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Unusual Landau levels in biased bilayer Bernal graphene
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A generalized tight-binding model is employed to study how electrostatic gating influences the magnetoelec-
tronic properties of a Bernal graphene bilayer. With the availability of the Landau wave function, the distribution
among its sublattices enables detailed characterization of the Landau levels as well as their optical responses. The
different electric potentials on respective layers break the interlayer symmetry, which in turn lifts the intervalley
degeneracy. In addition, Landau levels in response to the bias field make direct crossings and anticrossings. The
latter are manifestations of the noncrossing theorem: two states not distinguished by unique quantum numbers
perform anticrossing with their wave function characteristics interchanged and strongly mixed near the point
of anticrossing. Those significant changes are directly reflected in the magneto-optical spectra, including the
splitting of absorption peaks and their enhancement or extinction in response to bias strength.
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Graphene layers have attracted great attention in recent
years, mainly owing to their extraordinary electronic prop-
erties. The surface charge carriers exhibit extremely high
mobility. They can travel ballistically over a submicron
distance. This makes graphene layers a promising material
for the next-generation electronic devices. However, there are
still some existing critical barriers for practical applications.
The most important one is the absence of a band gap. For
this, several ways have been developed to open a band gap,
such as adsorption of hydrogen atoms on the carbon dangling
bonds1 and cutting a graphene sheet into one-dimensional
(1D) ribbons with a finite width.2,3 In particular, the most
controllable way is applying a bias electric field on the top and
bottom layer of a graphene bilayer. In this way, one can easily
modulate the doping level in addition to creating an energy
gap.4–6 In this work, we mainly focus on the coupled bilayer
to see how an electrostatic field manipulates the magnetically
quantized states as well as their optical responses.

Because of the highly symmetric crystal structure, graphene
exhibits multiple degeneracies in its electronic states, such as
the electron-hole symmetry and the intervalley symmetry. The
latter concerns the similarity of states in the vicinity of K

and K ′ points of the Brillouin zone. Carriers in those two
valleys have opposite chiralities similar to spin-1/2 particles.
Moreover, graphene is one of the most ideal 2D electronic
systems. A perpendicular magnetic field forces the charge
carriers to circulate in cyclotron orbits. The planar electronic
states are therefore quantized into well-resolved Landau levels,
which is beneficial for studying the quantum Hall effects.7–17

In few-layers, the introduction of an additional bias electric
field enables a selective control of charge carriers in each
layer, which can lift the intervalley degeneracy and lead to the
Landau-level couplings—two states perform an anticrossing
with their wave functions strongly hybridized. Such a peculiar
feature is absent in standard 2D systems.

The bilayer Bernal graphene is a coupled bilayer with one
layer shifted along the armchair direction by the C-C bond
length (1.42 Å) with respect to the other layer, as illustrated in
Fig. 1(a). The primitive unit cell contains four carbon atoms
(A1-B1-A2-B2), the inequivalent A and B atoms on top (l =

1) and bottom (l = 2) layers. Considering 2pz orbitals only,
the tight-binding wave function is a linear combination of
four atomic bases |ψ〉 = cA1 |A1〉 + cB1 |B1〉 + cA2 |A2〉 +
cB2 |B2〉, and the Hamiltonian is a 4×4 Hermitian matrix with
its elements given by

〈kl′ |H |jl〉 = γs

( �Rjl
, �Rkl′

)∑
exp

[
i�k · ( �Rjl

− �Rkl′
)]

. (1)

�Rjl
( �Rkl′ ) stands for the position vector of atom j (k) = A,B on

layer l(l′) = 1,2. γs( �Rjl
, �Rkl′ ) represents the hopping integral

between atoms. In our numerical calculations, five atomic
interactions are taken into account: one intralayer term (γ0 =
−3.12 eV) and four interlayer terms (γ1 = 0.38 eV, γ3 =
0.28 eV, γ4 = 0.12 eV, and γ6 = 0.016 eV).18–20 γ6 is the
site energy difference between the A1(2) and B1(2) atoms due
to the Bernal stacking.

As the coupled bilayer is subjected to a perpendicular mag-
netic field B0ẑ, the vector potential �A = (0,B0x,0) changes the
phase of Eq. (1) by a Peierls phase �G( �Rjl

, �Rkl′ ) = ∫ 1
0 ( �Rkl′ −

�Rjl
) · �A[ �Rjl

+ λ( �Rkl′ − �Rjl
)]dλ.20–25 The new matrix element

is now expressed as

〈kl′ |H |jl〉 = γs

( �Rjl
, �Rkl′

)∑
exp

[
i�k · ( �Rjl

− �Rkl′
)

+ i
e

h̄
�G

( �Rjl
, �Rkl′

)]
. (2)

The Peierls phase serves as another spatially periodic function,
which makes the unit cell 2(79 000/B0) times larger. A
magnetic field of 8 T is used throughout this paper. The
unit cell is thus extended to a rectangular parallelepiped of
4206.75 nm in length, containing 79000 atoms. The
Hamiltonian is therefore a 79 000 × 79 000 matrix, and the
wave function is spanned by 79 000 bases, which can be
further divided into groups associated with the four sublattices:
A1,i , B1,i , A2,i , B2,i with i = 1 ∼ (79 000/8). The dual gating
further induces electrostatic potentials (+Vg and −Vg) on
respective layers, giving rise to a change of site energy in the di-
agonal matrix elements of the Hamiltonian. Both the eigenen-
ergies and eigenfunctions are obtained by using an exact
diagonalization method,20–23 which treats all atomic hoppings
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FIG. 1. (Color online) (a) Geometric configuration of bilayer
Bernal graphene and (b) the associated reciprocal space. (c) Low-
energy electronic structures at zero field (green curves) and quantized
Landau levels at a magnetic field of 8 T (orange curves).

(γi ; i = 0,1,3,4,6), magnetic field (B0) and bias field (Vg) on
the same footing, without introducing any approximation.

At zero external field, the couplings between layers change
the linear dispersion of the monolayer into parabolic bands,
as shown by the green curves in Fig. 1(c). The valence
and conduction bands are asymmetric with respect to the
Fermi level EF = 0, and they slightly overlap near EF ,
which makes this system behave like a semimetal. In a
perpendicular magnetic field B = B0ẑ, the planar electrons
are fully quantized into dispersionless Landau levels (orange
curves). The low-lying levels exhibit linear field dependence
Ec,v ∝ √

nc,v(nc,v + 1)B0.20–22 nc,v is a quantum number
characterizing individual Landau states. Its value can be
directly determined from the wave functions defined on the
sublattices.20–25

A Landau wave function can best be described by its
behavior on the four sublattices (A1,i-B1,i-A2,i-B2,i). Each
Landau level is fourfold degenerate, and in the gauge chosen
the wave functions are respectively localized near 1/6, 2/6,
4/6, 5/6 of the extended unit cell. In particular, the 1/6 (2/6)
states, similar to the 5/6 (4/6) ones, actually correspond to
states near valley K (K ′). As illustrated in Figs. 2(c) and 2(d),
respectively, for K and K ′ states, each wave function consists
of four sublattice components resembling the Hermite polyno-
mials with node number n. This is the usual wave function of
the Landau states in the Cartesian coordinate representation.
The relationship of the node numbers associated with the
sublattices is A1,i :B1,i :A2,i :B2,i = n − 1:n − 2:n − 1:n for K-
valley states and n − 1:n:n − 1:n − 2 for K ′-valley states. The
node number of B2,i (B1,i) is taken to be the level index n

c,v
K

(nc,v
K ′ ) of K- (K ′)-Landau states since B1,i and B2,i sites have

FIG. 2. (Color online) (a) Low-energy bands at zero magnetic
field but at different bias electric fields Vg . (b) The Landau-level
energies at B0 = 8 T in response to Vg . The Landau wave functions
in the four constituent sublattices for occupied (c) nK = 2 and
(d) nK ′ = 2 states. From bottom to top are at Vg from 0 to 50 meV.
The width of the horizontal axis is 1425 nm centered at 1/6 of the
extended unit cell for (c) K states, and at 2/6 for (d) K ′ states.

evidently stronger weight than A1,i and A2,i . The remaining
A1,i and A2,i sites gradually gain their weight with increasing
state energy. The way the Landau wave function distributes
among sublattices, together with the state energy, can be tuned
through the electrostatic gating.

Applying a gate voltage causes the two layers to have
opposite electric potentials ±Vg , which substantially alters
the low-energy bands. As shown in the inset of Fig. 2(a) for
B0 = 0, the valence and conduction bands avoid crossing each
other as Vg is turned on, an energy gap is thus created for
Vg > 0.2 meV, which turns the semimetallic bilayer into a
semiconductor. An increase in Vg pushes the two bands away
from the charge neutral point. The parabolic dispersions take
on the sombrero shapes that expand in height (energy) and
width (momentum). Each band contains three band edges with
the middle one located right at momentum K (K ′).

The degeneracy of valleys K and K ′ no longer holds
once the transverse electric and magnetic fields are both
present. Figure 2(b) illustrates the splitting of K and K ′
Landau energies in response to Vg . Such level splittings can
be physically explained by the value of Vg and the changes
of wave functions on the sublattices. Within a perturbation
scheme, the energy shift is given by 〈A1| − Vg|A1〉 + 〈B1| −
Vg|B1〉 + 〈A2|Vg|A2〉 + 〈B2|Vg|B2〉. At Vg = 0, the K and
K ′ states are fully degenerate. For wave functions on the
sublattices, those of K and K ′ states are symmetric in weights
at Vg = 0, i.e., |cK

A1(B1)| = |cK ′
A2(B2)| and |cK ′

A1(B1)| = |cK
A2(B2)|.

However, such a balance is soon lost once Vg is applied,
as shown in Figs. 2(c) and 2(d). For both K and K ′ states,
their B1 and A2 sites are enhanced in weight while A1 and
B2 are suppressed. A similar effect can be obtained for the
unoccupied states nc

K(K ′) � 2 but with opposite trend (not
shown). Those changes together with the value of Vg enable us
to estimate the degree of energy shift between the two valley
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FIG. 3. (Color online) (a) Mexican-hat band profile at B0 = 0 and
Vg = 62.5 meV. (b) The Landau energies varied with Vg at B0 = 8 T,
where the two interacting Landau states are colored purple and yellow.
(c)–(d) The Vg-dependent Landau wave function in B1,i sublattice
respectively for nv

K ′ = 0 and nv
K ′ = 3 states. From bottom to top are

at bias field Vg = 0 and from 50 meV to 75 meV. The physical unit
of horizontal axis is the same as Fig. 2(d).

states. Furthermore, the weight changes among sublattices due
to Vg also make it possible to estimate the induced charges in
respective layers.

Lower Landau levels are more sensitive to electrostatic
gating, including the degree of energy shift and the splitting
of K and K ′ states. As the field is strong enough (Vg >

80 meV), those lower levels inevitably intersect other higher
levels, which gives rise to a change of filling factor in
magnetoresistance.8,26,27 The way the Landau levels interact
is either direct crossing or anticrossing. The latter case is of
particular interest and will be discussed next.

The dual gating changes the low-energy bands to the som-
brerolike energy dispersions [Fig. 3(a)], which also leads to the
Landau-level couplings at nonzero magnetic field [Fig. 3(b)].
In certain field ranges, two Vg-dependent Landau levels
effectively repel each other instead of direct penetrations, e.g.,
the two branches colored purple and yellow in Fig. 3(b). Such
anticrossings take place as two levels belong to the same valley,
either K or K ′, and their quantum numbers nc,v differ by
integral multiples of three �n = 3I . Figure 3(b) illustrates the
coupling of nv

K ′ = 0 and nv
K ′ = 3 levels. Also shown in Fig. 4

on a larger scale, such couplings are more evident for smaller I

and become more frequent as Vg grows. The γ1 hopping plays
a central role to form the sombrero band profile at B0 = 0 and
thus at B0 	= 0 the multiple level crossings as a function of Vg ,
while the anticrossings are triggered by the γ3 hopping, which
is also responsible for the trigonal anisotropy in the 2D energy
bands at B0 = 0.

The wave function distribution serves as a fingerprint for
those Landau-level couplings. As two levels repel each other,
they experience radical changes in constituent sublattices. As
shown in Figs. 3(c) and 3(d), initially the two states have
well-identified oscillation modes on the sublattices. However,

FIG. 4. (Color online) Landau-level energies at B0 = 8 T as a
function of bias electric field Vg . The left and right shaded areas
cover the Landau levels involving the optical transitions respectively
in Figs. 5(a) and 5(b), where the transitions mainly discussed are
indicated by dashed lines.

as the two levels recede from each other, they interchange their
oscillation modes on the same sublattice, which is revealed as
the color change in Figs. 3(b)– 3(d). In between, the two modes
are strongly hybridized. It is noteworthy that such hybridized
states fail to possess well defined quantum number nc,v since
they no longer have the well-characterized oscillation modes.
For the other direct intersecting cases, on the contrary, no
evident change takes place in the Landau wave functions.

In order to understand the physical origin of those anti-
crossings, we further examined the wave functions in detail
and found that, in our numerically calculations at Vg = 0,
each sublattice is composed of the Hermite polynomial not
only the fundamental n mode but also the minor components
of n ± 3 modes. This arises from the inclusion of γ3, which
was also qualitatively predicted in the previous effective-mass
approximation.28 The bias potential acting on the diagonal
Hamiltonian matrix elements shifts the energy of individual
Landau levels. As levels of nK(K ′) = n and n′

K(K ′) = n ± 3
are brought together in energy, they effectively interact with
each other since they are actually not distinguished by unique
quantum numbers. The two wave functions contain part of
the same oscillation modes, and the Wigner-von Neumann
noncrossing rule prohibits states with the same modes from
crossing. That is, the major n (minor n ± 3) mode of the
nK(K ′) = n level interacts with the minor n (major n ± 3)
mode of the n′

K(K ′) = n ± 3 level with the proximity of
state energy. Consequently, the two states avoid crossing
each other. In terms of wave functions, they exchange the
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FIG. 5. (Color online) Magneto-optical absorption spectra, which
reflect (a) the splitting of K and K ′ Landau states and (b) the Landau-
level anticrossing of occupied K ′ states. From bottom to top shows
the Vg evolution of optical spectra for (a) Vg = 0 → 25 meV and
(b) 50 → 75 meV. The states involved in those transitions are located
within the shaded areas in Fig. 4.

characteristic modes, and are strongly mixed near the point of
the anticrossing.

Landau wave function is a key element in calculating the
magneto-optical spectra. In particular, the numerical solutions
of the wave function provide a straightforward way to access
the selection rules and absorption rates.20–25 In the calculation
of optical spectra, the interaction between electron and photon
are described by the velocity matrix element 〈ψ |∇kH |ψ ′〉.
Its main contribution comes from the in-plane hopping term
(γ0) in the Hamiltonian sandwiched between the initial and
final wave functions defined on the same layer but on different
sublattices, 〈Av(c)

l |∇kH∈γ0 |Bc(v)
l 〉. For an optical transition to

take place, the orthogonality relation of Hermite polynomials
demands that the wave function of the occupied state defined
on one sublattice must have the same oscillation mode as the
wave function of the unoccupied state defined on the other
sublattice. That leads to the optical selection rules �n = ±1
based on the way we assign the level index nc,v . The calculated
absorption spectra are shown in Fig. 5(a). Those peaks occur
in pairs representing transitions the types of nv → nc + 1 and
nv + 1 → nc. In each pair, the energy difference comes solely
from the electron-hole asymmetry due to interlayer couplings
γ4 and γ6, which has been verified by experiments.20–22,29

Those peaks are substantially altered through the electrical
gating, which can be understood in terms of the changes in
Landau energies and wave functions.

Optical transitions are allowed only between states in the
same valley, either K or K ′. This is because different valley
states have their wave functions localized at quite different
positions, either 1/6 or 2/6, the intervalley transitions are
therefore strictly forbidden. In Fig. 5(a), the optical spectra of
K and K ′ states are respectively colored blue and red. The two

FIG. 6. (Color online) Contour plots of optical spectra as a
function of bias strength Vg and photon energy ωa at B0 = 8 T.
Absorption rate from weak to strong reveals as (a) black-blue-green
for transitions of K Landau states, and (b) black-red-yellow for those
of K ′.

spectra are exactly identical at Vg = 0 (colored gray) since
the involved Landau states are fully degenerate. Once Vg is
applied, the symmetry between K and K ′ states is broken,
which makes the absorption peaks diverge both in position
and intensity. In addition to the overall shift to higher energy
with increasing Vg , the K spectra is blue shifted while the K ′ is
red shifted with respect to K . Simply speaking, the twin peaks
at Vg = 0 are split into four peaks. For each pair of the K

spectra, the lower-energy peak is enhanced in intensity while
the higher-energy one is suppressed. This trend is, however,
opposite for the K ′ spectra. This can be intuitively explained
by the weight changes among sublattices in response to the
bias field, as described in Figs. 2(c) and 2(d).

The Landau-level anticrossings and mixings caused by
tuning Vg also manifest themselves in the optical absorption
spectra, as shown in Fig. 5(b). In terms of peak positions
against Vg , two prominent peaks head toward each other and
pull away afterward. In particular, the lower-energy channel
gradually grows in intensity as the Vg value enters the mixing
region, and it ends up with a strong peak beyond this region. On
the contrary, the other channel with higher energy begins with a
pronounced peak and ends up with a weak one. For these peaks,
the strengthening and weakening in intensity can be ascribed
to the changes in wave functions, as mentioned in connection
with Figs. 3(c) and 3(d). It should be also noted that there
exist other minor peaks with selection rules �n = 4,7,10, . . .,
in which their intensities can serve as another fingerprint for
the degree of Landau-level couplings in virtue of the mixings
of wave functions. In fact, for those transitions involving
the anticrossing states, they cease to have well-characterized
selection rules. Figure 6 shows the contour plot of spectra with
a wider range of photon energy and bias strength, providing a
clearer identification of the anomalies found in this work. The
symmetry breaking of K and K ′ valley states is observable by
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comparing Figs. 6(a) and 6(b). Tracing those absorption lines
also allows one to point out the level crossing and anticrossing,
as well as their enhancement or extinction in response to Vg .

Whether the two valley levels split and whether the
level anticrossings appear intimately depends on the stacking
sequence and layer numbers. (a) To make the opposite valley
states split, the asymmetry between top and bottom layers
is required. For instance, the AA bilayer and ABA trilayer
keep the inversion symmetry, so they fail to lift the valley
degeneracy by tuning the interlayer potential. (b) The stacking
order dominates the low-energy bands and thus the appearance
of level anticrossings.25,30–33 Except for the AA-stacked ones,
other multilayers are expected to have parabolic bands close to
the Fermi level. An external gating can easily convert them into
sombrerolike dispersions. As a result, the level anticrossings
are in general available in most coupled multilayer systems.
However, the extent of those Landau-level couplings still relies
on the stacking manner. For example, in biased trilayer systems
at B0 = 0, it is much easier to form the sombrero band profile

in ABC stacking than in ABA one. Therefore, the former is
more promising to observe those Landau-level couplings.

In summary, we have predicted the following remarkable
phenomena in graphene bilayer: electrostatic gating effectively
lifts the intervalley degeneracy and gives rise to Landau-level
couplings. A close inspection of Landau wave functions
provides a physical understanding of those results. All of those
have their direct counterparts in the magneto-optical spectra,
including the peak positions and peak intensities, which can
be verified by future experiments.
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