QPT. We also see in the bottom left panel
that the conductance gNS between the normal lead and the QD
shows a sharp peak at the transient region of the crossover
for small �N . The sharp conductance peak is mainly caused
by the phase shift δ that changes suddenly from 0 to π/2 at
the crossover region because the conductance is proportional to
sin2 2δ. The Bogoliubov angle �B , appearing in the expression
of gNS given in Eq. (26), varies moderately and determines the
peak height.

Figure 9 shows the εd dependence of the correlation
functions for a smaller value of the Josephson phase φ = 0.3π .
In this case U is not large enough to reach the Kondo
regime over the crossover region. The ground state is the
local Cooper-pairing state for all values of εd , and thus the
correlation functions vary moderately as a function of the
gate voltage εd . The conductance and Josephson current have
maximums at the electron-hole symmetric point εd = −0.5U .
This is mainly because the factor sin �B that appears in the
expression of these correlations given in Eqs. (26) and (27)
takes a local maximum at the Bogoliubov angle of �B = π/2.

In Fig. 10, the results of the renormalization factor z,
the renormalized Andreev levels ±ẼA, the Wilson ratio R,
and the phase shift are compared for three different values

FIG. 9. (Color online) Phase shift and some related ground-state
averages plotted vs εd/U for φ = 0.3π for several values of �N :
(top) phase shift δ and electron occupation number 〈nd〉, (bottom)
conductance gNS and Josephson current J in units of JC = e�S/h̄.
The parameters are chosen to be �L = �R (= �S/2), and U = 1.5�S .
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FIG. 10. (Color online) Renormalized parameters plotted vs
εd/U for several values of φ for relatively small coupling �N =
0.05�S between the dot and normal lead: (top) renormalized Andreev
level ±ẼA and phase shift δ, (bottom) renormalization factor z and
Wilson ratio R. The other parameters are chosen such that �L = �R

(= �S/2), and U = 1.5�S .

for the Josephson phase: φ = 0.3π, 0.46π, and 0.6π . The
Coulomb interaction and the hybridization energy scales are
chosen such that U = 1.5�S and �N = 0.05�S . We can see
in the top left panel that the pair of renormalized Andreev
levels ±ẼA for φ = 0.6π lie very close to the Fermi level
at −0.82U � εd � −0.18U . Furthermore, in this region, the
renormalization factor z significantly decreases and the Wilson
ratio approaches R → 2 owing to the strong correlations in the
Kondo regime. It also indicates that the Kondo temperature
TK = π�̃N/4 and the renormalized resonance width �̃N ,
defined in Eq. (19), become very small. Simultaneously, the
local Bogoliubov particle number on the dot approaches single
occupancy 〈nγ,−1〉 = 2δ/π � 0.9 although it is less than 1.0
because �N is not very small in this case. Note that the
sharp single Kondo peak that we have seen in Fig. 5 for
U � 15�N consists of such a pair of renormalized Andreev
levels, appearing in the close vicinity of the Fermi level.

The ground-state properties show a marginal behavior at
φ = 0.46π , as shown in Fig. 10. For instance, z and R

take the intermediate values, and the pair of ±ẼA becomes
distinguishable as we can see in the top left panel of Fig. 10.
Then, for a smaller value of the Josephson phase φ = 0.3π , the
ground state is a singlet caused by the local Cooper pairing, as
mentioned. Therefore, in this case the electron correlations are
suppressed as z � 0.95 and R � 1.16 even at the electron-hole
symmetric point εd = −0.5U .

C. Spatial asymmetry in the junction (�L �= �R)

So far, we have assumed that the Josephson junction is
symmetric: �L = �R . However, the SC proximity effects in
real systems depend on the asymmetry in the couplings,
�L 	= �R . One difference of the asymmetric junction from
the symmetric one is that the maximum possible of the
transmission probability is no longer 1, namely T0 < 1.
Specifically, the local SC gap induced on the dot |�d |, defined
in Eq. (7), becomes larger in the asymmetric junction than

FIG. 11. (Color online) Phase shift and some related ground-state
averages for the asymmetric couplings �R 	= �L plotted vs Josephson
phase φ for several �L/�R keeping �S = �R + �L unchanged: (top)
phase shift δ and pair correlation 2

∣∣〈d↓d↑〉
∣∣, (bottom) conductance

gNS and Josephson current in units of JC = e�S/h̄. The other
parameters are chosen such that εd = −U/2, U = 1.5�S , and �N =
0.05�S .

that in the symmetric junction for which T0 = 1. Therefore,
the asymmetry in the couplings tends to enhance the SC
proximity effects as it suppresses the reduction of |�d | due
to the Josephson phase φ. In the following, we discuss
the ground-state properties of the asymmetric junction with
�L 	= �R , keeping the sum �S = �R + �L unchanged at
�N = 0.05�S . For simplicity, we examine the electron-hole
symmetric case εd = −U/2, where the bare Andreev level
is given by EA = |�d | and the Bogoliubov angle is fixed at
�B = π/2.

The NRG results for the asymmetric junction are plotted
vs the Josephson phase φ in Fig. 11 for U = 1.5�S . In
each panel, the curve for �L/�R = 1.0 corresponds to the
results obtained for the symmetric coupling, presented also in
Fig. 6. As mentioned above, the amplitude of the static SC gap
|�d | for the asymmetric junction becomes larger than that for
the symmetric junction. Thus, the position of EA moves away
from the Fermi energy due to the spatial asymmetry, and this
causes rather moderate φ dependence of the phase shift δ for
�L 	= �R , seen in the top left panel of Fig. 11. Correspondingly,
the SC pair correlation 2〈d↑d↓〉, shown in the top right panel,
increases as the asymmetry �L/�R increases.

The conductance due to the Andreev scattering is propor-
tional to sin2 2δ and thus has a peak when the phase shift
takes the value of δ = π/4 at the crossover region between the
local Cooper-pairing and Kondo-singlet states. We see in the
bottom left panel of Fig. 11 that the position of the conductance
peak shifts towards the larger φ side as δ becomes smaller
with increasing �L/�R . This also shows that the asymmetric
coupling favors the SC proximity into the dot and enlarges the
parameter region for the local Cooper-pairing ground state.
Furthermore, the crossover behavior from the local Cooper
pairing to the Kondo regime, seen for the Josephson current
in the bottom right panel for �L/�R = 1, is smeared as
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�L/�R increases, and the current shows a simple sinusoidal
φ dependence for large asymmetries.

V. SUMMARY

We have studied the crossover between a Kondo singlet
and a local Copper-pairing singlet, occurring in a quantum dot
coupled to one normal and two SC leads. The low-energy
states of the system can be described by excitations from
a local Fermi-liquid ground state of interacting Bogoliubov
particles. Specifically in this three-terminal configuration,
the renormalized parameters for the quasiparticles vary as
functions of the Josephson phase φ, and the crossover occurs at
finite φC as the phase difference varies in the range 0 � |φ| �
π . We have calculated the phase shift δ, the renormalization
factor z, the renormalized Andreev level ±ẼA, and the Wilson
ratio R in the large-SC-gap limit �SC → ∞, using the NRG,
and have deduced the transport properties at T = 0.

The Bogoliubov particles are strongly renormalized in the
Kondo regime while the renormalization is a minor effect in the
local Cooper-pairing regime which corresponds to the frozen-
impurity fixed point of the NRG. Near the crossover between
the two regimes a pair of renormalized Andreev levels ±ẼA

approaches the Fermi level, and the conductance between the
dot and the normal lead has a peak. The Josephson current
between the two SC leads is suppressed significantly in the
Kondo regime.

We have also presented the spectral function calculated
with the NRG. The results demonstrate precise features of the
original Andreev levels, which for the local Cooper-pairing
state are broadened by �N and then renormalized as U

increases. In the Kondo regime, the pair of renormalized
Andreev levels overlaps to form a single peak near the
Fermi level, while at high energies four additional peaks
are visible. These peaks correspond to the excitations to
the upper and lower atomic peaks, which are defined with
respect to the Bogoliubov particles and consist of a linear
combination of the empty and doubly occupied electron states.
Thus, the broadened bare Andreev peaks and a low-energy
feature corresponding to a Kondo resonance can appear
within the superconducting gap. For suitable parameters this
should be observable experimentally in the discussed Y-shaped
geometry.
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APPENDIX: CURRENT IN THE LARGE-GAP LIMIT

We provide the expression of the Josephson current in the
large-gap limit. To this end, we use the imaginary time Green’s
function, defined by

Gdd (τ ) = −
[ 〈Tτ d↑(τ ) d

†
↑〉 〈Tτ d↑(τ ) d↓〉

〈Tτ d
†
↓(τ ) d

†
↑〉 〈Tτ d

†
↓(τ ) d↓〉

]
. (A1)

The Fourier transform of this function can be expressed in the
form

{Gdd (iω)}−1 = iω1 − ξd τ 3 + i�N sgn ω 1

−
∑

ν=L,R

v2
ν gν(iω) − �(iω). (A2)

Here, iω is the Matsubara frequency, �(iω) is the self-energy
due to the Coulomb interaction, gν(iω) is the local Green’s
function at the junction of the lead ν,

gν(iω) = −πρν

iω1 − �ν√
ω2 + |�ν |2

, �ν ≡
[

0 �ν

�∗
ν 0

]
, (A3)

and 1 and τ 3 are the unit and Pauli matrices, respectively.
The Josephson current from the dot to the SC lead for

ν = L,R can be expressed in terms of the Green’s function

〈Jν〉 = e

h̄

iv2
ν

β

×
∑
ωn

Tr[{gν(iωn) τ 3 − τ 3 gν(iωn)}Gdd (iωn)]. (A4)

In the limit of |�ν | → ∞, the lead Green’s function
becomes a constant gν → πρν �ν/|�ν | as the retardation
effects caused by the ω dependence in Eq. (A3) are suppressed.
Then, Eq. (A4) can be rewritten in the form

〈Jν〉 → e

h̄
4 �ν

eiθν 〈d↓d↑〉 − e−iθν 〈d†
↑d

†
↓〉

2i
(A5)

= e

h̄
4 �ν |〈d↓d↑〉| sin(θν − θd ). (A6)

Note that 〈d↓d↑〉 = |〈d↓d↑〉| eiθd , in the limit of a large gap as
the phase of 〈d↓d↑〉 coincides with that of the local SC gap
�d = |�d | eiθd as shown in Eq. (25). The current conservation
〈JR〉 + 〈JL〉 = 0 can be confirmed explicitly through the
identity

�R sin(θR − θd ) − �L sin(θd − θL) = 0, (A7)

which follows from the definition of θd given in Eq. (6). Using
Eq. (A7), the current can be expressed in the form

〈J 〉 = e

h̄
4�R�L

|〈d↓d↑〉|
|�d | sin φ. (A8)

This can be rewritten further, in terms of the phase shift δ and
the Bogoliubov angle �B , as shown in Eq. (27).
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