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Resonant and nondissipative tunneling in independently contacted graphene structures
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The tunneling processes between independently contacted graphene sheets separated by thin insulator are
restricted by the momentum and energy conservation laws. Because of this, both dissipative tunneling transitions,
with momentum transfer due to disorder scattering, and nondissipative regime of tunneling, which appears due
to intersection of electron and hole branches of energy spectrum, must be taken into account. The tunneling
current density is calculated for the graphene-boron nitride-graphene layers, which is described by the tight-
binding approach, and for the predominant momentum scattering by static disorder. Dependencies of current
on concentrations in top and bottom graphene layers, which are governed by the voltages applied through
independent contacts and gates, are considered for the back- and double-gated structures. The current-voltage
characteristics of the back-gated structure are in agreement with the recent experiment [Science 335, 947 (2012)].
For the double-gated structures, the resonant dissipative tunneling causes a 10-fold enhancement of response
which is important for transistor applications.
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I. INTRODUCTION

In contrast to the tunneling processes between bulk
materials,1 the tunneling between low-dimensional systems
must be assisted by scattering in order to satisfy the momentum
and energy conservation laws; see the results and discussions
for double quantum wells or wires in Refs. 2 or 3, respectively.
When the splitting energy between 2D states (this energy �

is determined by transverse voltages applied across structure)
exceeds the collision broadening energy � (h̄/� is the depar-
ture time), the tunneling probability appears to be proportional
�. In conditions of tunneling resonanse, when � � �, this
probability is proportional to h̄/�,4 i.e., the tunnel current
depends on the scattering time in the same way as the current in
metallic conductor. The breakdown of the dissipative tunneling
regime is possible if the energy spectrum branches are
intersected and the energy-momentum conservation laws are
satisfied without scattering. For example, the intersection of
the parabolic electron branches in double quantum wells takes
place if the magnetic field is applied perpendicularly to the
tunneling direction; see Refs. 5 and 6 for the experimental data
and theory. Similar intersection between the linear branches of
gapless energy spectra should take place in graphene/boron ni-
tride/graphene (G/BN/G) heterostructure. Such a structure was
reported recently7 and the tunneling transistor, which is based
on the independently contacted G-sheets connected through a
few monolayer BN, was demonstrated.8 In contrast to the semi-
conductor heterostructure case, the independently contacted
G/BN/G structures can be easily realized with the use of the
single-layer-transfer technology.9 But a complete theoretical
investigation of tunneling current in such a structure is not
performed yet (some numerical results on the tunneling con-
ductance were reported recently10 but the current-voltage char-
acteristics were not analyzed) and a problem is timely now.

In the paper, we calculate the tunneling current I be-
tween the independently contacted top (Gt ) and bottom (Gb)
graphene layers separated by BN. We analyze the dependen-
cies of I on the sheet concentrations (Fermi energies) and on
�, which are determined by the gate voltages applied to the
contacts; see Fig. 1(a). Depending on voltages applied, one can

FIG. 1. (Color online) (a) Gt /BN/Gb structure under voltages
Vtb and Vbg applied to top (t) and bottom (b) layers (shown by
gray) through independent contacts (black); the back gate (blue) is
separated by a substrate of thickness ds and the top gate under voltage
Vtg is shown by blue dashed lines. (b) Dispersion laws of t and b layers
(black and gray crossed lines) with Fermi energies εF t and εFb for
the electron-electron tunneling regime. (c) The same as in (b) for the
electron-hole tunneling regime.

realized either electron-electron (hole-hole) or electron-hole
regimes of tunneling, as it is shown in Figs. 1(b) and 1(c),
respectively. In the latter case, the cross-point E = 0 is located
between the Fermi energies (εF t > 0 > εFb or vice versa) and
the nondissipative regime of tunneling takes place in addition
to the resonant dissipative tunneling transitions. The current-
voltage characteristics appears to differ for these regimes. For
the back-gated structure, the results are in agreement with the
experimental data.8 For double-gated structures, the resonant
dissipative tunneling regime can be realized, with a 10-fold
enhancement of response.
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The paper is organized as follows. In Sec. II, we present
the basic equations which describe the two regimes of
interlayer tunneling. In Sec. III we analyze the current-voltage
characteristics and compare the results for the back-gated
structure with the experimental data.8 The last section includes
the discussion approximations used and the conclusions. In the
Appendix, we evaluate the effective tunneling Hamiltonian for
G/BN/G structure.

II. BASIC EQUATIONS

Under consideration of Gt /BN/Gb structure, we use the
tunneling Hamiltonian which connects the Gt and Gb layers
described by 2 × 2 matrices ĥGt,b, i.e., we introduce 4 × 4
matrix11

ĤGBNG =
∣∣∣∣ ĥGt τ̂

τ̂ ĥGb

∣∣∣∣ ≡ ĤG + T̂ . (1)

Here we have separated the Hamiltonian of uncoupled layers,
ĤG, and the tunneling contribution, T̂ , written through the 2 ×
2 matrix τ̂ = τ̂+, which is determined by a stacking geometry
of the structure; see the Appendix. The charge density in Gt

and Gb layers, Q
(k)
t (here and below k = t,b), and the tunnel

current density, It , are determined through the 4 × 4 density
matrix ρ̂t by the formulas12∣∣∣∣Q(k)

t

It

∣∣∣∣ = 4

L2
Sp

(∣∣∣∣ eP̂k

Î

∣∣∣∣ρ̂t

)
. (2)

Here L2 is the normalization area, Sp(. . .) means both
summations over states of carriers in Gt and Gb layers and
averaging over lateral disorder which should be included in the
Hamiltonians ĥGt,b, and P̂k is the projection operator on the k

states. The interlayer current operator Î is determined from the
charge conservation requirement It = dQ

(t)
t /dt = −dQ

(b)
t /dt

(see similar calculations in Refs. 6), so

Î = e

h̄

∣∣∣∣ 0 −iτ̂

iτ̂ 0

∣∣∣∣ . (3)

As a result, tunneling processes are described by the above-
introduced matrices T̂ and Î , as well as the density matrix gov-
erned by the standard equation: ih̄(∂ρ̂t /∂t) = [ĤGBNG,ρ̂t ].12

Further, we separate the diagonal and nondiagonal parts of
the density matrix ρ̂t ≡ [ρ̂t ] + {ρ̂t } which describe the distri-
bution of carriers in Gt and Gb layers and the tunneling current,
It = (4/L2)Sp

(
Î {ρ̂t }

)
, respectively. Similarly to Ref. 6, one

express {ρ} through the carrier distributions determined by [ρ]
and the tunneling current density takes the form

I ≈ 4i

L2h̄

∫ 0

−∞
dtSp([ρ̂][T̂ ,e−iĤGt/h̄Î eiĤGt/h̄]). (4)

Calculations of Sp(. . .) are performed below with the use of
the basis formed by two-row wave functions in kth layer �

(kα)
x

determined by the eigenvalue problem ĥGk�
(kα)
x = εkα�

(kα)
x .

We introduce the spectral density matrix, labeled by l,l′ =1
and 2, as

A
(k)
E,ll′ (x − x′) =

〈∑
α

δ (E − εkα) �
(kα)
lx �

(kα)∗
l′x′

〉
k

, (5)

where the averaging over random disorder in the kth layer
〈. . .〉k is performed. Using the Fermi distribution for heavily
doped layers, when [ρ] is replaced by the θ function θ (εFk −
εkα) with the Fermi energies εFk in Eq. (4), we transform I into

I = 8π |e|
h̄L2

∫ εF t

εFb

dE

∫
dx

∫
dx′

× tr
[
τ̂+Â

(b)
E (x′ − x)τ̂ Â

(t)
E (x − x′)

]
, (6)

where tr(. . .) means summation over the matrix variable.
Below, we express Â

(k)
E in the momentum representation

as Â
(k)
E,p = i(ĜR(k)

E,p − Ĝ
R(k)+
E,p )/2π , where Ĝ

R(k)
E,p is the retarded

Green’s function of kth layer with the cross-point energies
±�/2 written through the level-splitting energy. Within the
model of short-range disorder with the same statistically
independent characteristics for k = t and b, the Green’s
function in the Born approximation takes form13

Ĝ
R(k)
E,p = P̂ (+)

p G
(k)
E,p + P̂ (−)

p G
(k)
E,−p ≡ G(k)

Ep + σ̂ · p
p

G(k)
Ep,

(7)
G

(k)
E,p ≈ [(E ∓ �/2)(1 + 
E∓�/2 + ig) − υp]−1,

where −�/2 and +�/2 correspond to the t and b layers
and υ � 108 cm/s is the carrier velocity. The projection
operators on the conduction (+) and valence (−) band
states, P̂

(±)
p = [1 ± (σ̂ · p)/p] /2, are written through the

2 × 2 isospin Pauli matrix σ̂ . The self-energy contributions
(E ∓ �/2)(
E∓�/2 + ig) are written through the logarith-
mically divergent real correction which is proportional to

E = (gπ ) ln (Ec/|E|) and the coupling constant g. This
approach corresponds to the short-range scattering with the
cut-off energy Ec.14 The interlayer tunneling is described by
the parameters

T 2 = tr(τ̂+τ̂ ), T 2
s = 1

2

∑
μ

tr
(
τ̂+σ̂μτ̂ σ̂μ

)
, (8)

which appear under the calculation of the matrix trace in
Eq. (6). Using Eqs. (7) and (8) we transform the tunneling
current density (6) into the form

I = 2e

πh̄

∫ εF t

εFb

dE

L2

∑
p

(T 2ImG(t)
EpImG(b)

Ep + T 2
s ImG(t)

EpImG(b)
Ep),

(9)

where the explicit expressions for G(k)
Ep and G(k)

Ep are determined
by Eq. (7). Due to the in-plane symmetry of the problem, I is
written as the double-integral over the p plane and the energy
interval (εF t ,εFb).

Integrations in (9) are performed analytically for the
collisionless case, g → 0, and the tunneling current density is
given by the sum of the dissipative current, which is ∝ δ�(�),
and the nondissipative contribution (∝ χ |�|):

I � JT

⎧⎪⎨⎪⎩
(
ε2
F t − ε2

Fb

)
δ�(�), εF tεFb > 0

sgn(εF t )
(
ε2
F t + ε2

Fb

)
×δ�(�) + χ |�|/2, εF tεFb < 0

,

(10)

JT = |e|(T 2 + T 2
s

)
2h̄3υ2

, χ = T 2 − T 2
s

T 2 + T 2
s

.

Here the resonant dissipative contribution (at εF tεFb > 0) is
written through the δ-like function δ�(�) = �/[π (�2 + �2)]
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with the phenomenological broadening � � g(εF t + εFb). At
εF tεFb < 0, the nondissipative contribution is written through
the factor χ (0 < χ < 1 because T 2 � T 2

s ) determined by
the tunneling energies T and Ts . These parameters depend
on the stacking order of the Gt /BN/Gb structure and rough
estimate for the case of N -layer BN barrier15 is determined
by Eq. (A4); see the Appendix. As a result, we obtain
T ,Ts ∼ γ (γ /̃εBN)N , where γ ∼0.4 eV is the interlayer overlap
integral and ε̃BN �2.5 eV is of the order of the c- and v-band
energies in BN. We use below T ,Ts ∼13 μeV for N = 4 and
∼6 μeV for the six-layer BN barrier, which are in agreement
with the experimental data of Ref. 8. The scattering parameters
used in Eqs. (9) and (10) are taken from the conductivity
measurements; see similar considerations in Refs. 16. We
choose the cut-off energy Ec ∼ 0.2 eV and the coupling
constants g � 0.3 or 0.15 corresponded to the maximal sheet
resistance ∼4 or 2 k� per square.

The current density I is dependent on εF t , εFb, and
�, which are determined by the drops of voltages applied
to three- or four-terminal structures; see Fig. 1(a). Before
study of the current-voltage characteristics, we consider the
dependencies of the total current I on these three energies.
In Fig. 2 we plot the tunneling current, which is determined
by Eqs. (9) and (7), versus � for different Fermi energies
determined by εF = (εF t + εFb)/2 and δεF = εF t − εFb at
χ =1 or 0. The resonant dissipative regime of tunneling is
realized at |εF | > |δεF /2| and peak value I (� = 0) increases
both with doping levels and with g, as shown in Fig. 2(a).
If |εF | < |δεF /2|, the electron-hole tunneling regime takes
place and the nondissipative contribution becomes dominant
with increasing of �, where I ∝ χ |�|. At small � the
dependency I (�) is transformed into narrow peak due to the
dissipative contribution with weak broadening; see Eq. (10)

FIG. 2. (Color online) (a) Tunneling current density I versus level
splitting � for the resonant tunneling regime at εF = 200 meV and
δε = 50 meV (1) or 100 meV (2) for g = 0.3. Solid and dashed curves
are plotted for χ = 1 and χ = 0, respectively. Curve (3) is plotted for
parameters (1) at g = 0.15. Dotted curve fits dependencies (2) with
the use Eq. (10). (b) The same as in panel (a) for the nondissipative
regime if εF = 0 and δε = 200 meV (1) or 100 meV (3). Curve (2)
corresponds to εF = 200 meV and δε = 100 meV and the dotted line
gives ∝ � contribution in Eq. (10).

and Fig. 2(b). The numerical results given by Eq. (9) are in a
good agreement with the approximations (10), shown by the
dotted asymptotics, because of weak (�10%) contributions
from the renormalization of energy spectra.

Neglecting the quantum capacitance contributions and the
near-contact drops of potentials, we use εF t − εFb � eVtb and
the Gauss theorem connected the carrier concentrations in
graphene with interlayer electric fields, Vtb/d and Vbg/ds (here
d and ds are thicknesses of BN layer and SiO2 substrate). As
a result, the Fermi energies and � are connected with drops of
voltages as follows:

2εF t,b � ±eVtb − F (eVtbεd ) − F (eVbgεds
− eVtbεd ),

� � eVtb + F (eVtbεd ) − F (eVbgεds
− eVtbεd ), (11)

F (x) = sgn(x)
√

|x|, εd = ε(h̄v)2

4e2d
.

Here “ + ” and “−” stand for Gt and Gb layers, εF t,b > 0 or
< 0 correspond to electron or hole doping, and the dielectric
permittivity ε � 4 is the same for BN and SiO2 layers; see
Refs. 7 and 8. For the double-gated structure with top gate
separated by BN insulator of thickness dt , one obtains similar
expressions for εF t,b and � after the replacement eVtbεd →
eVtbεd − eVtgεdt

; see the voltages shown in Fig. 1(a). The
approach (11) is valid for the heavily doped graphene layers,
so the fields Vtb/d, Vbg/ds , and Vtg/dt should be strong
enough. On the other hand, these fields are restricted by the
breakdown condition for BN layer, when these fields should
be �7 MV/cm.17

III. CURRENT-VOLTAGE CHARACTERISTICS

In this section we analyze the current-voltage charac-
teristics for the back- and double-gated structures. Below,
the tunneling current density is determined by Eqs. (7)
and (9) with the Fermi energies and the level splitting written
through the voltages applied according to Eqs. (11). The
parameters described both the elastic scattering processes and
the interlayer tunnel coupling are chosen the same as for the
above calculations shown in Fig. 2.

For the back-gated structure with N -layer BN barriers
(N = 4 and 6) and g = 0.3 the dependencies of I versus Vtb at
fixed Vbg are shown in Fig. 3 at Vbg = 0, when I−Vtb

= −IVtb
.18

The electron (hole) concentrations are ∝Vtb and � is the sum
of linear and square-root functions; see insets. The current-
voltage characteristics I (Vtb) are in reasonable agreement with
the experimental data of Ref. 8 if we used the scale factor JT

with the above-estimated T and Ts . The dependencies on χ

are weak enough (�25% for N = 4 and �10% for N = 6,
not shown). If � ∼ 0, when Vtb � −0.55 V for six-layer
barrier, a negative resonant contribution due to dissipative
tunneling gives ∼30% variations of the I -V characteristic.
Such a peculiarity was not found in Ref. 8; it probably is
due to a lateral redistributions of charges or a large-scale
inhomogeneities of the samples used. The I -V characteristics
of back-gated structures at Vbg �= 0 are plotted in Fig. 4 for
N = 4, 6 and χ = 1, 0. Once again, there is a reasonable
agreement of I (Vtb,Vbg) with the available experimental data
for N = 4 at Vtb < 0. A visible asymmetry of I takes place if
Vtb → −Vtb but deviations from experimental data increase.
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FIG. 3. (Color online) Tunneling current I versus Vtb at Vbg = 0
for structures with six- and four-layer BN barriers (black and red
curves, respectively; squares and triangles are experimental points8).
Solid, dotted, and dashed curves correspond to χ = 1.0 0.5, and 0.
Insets show � and concentrations nt or nb (solid or dashed lines)
versus Vtb.

The dependencies for N = 6 are similar but I is ∼2 times
weaker and the resonant dissipative contribution is absent for
Vbg = −25 V because � �= 0; see the inset.

An enhancement of the resonant dissipative tunneling
contributions takes place in the double-gated (four-terminal)
structure, when I depends on Vtb, Vtg , and Vbg . These
dependencies are shown in Fig. 5 for the structure with the
10-layer BN cover layer (dt = 3.4 nm; with a negligible
tunneling if dt � 2 nm19) at different top- and back-gate
voltages (Vtg = 0 corresponds to the three-terminal structure).
Since the condition � = 0 is realized now at higher energies,
the resonant dissipative tunneling peaks are >10 times greater
than the background current. This is the central result which
should be important for the transistor applications. Note that
for � ∼ 0 at Vtb ∼ 0 [curve 3 in Fig. 5(a)] the resonant
dissipative peak is suppressed. Beyond this narrow region, the

FIG. 4. (Color online) (a) Current density I versus Vtb for four-
layer BN barrier at Vbg = 0 (red), −25 V (blue), and −50 V (black).
Experimental points are shown for Vbg = 0 (triangles) and −50 V
(hexagons). Inset shows � versus Vtb. (b) The same as in panel
(a) for the six-layer BN barrier.

FIG. 5. (Color online) (a) Dependencies I (Vtb) for a double-gated
structure with a four-layer BN barrier and a 10-layer BN cover layer
under Vbg = −50 V and Vtg = 1.5 V (1), 0.75 V (2), −0.75 V (3),
and −1.5 V (4). Inset shows � versus Vtb. Solid and dashed curves
correspond to χ = 0 and 1, respectively. (b) The same as in upper
panel for Vbg = 0 V.

resonant condition �(Vtb) ≈ 0 should not be suppressed by
lateral inhomogeneities and the peaks caused by the resonant
dissipative tunneling should not be smeared.

Overall, the consideration presented here gives an adequate
theoretical description of the tunneling transistor effect which
is in reasonable agreement with the experimental data.8

The analysis performed opens a way for the verification of
scattering mechanisms and tunneling parameters in G/BN/G
structures. In addition, the double-gated (four-terminal) struc-
ture was not considered before and this structure show a great
(10 times) enhancement of tunneling current tunability.

IV. CONCLUSION

We have adopted the theory of low-dimensional tunneling4,6

to the case of the tunneling charge transfer in independently
contacted graphene structures with multilayer BN barrier
taking into account the two basic mechanisms of charge
transfer: resonant dissipative tunneling and nondissipative
tunneling. Both the nondissipative tunneling current and the
nonresonant dissipative tunneling processes are responsible for
the current-voltage characteristics of back-gated structures.8

The resonant dissipative tunneling regime is achieved for the
double-gated structures and these devices demonstrate a 10-
fold enhancement of I -V characteristics, which is important
for transistor applications.

Further, we discuss the assumptions used. Because of a luck
of data on stacking order in G/BN/G structures the tunneling
energies T and Ts were estimated from the current-voltage
characteristics of Ref. 8 and this result is in agreement with
the tight-binding model.15 More accurate estimates for T and
Ts should be based on additional structural measurements.
The simplified electrostatics description, given by Eq. (11),
fails for the low-doped Gt or Gb layers, under weak interlayer
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fields applied. In these narrow regions, a more complicated
description, which involves the quantum capacitance effect
and the contact phenomena, should be applied. The rest of
the assumptions (the model of elastic scattering,16 identical
scattering in Gt,b layers, weakness of long-range disorder, and
the single-particle approach) are rather standard.

To conclude, we believe that the description of tunneling
processes is an essential part of physics of graphene and
the results obtained can be applied for a characterization
of scattering mechanisms and tunneling parameters in the
tunnel-coupled graphene structures. More importantly, these
results open a way to improveme a tunneling transistor, a
new type of graphene-based device. We believe that our
study will stimulate a further investigation of these device
applications.

APPENDIX: TUNNELING HAMILTONIAN

Below we describe the tunnel-coupled states in a G/BN/G
structure using the six-column wave function [ψt,φ,ψb],
which is written through the spinors ψt,b corresponding to the
Gt and Gb graphene layers. These layers are connected through
the spinor φ described the single BN layer. Within the tight-
binding approach,15 the eigenstate of energy E is determined
by the problem written through the 6 × 6 Hamiltonian,∣∣∣∣∣∣∣

ĥGt
− E ĥGBN 0

ĥ+
GBN ĥBN − E ĥBNG

0 ĥ+
BNG ĥGb

− E

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
ψt

φ

ψb

∣∣∣∣∣∣∣ = 0, (A1)

where ĥGt
and ĥGb

are the 2 × 2 Hamiltonians of the Gt ,
Gb, and BN layers, while ĥGBN and ĥBNG describe weak
interlayer coupling of Gt and Gb sheets with the BN layer.
Under a transverse voltage applied, ĥGt,b

= ĥG ± �/2, where
ĥG is the Hamiltonian of single graphene layer and � is a

splitting energy between the cross-points in the Gt and Gb

layers. For the low-energy (|E| < 1 eV) states, if |E| � |εc,v|,
where εc ∼3.4 eV and εv ∼-1.4 eV are the c- and v-band
extrema energies in BN, we can eliminate the spinor φ from the
system (A1). As a result, the eigenstate problem is determined
by the 4 × 4 effective tunneling Hamiltonian∣∣∣∣ ĥG + τ̂t − E τ̂

τ̂+ ĥG + τ̂b − E

∣∣∣∣∣∣∣∣ ψt

ψb

∣∣∣∣ = 0. (A2)

Here the 2 × 2 matrix τ̂ describes tunneling through BN
insulator, while τ̂t and τ̂b correspond to the tunneling renor-
malization of t and b states:

τ̂ ≈ −ĥGBNĥ−1
BNĥBNG,

(A3)
τ̂t ≈ −ĥGBNĥ−1

BNĥ+
GBN, τ̂b ≈ −ĥ+

BNGĥ−1
BNĥBNG.

Thus, we arrive to the Hamiltonian (1) with the renormalization
contributions τ̂t,b included to ĥGt,b

; these corrections are
negligible for the weak tunneling regime.

For the case of an N -layer BN insulator, we consider the
2(N + 2)-column wave function with N -spinors φ1, . . . ,φN

described the BN layers. These states are coupled by the in-
terlayer hopping matrices ĥBNBN and ĥ+

BNBN, which are placed
at the upper and lower subdiagonals of 2(N + 2) × 2(N + 2)
Hamiltonian.15 After eliminations of the spinors φ1, . . . ,φN

from the tight-binding eigenstate problem, we arrive at
Eq. (A3), where the nondiagonal matrix τ̂ is replaced by

τ̂N ≈ −ĥGBN
(
ĥ−1

BNĥBNBN
)N−1

ĥ−1
BNĥBNG. (A4)

For the numerical estimates of T and Ts given by Eq. (8) we
assume that the diagonal matrix ĥ−1

BN is of the order of ε̃−1
BN,

where ε̃BN is determined by εc,v . The hopping matrices ĥGBN,
ĥBNG, and ĥBNBN are estimated by the interlayer overlap
integral γ and they are strongly dependent on a stacking order
of the G/BN/G structure.
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