
PHYSICAL REVIEW B 87, 075413 (2013)

Improved numerical methods for infinite spin chains with long-range interactions
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We present several improvements of the infinite matrix product state (iMPS) algorithm for finding ground
states of one-dimensional quantum systems with long-range interactions. As a main ingredient, we introduce
the superposed multioptimization method, which allows an efficient optimization of exponentially many MPS of
different lengths at different sites all in one step. Here, the algorithm becomes protected against position-dependent
effects as caused by spontaneously broken translational invariance. So far, these have been a major obstacle
to convergence for the iMPS algorithm if no prior knowledge of the system’s translational symmetry was
accessible. Further, we investigate some more general methods to speed up calculations and improve convergence,
which might be partially interesting in a much broader context, too. As a more special problem, we also
look into translational invariant states close to an invariance-breaking phase transition and show how to avoid
convergence into wrong local minima for such systems. Finally, we apply these methods to polar bosons with
long-range interactions. We calculate several detailed Devil’s staircases with the corresponding phase diagrams
and investigate some supersolid properties.
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I. INTRODUCTION

A numerical method for the simulation of large quantum
systems needs to meet two requirements: (i) an ansatz suitable
for the problem in question, and (ii) efficient algorithms to
find the (at least nearly) optimal solution within the chosen
ansatz. For one-dimensional quantum systems on lattices, the
currently most powerful numerical tools are matrix product
states (MPS) based algorithms including the density matrix
renormalization group (DMRG).1–5 Their primary limitation
is given by the amount of entanglement they can handle.
Several extensions of MPS have been conceived to overcome
this restriction as, e.g., Refs. 6–8, but for most practical
applications MPS, are still the first choice. This is mainly due
to the performance of the underlying optimization routines.
Although the general task to find ground states is known to be
NP hard,9,10 commonly used algorithms seem to have no prob-
lem to attain optimal MPS solutions within computer precision
for a plenitude of physical relevant systems. Nevertheless, for
some physical systems of interest, these algorithms still face
severe difficulties.

In this paper, we treat such problematic cases given by
ground states of infinite spin chains with long-range interac-
tions. An increasing interest in reliable numerical methods
for these states is, e.g., triggered by the excellent experimental
control of ultracold gases and the possibility to realize systems
with long-range dipole-dipole interactions such as Rydberg
atoms or polar molecules.11–13 Although these systems are of
finite size, one is often interested in the thermodynamical limit
(i.e., infinite systems) for a better insight.

Different strategies are known for the numerical study
of ground states in the thermodynamic limit. One might
try to extrapolate results from a series of increasingly large
finite systems14–16 or directly construct the infinite state itself.
The latter is, e.g., done by the infinite time-evolving block
decimation (iTEBD) algorithm,17 which is based on an explicit
translational invariant ansatz. This ansatz is quite elegant for
interactions which are restricted to nearest neighbors, while it
gets impractical for long-range interactions.

A comfortable way to incorporate long-range interactions
is to encode them into a matrix product operator (MPO).18–21

This concept can be integrated in an infinite matrix product
state (iMPS) algorithm.22,23 The basic idea of this iMPS
algorithm is to obtain the ground state of an infinite system
as the fixed point of a constantly growing finite state by
inserting iteratively new sites into its middle until convergence
is reached. A major disadvantage of this approach is that the
algorithm generally fails to converge if the ground state has a
nontrivial translational symmetry.

In this paper, various extensions to the basic iMPS algo-
rithm are presented. As a central element, the superposed
multioptimization (SMO) is introduced (Sec. III B), which pro-
vides a remedy for the just mentioned convergence problem.
Here, the key idea is to join the optimization of exponentially
many MPS in a superposition and solve it efficiently. Due
to this superposed optimization, the effective overall problem
becomes translational invariant again and poses no longer a
hindrance for convergence.

We also introduce several improvements which work
independently of the SMO method. As such, we present two
different modifications of the MPS optimization routine: On
the one hand, we use physical insight for systems close to
translational invariance-breaking phase transition to suggest
a method to reduce the danger of being trapped into a
local minimum of the energy (Sec. III D). On the other
hand, we provide a more technical discussion as to how to
recycle information from previous optimizations to speed up
calculations (Sec. IV C). As a part of these considerations,
we provide a simple implementation of a Davidson-type
algorithm24 based on information from previous optimizations
(Appendix D). This implementation is not bonded to the MPS
framework and hence might be used in much broader context.

All algorithms are described in depth, such that readers
who are willing to reproduce our results should find all
the information needed for successful programming. As a
consequence, readers who just like to understand the crucial
ideas might find the amount of algorithmic details far beyond
their interest. Having these two types of readers in mind, we
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FIG. 1. (Color online) (a) Diagrammatic representation of the two
decompositions of A according to Eq. (8). Vertical legs correspond
to physical indices, while horizontal legs belong to the auxiliary
indices. Connected legs are summed over. (b) Resulting structure of
the MPS (11) before and after the decomposition of the last A[new]. (c)
MPS version of 〈ψ |ψ〉, where the turned over MPS symbolizes the
complex conjugate. Due to the orthogonal decomposition (10), the
tensors in the left and right boxes generate the identity (12), which
allows an easy control of the MPS norm (13).

partitioned the material according to its level of detail into
different chapters, such that entire passages can be omitted.

In Sec. II, we review the basic concepts and the iMPS
algorithm as presented in Ref. 22. Readers who feel safe to
skip this part find in Figs. 1 and 2 a pictorial description of all
symbols used in this section. In Sec. III, the main concepts of
this paper are presented, above all the SMO method. Changes
of the algorithm are kept to a minimum in here, in contrast
to Sec. IV where several algorithmic improvements and their
numerical realization are presented in detail. Each subsection
of Sec. IV contains an individual topic, which is presented in
the first lines. These sections can be skipped without danger of
losing the ability to understand the rest of the paper. A slight
exception might be Sec. IV C, in which the concept of iterative
eigenvector solver based on subspace projections is reviewed.
Familiarity with this concept is assumed in Secs. IV D, IV E,
and Appendix B 1. In Sec. V, we apply our algorithm to a
system of polar bosons with long-range interactions. Detailed
calculations of Devil’s staircases and phase diagrams are
shown and a supersolidlike phase is investigated. Finally, the
paper is complemented by an appendix, into which several
details have been outsourced.

II. BASIC ALGORITHM

In this section, we review fundamental concepts1 and the
iMPS algorithm as presented in Ref. 22. For this algorithm
to work, not only the Hamiltonian but also the ground state
have to be translational invariant. The extension to ground
states with broken translational symmetry will be introduced
in Sec. III.

FIG. 2. (Color online) (a) Diagrammatic representation of the
Hamiltonian MPO (5). (b) MPS and MPO realization of 〈ψ |H |ψ〉
(compare with Fig. 1). The boxes indicate the left and right halves
Lα′

l
μlαl [Eq. (16)] and Rα′

rμr αr [Eq. (17)]. (c) Same object as above
with contracted inner indices of Lα′

l
μlαl and Rα′

r μr αr . The object in the
H-shaped box corresponds to the effective operator H [Eq. (15)].

A. MPS and MPO

In this paper, we deal with spin chains. The quantum state
of a spin chain is determined by the inner degrees of freedom
of its components

|ψ〉 =
∑

s1s2...sn

As1s2...sn
· |s1〉 ⊗ |s2〉 ⊗ . . . ⊗ |sn〉. (1)

Since the size of the tensor As1s2...sn
grows exponentially

with the number of sites, a more economical representation
is needed. A matrix product state1,3,4 (MPS) consists in the
ansatz

As1s2...sn
= A

α1
[1] s1

· A
α1α2
[2] s2

· A
α2α3
[3] s3

. . . A
αn−2αn−1
[n−1] sn−1

· A
αn−1
[n] sn

, (2)

where we used the Einstein summation convention. For a
general exact quantum state, exponentially growing bond
dimensions αi are needed, but even for infinite systems
excellent approximations are possible with moderate bond
dimensions if the ground state fulfills an area law for the
entanglement entropy.25

For Hamiltonians

Ĥ =
∑

s1...sn,s
′
1...s

′
n

Hs ′
1...s

′
n

s1···sn
· |s ′

1〉〈s1| ⊗ . . . ⊗ |s ′
n〉〈sn|, (3)

a similar ansatz as for the quantum state (2) leads to the concept
of matrix product operators18–21

Hs ′
1s

′
2...s

′
n

s1s2...sn
= H

μ1

[1] s ′
1s1

· H
μ1μ2

[2] s ′
2s2

· H
μ2μ3

[3] s ′
3s3

. . . H
μn−2μn−1

[n−1] s ′
n−1sn−1

· H
μn−1
[n] s ′

nsn
. (4)

Many relevant Hamiltonians are represented by MPO with
relative small bond dimensions. For our purposes, it is
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important to mention that this is often also true for Hamilto-
nians with long-range interaction terms (see, e.g., Ref. 21). A
recipe for the explicit construction is explained in Appendix A.
In the case of translational invariant Hamiltonians (see remark
below), the MPO can be built in such a fashion that all tensors
H

μi−1μi

[i] s ′
i si

are identical for 2 � i � n − 1. This allows us to drop
the index in the square brackets except for the leftmost and
rightmost tensors:

Hs ′
1s

′
2...s

′
n

s1s2...sn
= H

μ1

[L] s ′
1s1

· H
μ1μ2

s ′
2s2

· H
μ2μ3

s ′
3s3

· H
μ3μ4

s ′
4s4

. . . H
μn−3μn−2

s ′
n−2sn−2

· H
μn−2μn−1

s ′
n−1sn−1

· H
μn−1
[R] s ′

nsn
. (5)

Furthermore, all tensors H are independent of the total number
of sites. As a consequence, the MPO of a translational invariant
Hamiltonian for n sites can easily be augmented to n + 1 sites
by just inserting another tensor H .

Apart from an efficient representation of quantum states
and operators, MPS and MPO also provide an efficient way
to calculate expectation values. For details, we refer to the
literature (as, e.g., Ref. 1).

Remark. In this paper, we apply the term translational in-
variant also to finite systems (with open boundary conditions)
and their Hamiltonians which are used in the iMPS algorithm
to approach the infinite case.

B. Overview of the iMPS algorithm

Any algorithm which deals with infinite MPS could be
addressed as an iMPS algorithm. In this paper, we use this term
exclusively for algorithms of the type as presented in Ref. 22.
This algorithm aims at finding an MPS representation for the
ground state of an infinite one-dimensional quantum system.
In its plain version, the iMPS algorithm takes translational
invariance for granted such that all sites behave equally.
Thus, all we need to construct the entire state is a perfect
description of one site and its entanglement features with its
environment given by the rest of the system. This environment
is dominated by nearby neighbor sites, while the influence
of sites far away can be neglected in any one-dimensional
system with an asymptotic decay of correlations faster than
r−1. Therefore, the environment built up by an infinite system
can be simulated with a finite system. Correspondingly, the
center site of a sufficiently large but finite system provides a
good approximation for its counterpart in the infinite case.

The iMPS algorithm is built upon a finite system, which is
iteratively enlarged by inserting new sites into its middle. Since
we express quantum states by MPS, each of these sites is rep-
resented by an individual tensor A[n] [Eq. (2)]. Before a tensor
A[n] is inserted. it is optimized such that the resulting energy

E = 〈ψ |H |ψ〉
〈ψ |ψ〉 (6)

is minimized. Hereby, all previously inserted tensors A[j<n]

are left unchanged. Of course, these local optimizations of
the new tensors A[n] are generally not sufficient to find the
lowest-energy state of the entire system. What we are supposed
to get is a ground state approximation which might be bad at
the outer edges, but close to the center, it should become better
with each new tensor inserted. This is all we need to obtain an
adequate description of the center site’s environment since the

influence of the outer sites fades away with distance anyway.
Therefore, we expect the environment of the center site to
converge towards its infinite counterpart, and with that the new
tensors A[n] inserted into each round should converge too:

A[n] → A[converged]. (7)

For ground states which violate translational invariance, it
is no longer given that all sites behave equally. At this point,
our intuitive argumentation breaks down and the algorithm
generally fails to converge. We will study this case in Sec. III.
For the time being, we assume that the algorithm ends up
with a converged tensor A[converged]. With the help of this one
tensor, the entire iMPS can be constructed using the rules we
will encounter in Sec. II C.

1. Long-range interactions

An important ingredient for a fast computer code is a
clever bookkeeping of the interaction terms, which allows
us to save many calculations due to recycling. In the case
of long-range interactions, this task becomes tricky since
the iMPS algorithm permanently splits the MPS and adds
new sites. By this means, the distances between sites on
the left and right halves change each time and with them
all distance-dependent interaction terms. Nonetheless, for
translational invariant Hamiltonians, recycling can still be
done in a well-arranged fashion by encoding the Hamiltonian
into an MPO as in Eq. (5). Every time the MPS is enlarged
by a new tensor, the MPO is enlarged by the standard tensor
H

μlμr

s ′s too. This simple procedure automatically corrects all
distance-dependent interaction terms.

C. Constructing the MPS

So far, we just mentioned that the iMPS algorithm con-
structs the MPS by constantly inserting new tensors in its
middle. We will now specify on that. First, it is convenient to
treat the MPS as divided into two halves, left and right from
the center. Each time the optimization procedure described in
Sec. II D provides a new tensor Aαlαr

s , we have to decide into
which half Aαlαr

s is to be absorbed. This is done under the
following rules:

(1) According to the half in which Aαlαr
s is to be absorbed,

decompose it [Fig. 1(a)] as

Aαlαr

s =
{

Q
αlβ

[L] s · λ
βαr

[L] left half,

λ
αlβ

[R] · Q
βαr

[R] s right half.
(8)

Q is orthogonalized such that

Q
αlβ

[L] s · Q
∗αlβ

′
[L] s = δββ ′ = Q

βαr

[R] s · Q
∗β ′αr

[R] s , (9)

where the asterisk denotes the complex conjugation [see the
upcoming Eq. (10) for details].

(2) With each new tensor A overwrite the λ of the tensor
before.

Each A[n] is optimized in such a fashion that it compensates
for the overwritten λ[n−1].

For the orthogonalization (9), we proceed as follows: In
a first step, we write the tensor Aαlαr

s as matrix Am,a where
m is a multi-index. If the tensor Aαlαr

s is to be absorbed into
the left MPS half m = (s,αl), otherwise m = (s,αr ). For the
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leftmost and rightmost tensors of the MPS, which have only
two indices, m = s. The index a corresponds to the leftover
index of Aαlαr

s , which is not in m. Next, the matrix Am,a is
decomposed into an orthogonal part Q and a “rest” part λ.
Different decompositions would fulfill this task, but for the
working of the algorithm it is best to resort to a singular value
decomposition

A = U · D · V † = U · V †︸ ︷︷ ︸
Q

·V · D · V †︸ ︷︷ ︸
λ

. (10)

Rewritten as tensors, we end up with Eq. (8).
A consequent application of these rules yields an MPS built

of orthogonalized tensors Q and one single matrix λ from the
very last A[new] in the center [Fig. 1(b)]:

Q
[1] α1
[L] s1

. . . Q
[k] αk−1α̃k

[L] sk
· λα̃kαkQ

[k+1] αkαk+1
[R] sk+1

. . . Q
[n] αn−1
[R] sn

. (11)

This MPS standard form is numerical robust and has an easily
calculated norm ‖ψ‖ = √〈ψ |ψ〉. To see this, let us multiply
Q

[1] α1
[L] s1

. . . Q
[k] αk−1αk

[L] sk
[the left half of equation (11)] with its

complex conjugated(
Q

[1] α1
[L] s1

· Q
[2] α1α2
[L] s2

. . .
)(

Q
∗[1] β1
[L] s1

· Q
∗[2] β1β2
[L] s2

. . .
)

= (
Q

[1] α1
[L] s1

· Q
∗[1] β1
[L] s1

)︸ ︷︷ ︸
δα1β1

(
Q

[2] α1α2
[L] s2

· Q
∗[2] β1β2
[L] s2

)
︸ ︷︷ ︸

δα2β2

...

. . .

︸ ︷︷ ︸
δαkβk

(12)

and analog for the right half. Thanks to Eq. (9), all QQ∗ pairs
turn into δ functions and the norm of the MPS (11) equals the
remaining ‖λ‖ [see Fig. 1 (c)], which also equals the norm of
the last inserted tensor A[new]. Thus,

‖MPS‖ = ‖A[new]‖. (13)

D. Tensor optimization

The iMPS algorithm is an iterative procedure. As described
in Sec. II B, new tensors A[n] are constantly inserted into the
MPS, which represents the finite state ψ . Each of these new
tensors A[n] is optimized such that the energy E = 〈ψ |H |ψ〉

〈ψ |ψ〉 is
minimized. As we will discuss in more detail in the following,
this can be written as

min
〈ψ |H |ψ〉
〈ψ |ψ〉 → min

〈A[n]|H[n]|A[n]〉
〈A[n]|I[n]|A[n]〉 . (14)

(i) |A[n]〉 is the vectorized form of the tensor A[n], that is,
|A[n]〉 = Ai

[n] = A
αlαr

[n] s with the multi-index i = (αl,αr ,s).
(ii) H[n] is an effective operator built of the MPO represen-

tation of the Hamiltonian H (5) and all MPS tensors of 〈ψ |
and |ψ〉 except for the two new A[n].

(iii) I[n] is the identity operation thanks to the orthogonalized
standard form of the MPS [see Eq. (12)].

Equation (14) is solved by setting |A[n]〉 equal to the lowest
eigenvector of H[n].

Remark. We will repeatedly use the notation |T 〉 or 〈T | for
a vectorized tensor T .

1. Effective operator H

In Sec. II C, we mentioned that it is convenient to treat the
MPS as divided into two halves: left and right from the newest
tensor A[n]. For the same reason, we decompose H[n] into a

left half L
α′

lμlαl

[n] and a right half R
α′

rμrαr

[n] , which are connected
by a single MPO tensor H

μlμr

s ′
nsn

[Eq. (5)] corresponding to the
new site [see Fig. 2(c)]

Hi ′,i
[n] = H

α′
lαlα

′
r αr

[n] s ′
nsn

= L
α′

lμlαl

[n] · H
μlμr

s ′
nsn

· R
α′

rμrαr

[n] (15)

with i = (αl,αr ,sn).
Since the iMPS algorithm is an iterative procedure, L[n]

and R[n] are built up iteratively, as well. Suppose we intend
to absorb the A[n−1] of the previous optimization step into the
left half. First, we use Eq. (8) to gain the orthogonal tensor
Q

αl̄αl

[L] sn−1
. With that

L
α′

lμlαl

[n] = L
α ′̄

l
μl̄αl̄

[n−1] · Q
∗ α ′̄

l
α′

l

[L] s ′ · H
μl̄μl

s ′,s · Q
αl̄αl

[L] s , (16)

where the asterisk denotes complex conjugation. In this case,
where the tensor A[n−1] is absorbed into the left half, the right
half stays unchanged R[n] = R[n−1]. Conversely, if we decide
to absorb A[n−1] into the right half, the left half stays unchanged
and R becomes

R
α′

rμrαr

[n] = Q
∗ α′

r α
′
r̄

[R] α′
r α

′̄
r
· H

μrμr̄

s ′,s · Q
αrαr̄

[R] s · R
α′

r̄ μr̄ αr̄

[n−1] . (17)

E. Algorithm

After having presented the decisive ingredients of the
iMPS algorithm, we like to emphasize the steps one actually
has to perform on the computer. The algorithm consists of
an initializing procedure (see Sec. II E2) and an iteration
loop, which is repeated until convergence is reached A[n] →
A[converged] [Eq. (7)]. The tensor A[converged] is all we need to
calculate expectation values. We do not hold any copy of the
MPS we are calculating. The only objects stored (in the purest

version of the algorithm) are the actual versions of L
α′

lμlαl

[n]

[Eq. (16)], R
α′

rμrαr

[n] [Eq. (17)], and A
αlαr

[n] s .

1. Loop

(1) Calculate the new A
αlαr

[n] s = Ai
[n] with i = (αl,αr ,s).

Therefor,
(a) use Eq. (15) to calculate Hi ′,i

[n] = H
α′

lαlα
′
r αr

[n] s,s ′ ,

(b) set Ai
[n] equal to the lowest eigenvector of Hi ′,i

[n] .
(2) Decide whether to absorb Ai

[n] into the left or right half
(e.g., even steps left, odd steps right) and act accordingly in
the following two steps.

(3) Use Eqs. (8) and (10) to decompose Ai
[n] and gain Q[L]

or Q[R].

(4) Use Eq. (16) or (17) to get L
α′

lμlαl

[n+1] and R
α′

rμrαr

[n+1] .

2. Initialization

At the beginning, we have to initialize the values of Lα′
lμlαl

and Rα′
rμrαr . This can be done with the help of an exact solution

ψ for a small system best with an even number of sites n = 2k

(we mostly used n = 8 or 10 for two-level sites). The state ψ
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is split into a left and right part, which allows us to calculate
L and R. In more details, note the following:

(1) Write the Hamiltonian of the small system as matrix
with multi-indices H (s ′

1...s
′
n),(s1...sn) and solve for ψ (s1...sn).

(2) Split the multi-index in two multi-indices, giving
ψ (s1...sk ),(sk+1...sn), which can be interpreted as a matrix.

(3) Use a singular value decomposition ψ = U · D · V † (or
Takagi’s factorization ψ = U · D · UT if ψ = ψT ).

(4) Interpret the index structure of U as Ui,j = Ui,αk =
U (s1...sk ),αk .

(5) Lα′
kμkαk = U ∗ s ′

1...s
′
k ,α

′
k · H

s ′
1...s

′
k ,μk

s1...sk
· Us1...sk ,αk , H

s ′
1...s

′
k ,μk

s1...sk
=

H
[L] μ1

s ′
1s1

· H
μ1μ2

s ′
2s2

. . . H
μk−1μk

s ′
ksk

[Eq. (5)].

(6) Use V analog to U to calculate Rα′
rμrαr .

Comparing with (11), we find that

U = Q
[1] α1
[L] s1

. . . Q
[k] αk−1α̃k

[L] sk
, D = λα̃kαk ,

V = Q
[k+1] αkαk+1
[R] sk+1

. . . Q
[n] αn−1
[R] sn

.

III. BROKEN TRANSLATIONAL INVARIANCE

In this section, we present some concepts for the iMPS
algorithm which arise from the need to deal with spontaneously
broken translational invariance. A principal shortcoming of
the basic iMPS algorithm is its failure to converge in such
cases. To overcome this deficiency, we introduce the super-
posed multioptimization (SMO) method in Sec. III B. Once
convergence is restored, we turn our attention in Sec. III C to
the question of how to obtain a specific solution out of the
ground state manifold degenerate due to broken translational
invariance. In addition, in Sec. III D, we treat the special
case of a nondegenerate ground state which is separated by
a very small energy gap from a state that breaks translational
invariance.

A. Preliminary considerations

Just one tensor A[converged] suffices to construct an entire
iMPS. At first sight, one might therefore think that such an
iMPS is only capable of describing states where all sites
behave equally, which is no longer true for states which break
translational invariance. But still, also these states can be
handled. This is due to the construction rules presented in
Sec. II C. These result in an iMPS structure given by Eq. (11),
where the matrix λ marks a special position (and with that
breaks translational invariance) if it can not be commuted to
its neighbor sites.

The real problem is to find A[converged]. In Sec. II B, we
already mentioned that our argumentation in favor of the
convergence A[n] → A[converged] is no longer valid in the case
of broken translational invariance. The iMPS algorithm is
grounded on local optimization and therefore it is vulnerable
to locally altering states, as they appear on a physical level
for states with broken translational invariance. In this case,
simple local optimization will not result in a global optimal
fixed point A[converged].

1. Known solutions

When we write about the breakdown of translational
invariance, we mean that the state is no longer invariant under
the shift of one site. Still, the state can maintain invariance

under the shift of k sites. If k is known, one can introduce new
supersites where one supersite encompasses k of the old sites.
Now, the system is translational invariant with respect to the
shift of one supersite. This involves that we have to optimize
tensors which represent the supersites. Due to the exponential
increase of the physical dimension, this method is practical for
very small k only. To avoid the scaling problem, Crosswhite22

suggested to use an MPS ansatz for the supersites. In practice,
this means we insert k old sites at once and optimize the
corresponding tensors. We are not aware if this was ever tested
successfully. Aside from that, one still needs a prior knowledge
of the value k.

Alternatively, one can extend the standard MPS structure
with auxiliary tensors,26,27 which allow us to introduce a
symmetry-breaking element for the price of a nonlinear
optimization. To our knowledge, this has not been tested for
long-range interactions so far.

B. Superposed multioptimization

Our solution of the convergence problem induced by locally
altering states does not depend on any prior knowledge and
stays within the standard MPS framework. The key idea is to
wash out local dependency of the optimization by choosing
each new tensor A[n] such that it minimizes the sum of the
energy of exponentially many different MPS instead of just
one. These MPS are different ground state approximations
to the qualitatively same Hamiltonian applied to systems of
different sizes. All necessary minimizations can be joined in
a superposition and solved by one optimization. The time-
relevant steps stay the same as in the single MPS optimizing al-
gorithm presented so far, so there is no noticeable loss in speed.

As explained in the following, after each optimization
round, the number of MPS joined in the superposition increases
by a factor of 4. Thus, in the nth round, the optimization (14)
gets formally extended to

min

⎛⎝ 4n−1∑
i=1

〈ψi |Hi |ψi〉
⎞⎠ → min

⎛⎝4n−1∑
i=1

〈A[n]|H[n] i |A[n]〉
⎞⎠

= min

⎛⎝〈A[n]|
4n−1∑
i=1

H[n] i |A[n]〉
⎞⎠

= min(〈A[n]|H̃[n]|A[n]〉). (18)

The MPS representing the |ψi〉 are of different length and
the position of the tensor A[n] is no longer in the center
but varies from MPS to MPS. In the basic algorithm, the
tensors A[n] experience quite individualized environments and
the optimization adapts to these local circumstances. In the
modified algorithm, A[n] faces exponentially many different
environments averaging out local effects and emphasizing
common global features. This enforces heavily the desired
convergence A[n] → A[converged].

1. Modification of the algorithm

Formally, the superposition H̃[n] = ∑4n−1

i=1 H[n] i in Eq. (18)
is based on 22(n−1) = 4n−1 different MPS. These MPS are
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not hand picked, but indirectly generated by the algorithm.
The only modification needed to create such a superposition
concerns the left and right halves Lα′

lμlαl and Rα′
rμrαr . We still

use Eqs. (16) and (17) to perform the iteration steps L
α′

lμlαl

[n−1] →
L

α′
lμlαl

[n] and R
α′

rμrαr

[n−1] → R
α′

rμrαr

[n] , but afterwards we add the new
and the old results to achieve superpositions

L
α′

lμlαl

[n] ← L
α′

lμlαl

[n−1] + L
α′

lμlαl

[n] , R
α′

rμrαr

[n] ← R
α′

rμrαr

[n−1] + R
α′

rμrαr

[n] .

(19)

Since this is a simple addition of two tensors, the structure and

size of L
α′

lμlαl

[n] and R
α′

rμrαr

[n] stay the same and do not entail any
computational complications.

In the basic algorithm, we have to decide at each iteration

step whether to absorb the tensor A[n−1] into the left half L
α′

lμlαl

[n]

[Eq. (16)] or into the right half R
α′

rμrαr

[n] [Eq. (17)]. Only the half
of choice is modified. Now, we symmetrize the algorithm and
modify both halves in each step. With this modification, the
operator sum H̃[n] is calculated with one single use of Eq. (15).
As a further advantage of the symmetrization, the modified
iMPS algorithm can now take advantage of mirror-symmetric
Hamiltonians. As this subject is a bit off topic, we refer the
interested reader to Appendix F.

Since each of the tensors A[1], . . . ,A[n−1] is absorbed into
the left half L and the right half R, the longest MPS encoded
in the operator superposition of H̃[n] contains 2(n − 1) tensors
(where we neglect the contribution from the initialization
routine explained in Sec. II E2 and the hole for the new
tensor A[n]). But, in the general MPS, each of the 2(n − 1)
tensors only appears with a probability of 50% due to the
addition of the new and old L and R in Eq. (19). The possible
tensor combinations give rise to the heralded 22(n−1) different
MPS from which ( k

2(n − 1) ) are of length k. More precisely,

( k[L]
(n − 1) ) · ( k[R]

(n − 1) ) of these MPS contain k[L] tensors left and
k[R] tensors right from the hole for the new tensor A[n].

2. Comments

The crucial observation is that the iteration steps to perform
are always the same independent of the tensor position and
the size of the MPS. Therefore, all the different MPS can be
optimized together combined in a superposition. The reader
who is more familiar with finite MPS calculations might
wonder about the complete loss of information concerning
the single MPS in the superposition, which comes along with
Eq. (19). We have to remind ourselves that the main objective
of the iMPS algorithm is to get the tensor A[converged], which
suffices to construct the infinite MPS. The finite MPS are just
tools to obtain this tensor. Once we have it, the finite MPS are
no longer needed.

Another interesting question is whether the operator sum
H̃[n] in Eq. (18) constructed via Eq. (19) is really suitable for
a variational ansatz. This question has two aspects.

(1) Is every optimal iMPS solution of Eq. (18) also a
minimum of the Hamiltionian?

(2) Does the algorithm always converge to this optimal
solution?

The intuitive argumentation given in Sec. II B also suggests
that the answer to the second question should be yes, but

actually even for the well-established DMRG algorithm the
answer has to be no, since otherwise NP hard problems
could be solved. Nonetheless, it is a matter of fact that
DMRG converges extremely well for most practical purposes.
The same “practical proof” can be given for Eq. (18) as
demonstrated by our applications (Sec. V).

The first question can be answered more formally. Equa-
tion (18) represents the sum of exponentially many energy
terms. The lowest conceivable value of this sum is reached,
if each energy term takes its individual minimal value. If all
individual energies are minimized, the obvious answer to the
first question is yes. Hence, we have to ask whether it is
possible to minimize all individual energies at once, having in
mind that all MPS involved are created indirectly via Eq. (19).
With finite MPS, this might only be possible up to a certain
relative error. But for the limit of infinite MPS this relative error
shrinks to zero and the problem is trivially solved by uniform
iMPS, i.e., in the case where all tensors stem from the same
A[converged]. Then, all iMPS appearing in Eq. (18) look alike
and either none or all of them minimize their Hamiltonians.
Even in the case of broken translational invariance, one can
always find at least one translational invariant ground state,
which can be written as uniform iMPS and hence optimizes
all terms in the sum at once.

Next, we like to further inspect the numerical consequences
of Eq. (19) for the different MPS which are part of the operator
sum H̃[n]. The tensor A[n−1] was absorbed into exactly half of
the superpositions encoded in L[n] and in R[n]. Since L[n] and
R[n] are the building blocks of H̃[n] [Eq. (15)], four subsets of
H̃[n] can be distinguished:

(1) A[n−1] was neither absorbed into L[n] nor into R[n].

(2) A[n−1] was only absorbed into L[n].

(3) A[n−1] was only absorbed into R[n].

(4) A[n−1] was absorbed into both halves L[n] and R[n].
Although we never experienced any practical problems, the

cases 1 and 4 are, at least from the theoretical point of view, a
bit troublesome. In case 4, the tensor A[n−1] is inserted twice.
But, A[n−1] was never optimized for double insertion. Close
to the end, when A[n] → A[converged] is almost achieved, this
should pose no problem. Meanwhile, at an early stage the
effect should be more severe. On the other hand, even in the
basic algorithm, the MPS description is not perfect, especially
not at the beginning.

Case 1 might seem trivial since everything stays the same.
Potential difficulties arise in the superposition with the other
cases. According to Eq. (8), the tensors A are decomposed into
Q and λ and only Q is absorbed. The matrix λ is overwritten
with the next A (respectively Q). In the basic algorithm, this
is easy to justify: The next A[n] can compensate for λ[n−1].
But, a perfect compensation can only be achieved for oneλ,
not for many of them. Here is the problem: In case 1, old
λ[n−2],λ[n−3], . . . of the previous steps are conserved, while
in cases 2, 3, and 4, a new λ[n−1] comes into play. All λ

have to be compensated for. The stronger the λ alter, the less
adequate is their compensation. The variation of the λ can be
reduced by enforcing ‖A[n] − A[n−1]‖ to be small. Towards
the end of the optimization, ‖A[n] − A[n−1]‖ is small anyway.
At an early stage, one might have to resort more strongly
to the convergence enforcing method we will discuss in
Sec. IV A2.
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C. Selecting a specific ground state

We have seen how to ensure convergence in the case
of broken translational symmetry. But so far, we have no
control to which of the degenerate ground states the algorithm
converges. Some of these ground states might be more
favorable for our purposes than others, and we now answer the
question as to how to obtain them. Any further degeneration
aside from broken translational invariance is excluded from
this consideration.

Let us look at two fully converged MPS A and B where B is
a representation of the wished-for ground state which fits our
purposes best, while A stands for any ground state to which
the algorithm actually has converged. According to Eq. (11),
both MPS have the following structure:

A = . . . Q
α−2α−1
[L] s−1

· Q
α−1α̃0
[L] s0

·λα̃0α0 · Q
α0α1
[R] s1

· Q
α1α2
[R] s2

. . . ,
(20)

B = . . . q
α−2α−1
[L] s−1

· q
α−1α̃0
[L] s0

· ξ α̃0α0 · q
α0α1
[R] s1

· q
α1α2
[R] s2

. . . .

In Appendix C, we show that it suffices to replace the matrix
λα̃0α0 in A by the new matrix γ α̃0α0 to obtain an MPS which
represents exactly the same physical state as B:

B = . . . Q
α−2α−1
[L] s−1

· Q
α−1α̃0
[L] s0

· γ α̃0α0 · Q
α0α1
[R] s1

· Q
α1α2
[R] s2

. . . . (21)

In other words, we do not need to take care to which ground
state the algorithm converges since after it has converged, we
are able to transform the obtained solution easily into any
other. We do not even have to know B, as long as we have
a description such as, e.g., “the ground state with the highest
expectation value for the operator X̂.” All we have to do is
a one-time optimization of the new matrix γ α̃0α0 under the
desired side condition.

1. One-tensor update versus multitensor update

So far, we focused on uniform MPS which result from an
algorithm that inserts one new tensor each round. Crosswhite22

suggested that one might also insert a certain number of q

tensors per round in the form of a small MPS. Although we
are so far not aware of any successful practical applications
of this ansatz, it is worth having a closer look. For the single-
site algorithm to work in the presence of broken translational
invariance, we introduced the SMO method, which washes
out local variations and thereby fortifies convergence. Still,
the SMO is a general method and could also be implemented
in a q-site algorithm.

As we have seen in the section above, the single-site iMPS
algorithm will come up with a solution that encodes all possible
ground states. This abundance has its price. Given the situation
that we know the periodicity q of the ground state of interest,
we could use an iMPS algorithm which inserts q sites at once.
This would enable us to find some specific lowly entangled
ground states which could be expressed by a nonuniform MPS
with a far smaller bond dimension. Since q translationally
shifted copies of such a nonuniform MPS always allow us
to construct a uniform MPS, the maximal gain in bond
dimension is given by a factor q and the maximal difference
in the entanglement entropy of the half chain is 	S = ln2(q).
We could confirm this difference for the model studied in the
applications (Sec. V) varying the matrix λ [Eq. (20)] over the
set of ground states, as described in the section above.

From the perspective of the needed bond dimension, the
multitensor update is clearly superior to the single-tensor
update for systems with a periodicity q > 1. Still, in this
paper, we favor the single-tensor update, which needs no prior
knowledge of the periodicity and results in a well-converging
algorithm, which has proofed its reliability in practical tests.

2. Degenerate tensor

In the case of broken translational invariance, one can jump
from one ground state solution to another just by changing
the matrix λ, which is part of the bigger tensor A[n] [Eq. (8)].
Hence, different A[n] minimize 〈A[n]|H̃[n]|A[n]〉, i.e., A[n] is
degenerate. The iMPS algorithm aims for the convergence
A[n] → A[converged]. Without precautions, this convergence
might be undermined towards the very end by an A[n] which
jumps from one solution to another. At first glance, this does
not seem troublesome because all solutions A[n] could jump
to are good solutions. Nonetheless, due to imperfect numerics,
this jumping might also occur into A[n] of minor quality. This
effect is not fatal, but it still might turn an otherwise perfect
result into a less accurate one.

To suppress this effect, we can resort to the convergence
enforcing method we will present in Sec. IV A2. In addition,
we will describe in Secs. III D and IV D a numerical method
to enforce a translational invariant solution which eliminates
the above-mentioned degeneration.

D. translational invariant ground states and local minima

In this section, we consider possible convergence problems
due to translational invariance-breaking states which lie
closely above the nondegenerate ground state level. In such
cases, the infinite system still provides a translational invariant
ground state, while for finite systems even small alterations of
the energy spectrum due to boundary effects suffice to favor
a ground state with broken translational invariance. Since the
iMPS algorithm is based on growing finite systems, it might
start out converging into a false minimum and get trapped
there. Even if the algorithm escapes out of this trap later, it
supposedly costs many optimization rounds and significantly
slows down convergence.

To avoid these problems, we suggest to modify the
algorithm such that it only converges to translational invariant
states. This is no limitation: In the case of a unique ground
state, the sole solution has to be translational invariant, anyway.
If the ground state level is degenerate, one of the solutions
is translational invariant and according to Eq. (21), we can
still transform it into another type of solution after the
algorithm has converged.

Whether the fully converged MPS A,

A = . . . Q
α−2α−1
[L] s−1

· Q
α−1α̃0
[L] s0

·λα̃0α0 · Q
α0α1
[R] s1

· Q
α1α2
[R] s2

. . . , (22)

is translational invariant or not depends on its matrix λ.
At this point, we should be more precise and write λ[L]

or λ[R], depending on whether λ stems from a left or
a right decomposition (8). Actually, as a consequence of
decomposition (8), the MPS A is translational invariant if the
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V. NEBENDAHL AND W. DÜR PHYSICAL REVIEW B 87, 075413 (2013)

left and right versions of λ are identical:

λ[L] = λ[R] = λ ⇒ Q[L] · λ = A[converged] = λ · Q[R].

(23)

In this case, λ can be commuted to any position and hence no
longer marks any specific site of the MPS. This is what we are
aiming for.

In order to end up with an A[converged] where λ[L] = λ[R],
we alter the minimization routine which computes the tensors
A such that solutions with small differences ‖λ[L] − λ[R]‖,
i.e., big overlap 〈λ[L]|λ[R]〉 are preferred. In the long run, this
should accumulate to λ[L] = λ[R].

As a first straightforward way, we tried to extend the
minimization (18) of 〈A|H̃|A〉 to

min(〈A|H̃|A〉 − γ[λ] · 〈λ[L]|λ[R]〉) (24)

with a suitable coupling parameter γ[λ]. This is no longer a
simple to solve bilinear problem since one needs to perform
the decomposition (10) to get λ[L] and λ[R]. To avoid this
complication and restore bilinearity, we tried to resort to
the easily calculated approximations λ̄[L] and λ̄[R] [Eq. (E2)
derived in Appendix E], but the results we obtained in this way
were not very convincing.

In Sec. IV D we introduce a less conventional approach
which turned out to work far more satisfyingly for us. Instead
of extending the minimization of 〈A|H̃|A〉 by a new term as
suggested in Eq. (24), we alter the routines of the iterative
eigenvector solver we use to solve it. The modus operandi of
these solvers is reviewed in Sec. IV C. Until after then, we
suspend further explanations.

IV. ENHANCED ALGORITHM

The considerations of the last section were mainly concep-
tual. The only actual change of the algorithm we performed is
given by Eq. (19), which incorporates the SMO method. In this
section, we delve far more into numerical details and extend
the algorithm by further routines to make it more efficient. A
reader not interested in technical details of the algorithm might
proceed directly to Sec. V.

A. Enforcing convergence

The goal of the iMPS algorithm is the global convergence
A[n] → A[converged]. This property has to emerge over the long
term, while it is not part of the evaluation system of the
local minimization from which each A[n] is drawn. As a
consequence, small local improvements might be purchased
with strong fluctuating A[n] counteracting global convergence.
In an unstable scenario of overcompensation, these fluctuations
might even inflate in a fatal manner. To prevent this from
happening, we extend the algorithm by two methods. The
first method (superposition method) aims at attenuating the
influence of problematic A[n] on the ongoing calculations,
while the second method (gain function method) directly
modifies the optimization routine such that excessive variation
of the A[n] are suppressed. Both methods are complementary
and worked well together in our calculations.

1. Superposition method

The first method takes advantage of the fact that the H̃[n]

[Eq. (18)] of the modified algorithm represent superpositions
of operators. By decreasing the weight of those contributions
to the superpositions which contain problematic A[n], one can
ensure that excessive fluctuation of the A[n] do not spread
to the level of the H̃[n+1] and with that inhibit a chain of
overcompensation. We remind the reader that A[n] is absorbed
into L[n+1] [Eq. (16)] and R[n+1] [Eq. (17)] before Eq. (19)
is used to build up superpositions. This latter equation is now
replaced by

L
α′

lμlαl

[n+1] ← L
α′

lμlαl

[n] + ξ[n] · L
α′

lμlαl

[n+1] ,
(25)

R
α′

rμrαr

[n+1] ← R
α′

rμrαr

[n] + ξ[n] · R
α′

rμrαr

[n+1] .

The only new ingredient compared to Eq. (19) is the adjustable
weight 1 � ξ[n] > 0 calculated as

ξ[n] = min

(
1,

〈	A〉[n]

	A[n]

)
, (26)

where 	A[n] measures the deviation of A[n] and 〈	A〉[n] is
a weighted average of the previous deviations. Each time the
deviation 	A[n] exceeds the average value 〈	A〉[n], ξ[n] gets
smaller than 1 and with that the weight of all contributions of
H̃ which contain A[n] is reduced accordingly.

To measure the deviation 	A[n], we need to define a
reference tensor A

[refer]
[n] such that 	A[n] = ‖A[n] − A

[refer]
[n] ‖. In

order to avoid unnecessary fluctuation of this reference tensor,
we use the same trick as above and define A

[refer]
[n] iteratively as

a weighted average of the previous A[0�j<n]:

A
[refer]
[n+1] = 1

N
· (

A
[refer]
[n] + ξ[n] · A[n]

)
, (27)

with N = ‖A[refer]
[n+1]‖. The weights ξ[n] used in Eq. (27) are the

same as in Eqs. (25) and (26).
For Eq. (26) to work, we still have to define the weighted av-

erage 〈	A〉[n]. Various definitions are possible. As a heuristic
choice, we picked the following one:

〈	A〉[n] = 1

N
· min(0.9 · 〈	A〉[n−1] + 0.1 · 	A[n−1],

(28)
1.02 · 〈	A〉[n−1]),

with N = 1–0.9n. Obviously, the term 1.02 · 〈	A〉[n] prevents
a too sudden increase of 〈	A〉[n] by limiting it to 2% per round.
Without this term, we get the clearer expression 〈	A〉[n] ∼

n

j=00.9n−j · 	A[j ], i.e., older 	A[j ] lose in each round 10%
of their influence in the weighted average.

Finally, we remark that we end up in a deadlock if
ξ[n] = 0. To prevent this from happening, we will introduce
the parameter 	max in Eq. (30) of the upcoming section.

2. Gain function method

The idea of the gain function method is to manipulate the
minimization procedure of 〈A[n]|H̃[n]|A[n]〉 by adding a gain
function, i.e., replacing H̃[n] by H̃[γ ]

[n] :

H̃[γ ]
[n] = H̃[n] − γ · ∣∣A[refer]

[n]

〉〈
A

[refer]
[n]

∣∣ with γ � 0, (29)
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where |A[refer]
[n] 〉 is the vectorized version of the reference tensor

defined in Eq. (27). Let A
[γ ]
[n] be the result of the above

optimization. Obviously, bigger values for γ favor smaller
deviations 	A

[γ ]
[n] = ‖A[γ ]

[n] − A
[refer]
[n] ‖.

In Appendix B, we show how to approximate γ efficiently
such that

	A
[γ ]
[n] ≈ min

(
c[n] · 	A

[γ=0]
[n] ,	max

)
, (30)

where 0 < c[n] � 1 and 	max are parameters of our choice.
Limiting 	A

[γ ]
[n] by assigning, e.g., 	max = 10〈	A〉[n]

[Eq. (28)] ensures that ξ[n] [Eq. (26)] is lower bounded around
0.1.

Assigning the parameter 0 < c[n] � 1 [Eq. (30)] allows us
to shorten 	A

[γ ]
[n] to a chosen fraction of the maximal value

	A
[γ=0]
[n] . The price to pay for a c[n] < 1 is a lesser energy

improvement 	Ẽ
[γ ]
[n] which is calculated as the difference

between the energy one gets due to choosing A[n] = A
[γ ]
[n]

instead of just taking A[n] = A
[refer]
[n] :

	Ẽ
[γ ]
[n] = 〈

A
[γ ]
[n]

∣∣H̃[n]

∣∣A[γ ]
[n]

〉 − 〈
A

[refer]
[n]

∣∣H̃[n]

∣∣A[refer]
[n]

〉
≈ 	Ẽ

[γ=0]
[n] · [1 − (1 − c[n])

2]. (31)

Choosing, e.g., a γ which corresponds to c[n] ≈ 0.9 reduces
	A

[γ ]
[n] by 10%, while the energy improvement 	Ẽ

[γ ]
[n] is still

at 99% of the maximal value 	Ẽ
[γ=0]
[n] .

The parameter 	max [Eq. (30)] and the entire superposition
method are designed to intervene only in the case that 	A[n]

suddenly increases with ongoing n; otherwise, they have no
effect. The parameter c[n] on the other hand always effects
the calculation if chosen to be smaller than 1. Generally, the
c[n] should be chosen in dependence of 	A

[γ=0]
[n] (the bigger

	A
[γ=0]
[n] , the smaller c[n] and vice versa). Just for orientation

(not as exclusive choice), we give the value we chose for most
of our calculations:

c[n] = 1 − max
[
0.1; 0.7 + 0.1 · log10

(
	A

[γ=0]
[n]

)]
. (32)

With that, 0.269 < c[n] � 0.9 since 	A
[γ ]
[n] � 2. This formula

was found heuristically and worked fine for us, although more
adequate choices might exist.

When the iMPS algorithm finally approaches its end, γ

becomes very small and its effect might be overruled by nu-
merical imprecision. To prevent this, we recommend defining
a lower limit for γ above the limit of the numerical precision.

B. Energy overgrow

If the average energy per site of an infinite state does not
equal zero, the total energy of the entire state is ±∞. Of
course, we never have to deal with an infinite value since
our numeric is restricted to finite systems. Nonetheless, a
problem remains. In the long run, the numeric value of all
the information encoded in the tensor H̃ stays more or less
the same except for the energy, which grows with each new
site. The tensor H̃ gets more and more ill conditioned since
the numeric value of the energy overgrows other information
and thereby reduces the achievable precision. To avoid this
problem, we advise to subtract from each iteration step

the energy E[n] = 〈A[n]|H̃[n]|A[n]〉 from the system. Simply
speaking, we recommend to assign

H̃[n+1] ← H̃[n+1] − E[n] · I. (33)

To be of any use, this simple assignment has to be encoded into

L
α′

lμlαl

[n+1] and R
α′

rμrαr

[n+1] the building blocks of H̃[n+1] [Eq. (15)].
This can be done by modifying the MPO tensor H

μlμr

s ′s used in
Eqs. (16) and (17). As shown in Appendix A, the MPO tensor
H

μlμr

s ′s has a slot which represents a local interaction term. To
this local interaction we add −E[n] · Is ′s .

C. Minimization routine and information recycling

With an increasing number of rounds n, the successive
minimizations of the different 〈A[n]|H̃[n]|A[n]〉 become more
and more similar, which opens the opportunity to speed up the
minimization recycling information from preceding turns. In
order to understand these ideas (and also those of Secs. IV D,
IV E, and Appendix B 1), we have to review the principles
of the iterative eigenvector solvers we use.28 In the MPS
context, these solvers come with the major advantage that
H̃[n] never has to be constructed explicitly; it suffices to be
able to assemble H̃[n]|A〉 for any given |A〉. Further, we do
not need to perform the minimization to its very end. For the
algorithm to work, it suffices to perform a limited amount of
iterations, such that the resulting |A〉 might not be optimal
but still significantly improved. Due to information recycling,
these improvements accumulate, such that the optimal solution
emerges in the long run.

Iterative eigenvector solvers are very well suited for
the outer eigenvalue spectrum. Already with modest effort
we can expect to find a good approximation |e0〉 ≈ |E0〉 for
the lowest eigenvector of H̃[n]. The central idea is to project
the problem defined on a huge space of dimension N onto a
much smaller subspace of dimension k � N and solve it there.
For this to work, we have to build up iteratively a small set
{|A1〉, . . . ,|Ak〉} of k orthonormal vectors which enables us to
express the minimizing eigenvector |A[min]

[n] 〉 = |E0〉 of H̃[n] as
a linear combination∣∣A[min]

[n]

〉 = |E0〉 ≈ |e0〉 =
k∑

i=1

|Ai〉 · a
[min]
i , (34)

E0 = 〈E0|H̃[n]|E0〉 ≈ a
[min] †
i · 〈Ai |H̃[n]|Aj 〉 · a

[min]
j

= a
[min] †
i · H

[n]
ij · a

[min]
j = e0. (35)

We need to solve for a
[min]
i , which is obviously the minimizing

eigenvector for the k × k matrix H
[n]
ij = 〈Ai |H̃[n]|Aj 〉. A

possible measure for the accuracy of the approximation (34)
is given by the norm of the residual vector

|r〉 = (H̃[n] − e0)|e0〉. (36)

As long as ‖r‖ is too big, we have to extend the set
{|A1〉, . . . ,|Ak〉} iteratively by a further vector |Ak+1〉. Any
form of educated guessing for a suitable new |Ak+1〉 is allowed.
The Lanczos29 and Arnoldi30 algorithms use a different way
of calculation but end up with

|Ak+1〉 = ‖r‖−1 · |r〉, (37)

with |Ak+1〉⊥|A1�j�k〉 by construction.
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In contrast to the basic iMPS algorithm, which sets |A1〉
equal to the lowest eigenvector |e[n−1] 0〉 = |A[n−1]〉 of the last
round,22 we choose

|A1〉 = ∣∣A[refer]
[n]

〉
, (38)

with A
[refer]
[n] defined in Eq. (27). This small change allows an

easy implementation of the method presented in Appendix B 1
and should help to improve global convergence. Both versions
are straightforward examples of information recycling since
|A[n−1]〉 as well as |A[refer]

[n] 〉 are already good approximations
for |E0〉 (=|E[n] 0〉). In many cases, we could obtain a
considerable speedup extending this idea to a few more than
just the first vector of the set

|A1+j 〉 = ∣∣A[refer]
[n−j ]

〉
⊥

= 1

‖A1+j‖ ·
(
I −

j−1∑
i=1

|Ai〉〈Ai |
)

· ∣∣A[refer]
[n−j ]

〉
. (39)

Further, we observe that all |A[refer]〉 [Eq. (27)] are derived from
the best eigenvectors of the previous rounds. As an additional
extension, we also tried to include the next best eigenvectors
|e[n−1] j>0〉 of the last round

|A1+j 〉 = |e[n−1] j 〉. (40)

The improvements we achieved in this way were relatively
poor. A much more promising way to take advantage of the
|e[n−1] j 〉 is to use them for an efficient approximation of
the inverse operator D = (e0 · I − H̃[n])−1 [Eq. (D6)], which
allows a handy implementation resembling the Davidson (or
Jacobi-Davidson)24 method. As a result, the update equa-
tion (37) is replaced by the more appropriate ansatz (D7).
Details are explained in Appendix D.

At the end of this section, we like to caution the reader
that the methods presented here might counteract the methods
presented in Sec. IV A. Global convergence and improved local
minimization often go hand in hand, but not always. If the
algorithms indicate to run unstable, one should consider to
partially switch off the improvements just presented. This is
likely to happen if |e0〉 is degenerate. In this case, the recycled
knowledge from the past strongly increases the probability
that already a shallow optimization suffices to find alternative
solutions, which might result in unwanted fluctuations as, e.g.,
described in Sec. III C2. Usually, this problem is announced
in advance. In the Davidson implementation, one should not
resort to eigenvectors with eigenvalues too close to the best.
Similarly, once the small set of recycled initial values |A[refer]

[n−j ]〉
suffices to get a second best eigenvalue very close to the best,
it might be wise to abandon this method and only use |A[refer]

[n] 〉
alone.

D. Enforcing translational invariant ground states

In this section, we demonstrate the algorithmic realization
of the considerations put forward in Sec. III D. There, we
argued that it is beneficial to push the algorithm towards trans-
lational invariant iMPS solutions to avoid getting trapped in

local minima. We further showed that translational invariance
is assured if the decomposition (8) of the tensor A[converged]

results in λ[L] = λ[R] [Eq. (23)]. This is what we are aiming
for.

The approach we are about to present is not very intuitive.
Therefore, we start our explanations with an intermediate
step and introduce a less practical but easier to understand
procedure which consists of the following steps and has to be
performed with each new tensor A after it has been optimized:

(1) Decompose A into Q[L] · λ[L] = A = λ[R] · Q[R]

[Eq. (8)].
(2) Define λ[sym] = 1

2 (λ[L] + λ[R]).
(3) Set A ← 1

2 (Q[L] · λ[sym] + λ[sym] · Q[R]).
(4) Go to 1.
Due to line 2, this procedure converges towards a tensor

A with λ[L] = λ[R]. Further, we expect A[initial] ≈ A[final] if
already λ

[initial]
[L] ≈ λ

[initial]
[R] . Nonetheless, the changes in A might

be too pronounced to be acceptable. To soften this approach,
one can ignore line 4 and just go through 1 to 3 once. After
that, we generally still have λ[L] �= λ[R] but with a reduced
distance ‖λ[L] − λ[R]‖ compared to the initial value. This is all
we need to achieve λ[L] = λ[R] in the long run. But, the new
A is still likely not to qualify for the optimizing tensor we are
looking for.

Now, we come to the procedure we really use. Instead
of symmetrizing the tensor A after its optimization, we
integrate the symmetrization into the optimization routine. As
recapitulated in Sec. IV C, the optimization routine expresses
the vectorized tensor A[n] = |A〉 as a linear combination

|A〉 = |Ai〉 · ai (41)

of a small set of basis vectors |Ai〉 [Eq. (34)]. The idea is to
alter these basis vectors |Ai〉 such that we have a similar effect
as the procedure above. At the stage of the optimization, the
Q

[n]
[L/R] are still unknown and we have to approximate them by

their precursors Q
[n−1]
[L/R].

The |Ai〉 are created iteratively. In each iteration step, we
first create a new |Ai〉 as we used to do Eqs. (37) and (D8) and
then alter it. Therefor, we introduce |Āi〉 defined as

|Āi〉 = 1

2
|Ai〉 + 1

4

(
Q

[n−1]
[L] · λ̄[R] i + λ̄[L] i · Q

[n−1]
[R]

)
with

λ̄
αβ

[R] i = |Ai〉αγ
s · Q

[n−1]∗ γβ

[R] s , λ̄
[n] αβ

[L] i = Q
[n−1]∗ αγ

[L] s · |Ai〉γβ
s ,

(42)

where we tensorized the vector |Ai〉 in lines 2 and 3. With that,
we replace |Ai〉 by an orthonormal version of |Āi〉:

|Ai〉 ←
⎛⎝I −

i−1∑
j=1

|Aj 〉〈Aj |
⎞⎠ · |Āi〉, |Ai〉 ← 1

‖Ai‖ · |Ai〉.

(43)

For a better understanding, we insert the |Āi〉 in the linear
combination (41). As shown in Appendix E, we get

|Ā〉 = |Āi〉 · ai ≈ 1
2 (Q[L] · λ[sym] + λ[sym] · Q[R]) with

λ[sym] = 1
2 (λ[L] + λ[R]), (44)
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which mimics the effect of the procedure presented above.
But, in contrast to the procedure above, the story does not
end here. The important point to notice is that the algorithm
can still adopt to the alteration (43) of the basis vectors
|Ai〉 and come up with alternative solutions. More favorable
weights ai than those used in Eq. (44) are presumably to be
found. Even the |Ai〉 themselves are likely to be different
since they are calculated iteratively according to the needs
of the minimization. While there are still enough resources
to compensate sufficiently for the negative effects of the
enforced alteration, the positive effects should survive since
the arguments in their favor are largely independent of the ai ,
|Ai〉 chosen by the optimization routine. Still, this alteration
is a tradeoff, but we have good reasons to believe that we gain
more than we sacrifice.

For practical applications, we only need a few lines of
code to implement Eq. (42), which is also easy to turn off
for systems where it is not needed, i.e., when the unaltered
algorithm shows no tendency to run the risk of being trapped
in a local minimum. In such a case, the alteration is likely to
slow down the algorithm slightly. For the applications tested
by us, the loss in performance was only marginal. On the
other hand, we also encountered many cases where the altered
algorithm clearly outperformed the unaltered one, which was
partially even unable to find the correct ground state within the
observed run time.

Although we strongly recommend to implement the al-
teration (43) as presented, one could also use a compromise
and only alter the first basis vector |A1〉 = A

[refer]
[n] , which has

already a strong impact on the outcome of the optimization.
This reduced version does not come with the need to program
a new eigenvector solver. Each solver which accepts an
initial vector |A1〉 will do. In any case, the gain function in
Eq. (29) is understood to change accordingly to the alteration
of |A1〉 = A

[refer]
[n] .

E. Length of the MPS

After n optimization steps, even the longest MPS encoded
in the superposition created by the SMO method does not
surpass the length l = 2n + l0 [where l0 is the initial length (see
Sec. II E2)]. For some systems with long-range correlations,
this might be too short unless n reaches some considerably high
number, which would go along with an extended calculation
time. To shorten this calculation time, two methods might be
of help:

(1) Use a tensor A
αlαr

[n] s with small bond dimension χ[small]

until a certain MPS length is reached, then increase the bond
dimension to its final value χ[big].

(2) Use fast Krylov subspace methods28 to insert the same
tensor many times (e.g., 105) into the MPS.

A simple and comfortable way to increase the bond dimen-
sion from χ[small] to χ[big] is to use an isometric χ[small] × χ[big]

matrix uαβ with

uαβ · (uT )βα′ = δαα′
(45)

and proceed as follows after A[n] has been optimized
but still not been inserted into L[n] [Eq. (16)] and R[n]

[Eq. (17)]:

L
β ′

l μlβl

[n] ← L
α′

lμlαl

[n] · uα′
lβ

′
l · uαlβl ,

R
β ′

rμrβr

[n] ← R
α′

rμrαr

[n] · uα′
r β

′
r · uαrβr , (46)

A
βlβr

[n] s ← A
αlαr

[n] s · uαlβl · uαrβr .

Next, the new tensor A
βlβr

[n] s is inserted into L
β ′

l μlβl

[n] and

R
β ′

rμrβr

[n] as usual but without the superposition building steps
[Eqs. (19) and (25), respectively]. To avoid trapping into a local
minimum, one might also consider to add a small amount of
noise to A

αlαr

[n] s before applying Eq. (46).
A possible strategy for the small bond dimension χ[small]

is to proceed until convergence has been reached A[n] →
A[converged], but before the bond dimension is increased, many
more copies of A[converged] are inserted into the MPS without
any further optimization. These insertions can be done in
the standard fashion or generally much faster by projecting
the problem onto a small subspace, similar to the way the
eigenvector problem is solved (see Sec. IV C). To formalize
this method, let us introduce the operator I which inserts one
copy of A[converged] into L[n] [Eq. (16)], i.e.,

I · L[n] = L[n+1]. (47)

With that, we build up the Krylov subspace Kr ,

Kr = span{L[n],I · L[n],I2 · L[n], . . . ,Ir−1 · L[n]}, (48)

and similar with R[n] [Eq. (17)]. As in Sec. IV C, we create an
orthonormalized system of basis vectors |Lk〉,

|Lk〉 = 1

‖Lk‖ ·
(
I −

k−1∑
i=0

|Li〉〈Li |
)

· |Ik · L[n]〉, (49)

and calculate Iij , the subspace projection of I:

Iij = 〈Li |I|Lj 〉. (50)

Keeping in mind that the subspace projection of L[n] is simply
given by the vector lj = ( 1 0 0 0 . . . )T , we find

L[n+p] = Ip · L[n] ≈ ((Ip)ij · lj ) · |Li〉. (51)

The number of basis vectors |Li〉 should be chosen such
that this approximation is perfect within computer precision.
Further errors are introduced by an imperfectly converged
A

αlαr

[converged] s and from the energy overgrow effect described in
Sec. IV B, which should rule out attempts to go for p → ∞.
Still, a small amount of the last two errors are acceptable since
they have a similar effect as the aforementioned extra noise to
avoid local minima.

V. APPLICATIONS

In the last section, we presented various methods to improve
the performance of the iMPS algorithm with long-range inter-
actions. The main subject was to ensure convergence, where
special attention was paid to broken translational invariance.
This so far troublesome case can now be tackled mainly due
to the introduced method of superposed multioptimization
(SMO).
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FIG. 3. (Color online) The densities ρ of polar bosons (left) and the corresponding phase diagrams (right) for the ground states of the Hamilto-
nian (53) for U → ∞ plotted over t and μ in units of V = 1. Each plot consists of 66 049 data points calculated with the bond dimensions χMPS =
32 for (a) and (b) and χMPS = 64 for (c). The fractions associated to selected phases of the phase diagrams denote their p/q values (see main text).

The modified iMPS algorithm has superior convergence
properties compared to the basic version but it does not surpass
its precision, which is determined by MPS and MPO inherited
limitations. In cases where both versions converge, the quality
of the results is identical. Readers who are interested in the
achievable precision of the iMPS method in comparison with
analytical solutions are therefore referred to the literature.22,23

We checked our algorithm with different models. For a
reliable basic benchmark, we examined, e.g., states with long-
range chiral order in the next-nearest-neighbor Heisenberg

model and found the expected agreement with the results given
in Refs. 31 and 32.

Here, we will present results for a model of polar bosons
described by a Bose-Hubbard–type Hamiltonian with a long-
range interaction term. In the thermodynamic limit, the ground
state of this model exhibits symmetry-breaking crystalline
phases as well as incommensurate phases with algebraically
decaying long-range correlations. The long-range interaction
of the Hamiltonian we consider decays as ∼ r−3. To model
this interaction with an MPO, the decay is approximated as
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weighted sum of 20 exponential functions

(r)−3 ≈
20∑
i=1

ai · λr−1
i , r = 1,2,3, . . . (52)

[see also Eq. (A17) and Ref. 19].

A. Bose-Hubbard model with long-range interaction

We study the thermodynamic limit ground states of polar
bosons in a one-dimensional optical lattice described by the
following effective Hamiltonian11,33:

H = V ·
∑
k<j

1

(j − k)3
· n̂k · n̂j + U

2
·
∑

j

n̂j · (n̂j − 1)

−μ ·
∑

j

n̂j − t ·
∑

j

(ĉ†j · ĉj+1 + ĉj · ĉ
†
j+1), (53)

where ĉ
†
j and ĉj are the creation and annihilation operators for

a boson on site j and n̂j = ĉ
†
j · ĉj . This model is characterized

by a hopping amplitude t , an onsite interaction energy U , a
chemical potential μ, and a long-range dipole-dipole coupling
V/r3. For μ > 0, the chemical potential favors as many
bosons as possible in the ground state, while the dipole-dipole
coupling together with the onsite interaction try to avoid two
bosons coming too close to each other. For certain parameter
regimes, this interplay allows for translational invariance-
breaking crystalline phases with optimized distances between
the bosons where q sites accommodate exactly p bosons. We
will refer to them as p/q phases. The model is known to
host an entire Devil’s staircase of crystalline phases for t = 0
if the joined potential of onsite interaction and dipole-dipole
coupling is convex.11,34

In the following, we will investigate two qualitative differ-
ent regimes of this model: U → ∞ and U = V.

1. Devils’s staircase for U → ∞
For U → ∞, each site can accommodate at most one

boson and the effective dimension deff of the local Hilbert
spaces reduces to deff = 2. Figure 3 displays the average

ground state densities of the bosons and the localization of
the corresponding p/q phases. To determine the periodicity q

of the phases, we counted the number of eigenvectors of the
transfer matrix T

ij

[L]:

T
ij

[L] = T
(αlα

′
l ),(αrα

′
r )

[L] = Q
αlαr

[L] s · Q
∗ α′

lα
′
r

[L] s (54)

with an absolute eigenvalue of one. Once q is known, p follows
from the average density. Figure 3(c) shows a magnification
of the area between the 1

4 and the 1
5 phases. The biggest

phase between these two phases is the 2
9 phase, which can be

understood as primary compromise ( 2
9 = [1 + 1]/[4 + 5]). In

the same fashion, we find, e.g., that the biggest phase between
the phases 2

9 and 1
5 is the 3

14 phase. The maximal detectable
value of q is given by the bond dimension χ of the MPS,
which is 64 in case of Fig. 3(c). However, since the range of μ

covered by the different phases diminishes with growing value
of q, most phases beyond q = 30 escaped our resolution. The
highest value we hit was p/q = 11

52 .

2. Devils’s staircase for U = V = 1

For sufficient small U , the ground states of the Hamil-
tionian (53) might accommodate more than one boson per
site, which allows for new types of Devil’s staircases. An
example is given by Fig. 4, which shows the densities and
phases for U = V = 1. Here, simple translational invariance
is broken by an underlying occupation pattern given by . . . ,

xi,0,xi+2,0,xi+4,0, . . . with xj = 1 or 2. Of course, for any
nonzero hopping amplitude t > 0, we expect fluctuations
around this pattern such that a more accurate description might
be given by . . . ,xi,εi+1,xi+2,εi+3, . . ., which we need in the
next section (Sec. V A3). At a certain point, these fluctuations
will become so strong that the underlying pattern is destroyed,
but this is not the case for the entire region of Fig. 4.

In the lobes of the new Devil’s staircase, the
sublattice . . . ,xi,xi+2,xi+4, . . . crystallizes in regular pattern
of single and double occupied sites. These lobes exhibit an
approximate symmetry under the exchange of single and
double occupied sites. This is a nontrivial symmetry in contrast
to the exact particle hole symmetry of Fig. 3(a).

FIG. 4. (Color online) The densities ρ of polar bosons (left) and the corresponding phase diagram (right) for the ground states of the
Hamiltonian (53) with U = V = 1 plotted over t and μ. Each plot consists of 62 194 data points calculated with the bond dimensions χMPS = 32.
The bracketed numbers associated to selected phases of the phase diagram describe their periodically repeated occupation pattern (see main text).
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FIG. 5. (Color online) The blue circles mark the values of the correlation function 〈n̂0n̂r〉 for U = V = 1, μ = 1.55, and t = 0.044 extracted
from an MPS with bond dimension χ = 256. For odd distances r = 2j + 1 (right picture), 〈n̂0n̂r〉 is suppressed by a factor of roughly 100
compared to even distances r = 2j (left picture). To demonstrate the algebraic decay of 〈n̂0n̂r〉, the function f (r) = α · r−0.5 + 〈n̂0n̂r→∞〉 with
an adequate α is included on top of both plots as a red line.

Outside the crystalline phases, Burnell11 predicted a su-
persolidlike phase. In the following, we present numerical
evidence which supports this claim.

3. Supersolids for U = V = 1

A supersolid is characterized as a spatially ordered
phase which also exhibits superfluid properties. We already
mentioned the spatial order belonging to Fig. 4, which is
given by the occupation pattern . . . ,xi,εi+1,xi+2,εi+3, . . . .
In our numerical studies, we consider translational invariant
superpositions of the ground states, where the occupation
pattern is still visible in the two-point correlation functions

FIG. 6. (Color online) Log-log plot of the correlation function
〈ĉ†0ĉr〉 for U = V = 1, μ = 1.55, and t = 0.044 extracted from
MPS with different bond dimensions χ . Due to the spatial order,
〈ĉ†0ĉr〉 splits into two branches, each decaying ∝ r−α + constχ , with
constχ < 0 for the lower branch. This constant is a purely numerical
effect, as can be seen by the scaling with the bond dimension χ .

as 〈n̂0n̂r〉 and 〈ĉ†0ĉr〉 shown in Figs. 5 and 6. Due to the spatial
order, both correlation functions are split into two branches,
where correlations belonging to odd distances r = 2j + 1 are
strongly suppressed compared to correlations belonging to
even distances r = 2j . Furthermore, both branches exhibit
an algebraic decay of the same power. For a superfluid, the
power of the decay of 〈n̂0n̂r〉 is supposed to be reciprocal to
the power of 〈ĉ†0ĉr〉. Luttinger liquid theory predicts35

〈n̂0n̂r〉 = 〈n̂0n̂r→∞〉 + const1 × cos (2πρ0r) r−2K + · · · ,

〈ĉ†0ĉr〉 = const2 × r− 1
2K + · · · (55)

with ρ0 = 〈n̂i〉. These relations are confirmed by our numerical
results, as displayed in Fig. 7. Both correlation functions give
rise to the same Luttinger liquid parameter K within a small
error range.

FIG. 7. (Color online) The Luttinger liquid parameter K in
dependence of the hopping amplitude t for U = V = 1 and μ = 1.55.
The parameter K was obtained in two different ways by fitting the
first-order term approximation (55) to the numerical values of 〈n̂0n̂r〉
as well as 〈ĉ†0ĉr〉, both calculated with an MPS bond dimension
χ = 256. The fits were performed in the interval r = 10 . . . 60 with
only two free parameters, namely, const1/2 and K of Eq. (55).
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FIG. 8. (Color online) The entanglement entropy of the half chain
Sχ extracted from MPS with different bond dimension χ is plotted in
dependence of the hopping amplitude t for U = V = 1 and μ = 1.55.
The different curves are roughly equidistant, as predicted by Eq. (56).

In the thermodynamical limit, algebraically decaying corre-
lation functions go hand in hand with an infinite entanglement
entropy of the half chain S, which can not be represented by
any MPS with finite bond dimension χ . Nonetheless, it was
shown36,37 that the numerically obtained entropy Sχ for such
critical phases shows a predictable scaling as function of the
MPS bond dimension χ (Ref. 37):

Sχ2 − Sχ1 ≈
(√

12

c
+ 1

)−1

ln2

(
χ2

χ1

)
, (56)

where c represents the central charge. A demonstration of the
scaling behavior is given in Fig. 8. From this numerical sample,
one obtains Sχ=256 − Sχ=16 = (0.218 ± 0.003) × 4, which
matches Sχ=256 − Sχ=16 ≈ 0.224 × 4 drawn from Eq. (56) for
c = 1.

VI. CONCLUSION

We have presented several extensions to the basic iMPS
algorithm for systems with long-range interactions, some of
them with the potential to be useful in a much broader context.
A special focus was set on problems arising from broken
translational invariance. Here, convergence was ensured by
various means, but mainly due to the SMO method which
irons out local variations by optimizing exponentially many
MPS simultaneously. The algorithm was successfully applied
to calculate detailed Devil’s staircases and phase diagrams
for polar bosons [Eq. (53)] and was also suitable to verify
supersolid properties. Theoretical restraints as considered in
the comments in Sec. III B2 seem to have negligible influence
on practical applications such that this altered version of the
iMPS algorithm is a genuine improvement in the sense that it
can do all the old version could plus more.
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APPENDIX A: MPO REPRESENTATION FOR
HAMILTONIANS

For self-consistency, we give a short account based on some
examples as to how to construct an MPO representation for a
given Hamiltonian (see also Refs. 18–21). For finite systems
with open boundaries, the Hamiltonian can be written [Eq. (4)]
as

Hs ′
1s

′
2...s

′
n

s1s2...sn
= H

[1] μ1

s ′
1s1

· H
[2] μ1μ2

s ′
2s2

· H
[3] μ2μ3

s ′
3s3

. . . H
[n−1] μn−2μn−1

s ′
n−1sn−1

· H
[n] μn−1
s ′
nsn

. (A1)

First, we need a neat way to write the explicit form of the
fourth-order tensors H

μlμr

s ′s . We write them as matrices whose
entries are matrices too:

H
μlμr

s ′s = (Hs ′s)μlμr . (A2)

As an example, we consider the Ising Hamiltonian

H = −
n−1∑
i=1

σ [i]
z · σ [i+1]

z −
n∑

i=1

σ [i]
x . (A3)

As we will see in the following, a possible choice for all H [k]

in Eq. (A1) with 2 � k � n − 1 is

(Hs ′s)μlμr =
⎛⎝Is ′s 0s ′s 0s ′s

−σ s ′s
z 0s ′s 0s ′s

−σ s ′s
x σ s ′s

z Is ′s

⎞⎠ . (A4)

H
[1] μ1

s ′
1s1

and H
[n] μn−1
s ′
nsn

are vectors over matrices

H
[1] μ1

s ′
1s1

= (
−σ

s ′
1s1

x , σ
s ′

1s1
z , Is ′

1s1
)
. (A5)

In order to get a better understanding, we look at the tensor
product of the first k tensors. Below (A7), we show by
induction that

H [1...k] = H
[1] μ1

s ′
1s1

· H
[2] μ1μ2

s ′
2s2

. . . H
[k] μk−1μk

s ′
ksk

=
([

−
k−1∑
i=1

σ [i]
z · σ [i+1]

z −
k∑

i=1

σ [i]
x

]
,σ [k]

z ,I

)
= (

H[k],σ [k]
z ,I

)
. (A6)

The resulting vector H [1...k] can be seen as an object with three
“slots” in which all the relevant information about the first
k sites is stored. Of course, the number of slots corresponds
to the bond dimension of the MPO. The first slot contains
all interaction terms between the first k sites only and local
terms. Since the kth site also interacts with the k + 1th site,
the second slot of the vector passes on σ [k]

z and finally, the
third slot preserves the identity I = Is ′

1s1 ⊗ Is ′
2s2 ⊗ . . . ⊗ Is ′

ksk .
For H [1] this description is easily checked. The tensor H [k] =
(Hs ′s)μlμr [Eq. (A4)] is designed such that it performs the
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correct induction step

H [1...k] = H [1...k−1] · H [k]

= (
H[k−1], σ [k−1]

z , I
) ⎛⎜⎝ Is ′

ksk 0s ′
ksk 0s ′

ksk

−σ
s ′
ksk

z 0s ′
ksk 0s ′

ksk

−σ
s ′
ksk

x σ
s ′
ksk

z Is ′
ksk

⎞⎟⎠
= ( [

H[k−1] − σ [k−1]
z · σ [k]

z − σ [k]
x

]
, σ [k]

z , I
)

= (
H[k], σ [k]

z , I
)
. (A7)

The final tensor H
[n] μn−1
s ′
nsn

is given by

H
[n] μn−1
s ′
nsn

= (
Is ′

nsn , −σ
s ′
nsn

z ,− σ
s ′
nsn

x

)T
. (A8)

With that, we get

H [1...n] = H [1...n−1] · H [n]

= (
H[n−1], σ [n−1]

z , I
)⎛⎜⎝ Is ′

nsn

−σ
s ′
nsn

z

−σ
s ′
nsn

x

⎞⎟⎠
= H[n−1] − σ [n−1]

z · σ [n]
z − σ [n]

x

= −
n−1∑
i=1

σ [i]
z · σ [i+1]

z −
n∑

i=1

σ [i]
x . (A9)

We described the vector H [1...k] [Eq. (A6)] as an object
which contains all relevant information of the sites 1 . . . k.
This description is true not only for Ising interaction. For any
Hamiltonian, we have to identify what the relevant information
is and design the vector accordingly. As convention, we use
the first slot of the vector to storeH[k] the sum of all interaction
terms between the first k sites only, including local terms. In
the last slot, we pass on the identity. The slots in-between are
needed for interaction terms which involve (at least) one of the
first k sites and (at least) one of the other sites k + 1 . . . n. In
the case of a Heisenberg chain

H =
n−1∑
i=1

Jx · σ [i]
x · σ [i+1]

x +
n−1∑
i=1

Jy · σ [i]
y · σ [i+1]

y

+
n−1∑
i=1

Jz · σ [i]
z · σ [i+1]

z , (A10)

the vector H [1...k] needs five slots:

H [1...k] = (
H[k], σ [k]

x , σ [k]
y , σ [k]

z , I
)
. (A11)

Further slots might be necessary if we do not restrict ourselves
to nearest-neighbor interactions.

Once we have identified the structure of H [1...k], it is
straightforward to write the first tensor H [1] in vector form. The
matrix structure of all the following tensors H [j ] is constructed
columnwise such that the induction

H [1...j ] = H [1...j−1] · H [j ] (A12)

is accomplished as in Eqs. (A7) or (A9) for the final tensor
H [n]. According to our convention, local terms, as needed in
Sec. IV B, are always represented in the bottom left entry of
the matrices.

For long-range interaction, the recipe given so far becomes
problematic. The longer the range of the interaction, the more

information has to be stored in the vector H [1...k], which usually
requires more and more slots. But, there are some exceptions
(see, e.g., Ref. 21). An exponentially decaying interaction
needs only one slot, even for infinite range. As an example,
we look at the toy Hamiltonian

H = J ·
n∑

i=1

i−1∑
j=1

λi−j−1 · σ [j ]
z · σ [i]

z , (A13)

where i − j − 1 is the exponent of λ and not an index. First,
we have to identify the structure of H [1...k]:

H [1...k] = (
H[k],

∑k
j=1 λk−j · σ

[j ]
z ,I

)
.

The crucial observation is that
∑k

j=1 λk−j · σ
[j ]
z can be

generated iteratively. The following tensors fulfill this task:

H [1] = (
0s ′

1s1 , σ
s ′

1s1
z , Is ′

1s1
)
, (A14)

H [k] =

⎛⎜⎝ Is ′
ksk 0s ′

ksk 0s ′
ksk

J · σ
s ′
ksk

z λ · Is ′
ksk 0s ′

ksk

0s ′
ksk σ

s ′
ksk

z Is ′
ksk

⎞⎟⎠ , (A15)

H [n] = (
Is ′

nsn , J · σ
s ′
nsn

z , 0s ′
nsn

)T
. (A16)

In order to encode the polynomial decay as (r)−3 into an
MPO, we resorted to an approximation as a weighted sum of
Nexp different exponential terms, i.e.,

(r)−3 ≈
Nexp∑
i=1

aiλ
r−1
i , r = 1,2,3, . . . . (A17)

In the Appendix of Ref. 19 it is shown how to calculate the
optimal ai and λi . For the quality of the approximation in
dependence of Nexp, see Ref. 22.

APPENDIX B: GAIN FUNCTION

We like to estimate the influence of γ in

H̃[γ ] = H̃ − γ · |A[refer]〉〈A[refer]| with γ � 0 (B1)

on A[γ ] which is supposed to minimize 〈A[γ ]|H̃[γ ]|A[γ ]〉. For
our numerical purposes, the following simple approximation
suffices:

A[γ ] =
√

1 − ε2(γ ) · A[refer] + ε(γ ) · B, (B2)

with ‖A[refer]‖=‖B‖ = 1 and A[refer] ⊥ B = const. The vector
B is extracted from A[γ=0], which has to be calculated
first. This might seem inefficient since we have to minimize
〈A|H̃[γ ]|A〉 twice, once for γ = 0 and once for the final value
of γ . The solution is to use a minimization routine which
projects the minimization onto a small subspace, as explained
in Sec. IV C. This projection has to be done only once but can
be used twice. Since the projection is the most time-consuming
part, the double calculation is done quite cheap. More to this
at the end of this section.
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Now, we calculate the pseudoenergy E using Eqs. (B1) and
(B2):

E = 〈A[γ ]|H̃[γ ]|A[γ ]〉
= (1 − ε2) · (〈A[refer]|H̃|A[refer]〉 − γ

) + ε2 · 〈B|H̃|B〉
+ 2ε ·

√
1 − ε2 Re〈A[refer]|H̃|B〉. (B3)

In the following, we approximate ε · √1 − ε2 ≈ ε. This
approximation is not needed but it keeps the calculations clear.
In addition, the formula we will derive from the approximated
version is numerically more stable. In our program, we used
the exact version (which we will not derive here) only if
ε(γ = 0) > 0.01.

With ε · √
1 − ε2 ≈ ε, E is a parabola in ε. Assuming that

the apex is the minimum, one gets

εmin(γ ) = − Re〈A[refer]|H̃|B〉
〈B|H̃|B〉 − 〈A[refer]|H̃|A[refer]〉 + γ

. (B4)

Since ‖A[γ ]
[n] − A

[refer]
[n] ‖ ≈ εmin for εmin � 1, we choose εmin in

accordance with Eq. (30) to be

εmin(γ ) = min [cεmin(γ = 0),	max] . (B5)

From that, γ is calculated to be

γ = max(γ[c],γ[	max]) with

γ[c] = 1 − c

c
· (〈B|H̃|B〉 − 〈A[refer]|H̃|A[refer]〉),

γ[	max] = 〈A[refer]|H̃|A[refer]〉 − 〈B|H̃|B〉
− 1

	max
· Re〈A[refer]|H̃|B〉. (B6)

1. Subspace projection and γ

As mentioned, we have to solve min〈A[γ ]|H̃[γ ]|A[γ ]〉 twice:
first for γ = 0 and after that for the final value of γ . The idea is
to reuse the information gathered in the first minimization for
the second run. As described in Sec. IV C, the minimization
problem is projected onto a subspace. The first basis vector of
this subspace is |A1〉 = |A[refer]〉 [Eq. (38)]. Hence, the only
element of the subspace matrix H [Eq. (35)] which has to be
adopted is H1,1 ← H1,1 − γ .

So, the update of the subspace matrix H is extremely simple
to perform, but one might wonder whether the associated
basis vectors |Ai〉 are still optimal. For the Lanczos29 and
Arnoldi30 algorithms, which are built on pure Krylov spaces,
it turns out that the influence of γ on the basis vectors gets
extinguished, while for the extended algorithm presented in
Sec. IV C the optimal choice of the basis vectors shows a
slight dependence on γ . Numerically, this is not a serious
problem. Nonetheless, since the second optimization is the
important one we recommend to use an approximated value
of the final γ to construct the basis vectors in the first
run. A simple and effective way is to use γ[n−1] from the
last tensor optimization assuming γ[n] ≈ γ[n−1]. Alternatively,
one can solve the intermediate subspace matrices H and use
these intermediate results to calculate approximations of γ as
described above.

APPENDIX C: TRANSFORMATION PROOF FOR
DEGENERATE GROUND STATES

Let A and B represent two different ground states to the
same Hamiltonian with a g times degenerate ground state level
due to broken translational invariance:

A = . . . Q
α−2α−1
[L] s−1

· Q
α−1α̃0
[L] s0

· λα̃0α0 · Q
α0α1
[R] s1

· Q
α1α2
[R] s2

. . . ,
(C1)

B = . . . q
α−2α−1
[L] s−1

· q
α−1α̃0
[L] s0

· ξ α̃0α0 · q
α0α1
[R] s1

· q
α1α2
[R] s2

. . . .

If degenerations due to further symmetries are involved, A
and B are supposed to have the same characteristic values for
these symmetries. This allows us to operate as if no further
symmetries exist since all operations we are about to use leave
these characteristic values unchanged. Under this condition,
we will prove the existence of a matrix γ α̃0α0 such that the
ground state B can be expressed using the tensors Q stemming
from the iMPS A:

B = . . . Q
α−2α−1
[L] s−1

· Q
α−1α̃0
[L] s0

· γ α̃0α0 · Q
α0α1
[R] s1

· Q
α1α2
[R] s2

. . . , (C2)

where γ α̃0α0 = ωα̃0β · ξβδ · νδα0 .
Let us start by surveying the elements of the proof. In order

to show the claimed equation (C2), we will actually prove the
gauge transformation

. . . q
α−2α−1
[L] s−1

· q
α−1α̃0
[L] s0

= . . . Q
α−2α−1
[L] s−1

· Q
α−1β

[L] s0
· ωβα̃0 ,

(C3)
q

α0α1
[R] s1

· q
α1α2
[R] s2

. . . = να0β · Q
βα1
[R] s1

· Q
α1α2
[R] s2

. . . .

This gauge transformation will be proven for the case that
the two underlying MPS represent the same physical state,
which is not given for A and B [Eq. (C1)]. In order to use
the gauge proof for our purpose, we need to find one physical
state described by two different MPS where the first MPS can
be constructed using the Q of A and the second by the q

of B. This one state which allows us to complete our proof
is the translational invariant ground state. According to our
preliminary remarks, this state is unique. Hence, if we succeed
to construct two different MPS which represent a translational
invariant ground state, we know that they represent the same
physical state as demanded. We will prove the following
construction for this state:

TQ = . . . Q
α−2α−1
[L] s−1

· Q
α−1α̃0
[L] s0

· τ α̃0α0 · Q
α0α1
[R] s1

· Q
α1α2
[R] s2

. . .

= . . . q
α−2α−1
[L] s−1

· q
α−1α̃0
[L] s0

· θ α̃0α0 · q
α0α1
[R] s1

· q
α1α2
[R] s2

. . . = Tq (C4)

with new tensors τ α̃0α0 and θ α̃0α0 .
We start by showing the gauge transformation (C3). In order

to increase clarity, we define
−→
Q αk

s1...sk
= Q

α1
[1] s1

. . . Q
αk−1αk

[n] sk
,

−→
P αk

s1...sk
= p

α1
[1] s1

. . . p
αk−1αk

[n] sk
.

(C5)

For this specific gauge proof, the different Q[i] do not need to
be of the same structure and neither do the p[i]. But, in contrast
to the p[i], the Q[i] still have to fulfill Eq. (9), i.e.,

−→
Q ∗βk

s1...sk
· −→
Q αk

s1...sk
= δβkαk , while

(C6)−→
Q αk

s̄1...s̄k
· −→
Q ∗αk

s1...sk
�= δ(s̄1...s̄k)(s1...sk ).

Although not an identity, the operator
−→
Q αk

s̄1...s̄k
· −→
Q ∗αk

s1...sk
acts like

such if it is applied from the left on any MPS with the structure
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−→
Q αk

s1...sk
· ←−
R αk

sk+1...sn
, where

←−
R αk

sk+1...sn
represents an arbitrary right

side of the MPS. Using the identity (C6), we get(−→
Q βk

s̄1...s̄k
· −→
Q ∗βk

s1...sk

) · (−→
Q αk

s1...sk
· ←−
R αk

sk+1...sn

)
= −→

Q βk

s̄1...s̄k
· δβkαk · ←−

R αk

sk+1...sn
= −→

Q αk

s1...sk
· ←−
R αk

sk+1...sn
. (C7)

In the following, we assume that the two MPS

−→
Q αk

s1...sk
· ←−
R αk

sk+1...sn
= −→

P αk

s1...sk
· ←−
Mαk

sk+1...sn
(C8)

represent the same physical state. Now, let us apply the

operator
−→
Q βk

s̄1...s̄k
· −→
Q ∗βk

s1...sk
on this equation. Due to Eq. (C7), the

left side stays unchanged. Hence, the physical state represented
by the right side does not change either:

−→
P αk

s1...sk
· ←−
Mαk

sk+1...sn
= −→

Q βk

s̄1...s̄k
· −→
Q ∗βk

s1...sk
· −→
P αk

s1...sk
· ←−
Mαk

sk+1...sn

= −→
Q βk

s̄1...s̄k
· ωβkαk · ←−

Mαk

sk+1...sn
, (C9)

with ωβαk = −→
Q ∗βk

s1...sk
· −→
P αk

s1...sk
. The existence of the inverse

←−
M−1 with

←−
Mαk

sk+1...sn
· ←−
M−1 βk

sk+1...sn
= δαkβk can be assured: if

the rank of
←−
Mαk

(sk+1...sn) is smaller than the bond dimension αk ,
the value of αk can be reduced since in that case it turns out to
be unnecessarily high. Applying

←−
M−1 from the right on Eq.

(C9), we end up with

−→
P αk

s1...sk
= −→

Q βk

s1...sk
· ωβkαk . (C10)

For k → ∞, this covers the first part of the heralded gauge
equation (C3). The second part of Eq. (C3) is proved by a
straightforward application of the arguments used above on
the right side of the MPS.

Now, we have to show the MPS construction of the trans-
lational invariant ground state (C4). As above, we assume that
the ground state level of the Hamiltonian under consideration
is g times degenerate due to broken translational invariance.
Let TL be the operator which shifts all sites of an MPS by
one position to the left and TR = (TL)−1. For the MPS A
representing any of the possible ground states, we get

TL · A �= A, (TL)g · A = A,
(C11)

T :=
g−1∑
j=0

(TL)j · A, TL · T = T ,

where T represents an unnormalized version of the transla-
tional invariant ground state, which we like to construct. As an
intermediate step, we like to prove Eq. (C15) below. Therefore,
we have to look at the effect TL has on A [using Eq. (C1) for
A]:

TL

(
. . . Q

α−2α−1
[L] s−1

· Q
α−1α̃0
[L] s0

· λα̃0α0 · Q
α0α1
[R] s1

· Q
α1α2
[R] s2

. . .
)

= . . . Q
α−2α̃−1
[L] s−1

· λα̃−1α−1 · Q
α−1α0
[R] s0

· Q
α0α1
[R] s1

· Q
α1α2
[R] s2

. . . .

(C12)

Next, we look at the MPS (TR)g · TL · A, which has the form

. . . Q
α−2α−1
[L] s−1

Q
α−1α0
[L] s0

. . . Q
αg−2α̃g−1

[L] sg−1
λα̃g−1αg−1Q

αg−1αg

[R] sg
. . . . (C13)

Since the two MPS (TR)g · TL · A = TL · A describe the
same physical state, we are allowed to apply the gauge

transformation (C10) and identify

. . . Q
α−2α̃−1
[L] s−1

· λα̃−1α−1 · Q
α−1α0
[R] s0

= . . . Q
α−2α−1
[L] s−1

· Q
α−1γ

[L] s0
· ωγ α̃0 .

(C14)

Inserting this expression into Eq. (C12), we arrive at the
following description for TL · A:

TL

(
. . . Q

α−2α−1
[L] s−1

· Q
α−1α̃0
[L] s0

· λα̃0α0 · Q
α0α1
[R] s1

· Q
α1α2
[R] s2

. . .
)

= . . . Q
α−2α−1
[L] s−1

· Q
α−1α̃0
[L] s0

· ωα̃0α0 · Q
α0α1
[R] s1

· Q
α1α2
[R] s2

. . . .

(C15)

As we see, applying the operator TL on A has the same effect
as the replacement of the matrix λα̃0α0 by ωα̃0α0 . Since higher
powers of TL can be created by an iteration of the arguments
just presented, it follows that the effect of any (TL)j on A can
be accounted for by an accordingly calculated ω

α̃0α0
[j ] . Following

that construction, the only difference between the various MPS
(TL)j · A is their tensor ω

α̃0α0
[j ] and hence the task of Eq. (C11)

to sum up these MPS reduces to a summation of the ω
α̃0α0
[j ] . In

other words: Replacing the matrix λα̃0α0 in the MPSA by τ α̃0α0 ,

τ α̃0α0 =
g−1∑
j=0

ω
α̃0α0
[j ] , (C16)

results in the translational invariant MPS T . Of course, the
same arguments can be applied to the MPS B giving us
TQ = T = Tq as claimed in Eq. (C4).

Let us review our arguments: By virtue of Eq. (C16), we
can transform the MPS A and B given in Eq. (C1) such that we
end up with the translational invariant ground states TQ and Tq

as claimed in Eq. (C4). Since we work under the condition that
TQ = Tq , we are allowed to use the gauge transformation (C10)
to replace the q of Tq by the Q of TQ. The same replacement
is possible in B because the q in B and Tq are identical (as are
the Q in A and TQ). This concludes the proof of Eq. (C2) we
aimed for.

APPENDIX D: DAVIDSON IMPLEMENTATION

In this section, we introduce a practical implementation
resembling the Davidson24 method based on recycled infor-
mation of the previous round, which allows us to improve
the update equation (37) of the iterative eigenvector solver
presented in Sec. IV C. We adopt the same notation as in that
section but mostly drop the index [n] to keep the formulas
clean.

The best possible new vector |Ak+1〉 the iterative eigen-
vector solver could come up with to replace Eq. (37) is an
orthonormalized version of |	0〉 = |E0〉 − |e0〉:

H̃ · |E0〉 = E0 · |E0〉,
H̃ · (|e0〉 + |	0〉) = E0 · (|e0〉 + |	0〉),

(E0 · I − H̃) · |	0〉 = (H̃ − E0 · I) · |e0〉,
(D1)

(E0 · I − H̃) · |	0〉 ≈ (H̃ − e0 · I) · |e0〉,
(E0 · I − H̃) · |	0〉 = |r〉,

|	0〉 = (E0 · I − H̃)−1 · |r〉,
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where we used the definition (36) for |r〉. The Davidson method
requires a workable approximation for the nontrivial operator
D = (E0 · I − H̃)−1. At this point, we take advantage of the
expectation that the operator D[n] calculated in round n should
look pretty much the same as D[n−1] calculated in round n − 1:

D[n] ≈ D[n−1],
(D2)

(E[n] 0 · I − H̃[n])
−1 ≈ (E[n−1] 0 · I − H̃[n−1])

−1.

Hence, we use the accumulated data at the end of round n − 1
for an efficient one-time estimation of D[n−1], which we will
apply in round n.

In order to calculate D, we need a simplified form of
H̃ which allows easy inversion. We know k approximated
eigenvectors |ei<k〉 of H̃. In order to have an orthonormal
basis for H̃, we imagine N − k further |êk�i<N 〉, where
dim(H̃) = N × N . With that, we approximate H̃ as

H̃ ≈
k−1∑
i=0

H̃|ei〉〈ei | + α ·
N∑

i=k

|êi〉〈êi |

=
k−1∑
i=0

(H̃ − α)|ei〉〈ei | + α · I (D3)

with an average eigenvalue α = const for the unknown
eigenvectors. One might be tempted to simplify Eq. (D3) using
H̃|ei〉 ≈ ei · |ei〉, but we do not since the eigenvectors are not
very well approximated except for |e0〉. To be able to perform
the inversion in Eq. (D6), it suffices to resort to the exact result

〈ei |H̃|ej 〉 = ei · δij without
∑

i

, (D4)

which is a consequence of the construction (35). Further, with
the results gathered during the optimization (Sec. IV C), the
H̃|ei〉 are as quickly calculated as the |ei〉.

Next, we take the trace of Eq. (D3) and set α such that both
sides are equal:

tr(H̃) = 〈ei |H̃|ei〉 + α(N − k), α = tr(H̃) − ∑k−1
i=0 ei

N − k
.

(D5)

The trace of the exact H̃ is efficiently calculated by already
tracing over its components Lα′

lμlαl and Rα′
rμrαr before assem-

bling them [Eq. (15)].
Now, we insert the approximated H̃ [Eq. (D3)] in D:

D = (E0 · I − H̃)−1

≈
(

(E0 − α) · I −
k−1∑
i=0

(H̃ − α)|ei〉〈ei |
)−1

. (D6)

The inversion is solved by

D = (E0 − α)−1 ·
(
I +

k−1∑
i=0

H̃ − α

E0 − ei

|ei〉〈ei |
)

, (D7)

as can be verified inserting the result in D · D−1 = I.
The final question we have to answer is which value

we assign to the unknown exact eigenvalue E0. The best

approximation [which we already used in Eq. (D1)] is E0 ≈ e0,
but this produces a singularity in D. There are two ways out.
First, we can always pick E0 a little bit lower E0 := e0 − ε.
Second, we should discard the troublesome term ∼|e0〉〈e0| in
D anyway for the following reason: We replace Eq. (37) by

|Ak+1〉 = D · |r〉, (D8)

where |r〉⊥|A1〉 = |A[refer]
[n] 〉 ≈ |e[n]

0 〉 ≈ |e[n−1]
0 〉 and with that

|e0〉〈e0|r〉 ≈ 0 · |e0〉. Afterwards, residual parts of the |e0〉〈e0|
term are exfiltrated again because |Ak+1〉 has to be orthogo-
nalized (and normalized)

|Ak+1〉 ←−
(
I −

k∑
i=1

|Ai〉〈Ai |
)

· |Ak+1〉. (D9)

These considerations are also part of the more elaborated
Jacobi-Davidson24 method to which this implementation can
be extended.

We might further consider to omit terms with ei � e0 since
their influence shrinks with (e0 − ei)−1. At the end of the
day, the effort to construct D as well as the effort for each
application scale with N times the number of |ei〉〈ei | terms
used in D.

APPENDIX E: ALTERED MINIMIZATION

Here, we derive the missing equations of Sec. III D. First, we
search for an approximation of λ[L/R] and start by an alternative
way of expressing them as

λ
αβ

[L] = Q
∗ αγ

[L] s · Aγβ
s ; λ

αβ

[R] = Aαγ
s · Q

∗ γβ

[R] s , (E1)

where we used the orthogonality (9) of the Q and the
decomposition (8). Next, we use the fact that the algorithm
is tuned to produce consecutive tensors A[n−1],A[n] which are
quite similar. Hence, we approximate the yet unknown Q∗

[L/R]
[Eq. (E1)] by their known predecessor of the optimization
round before, i.e., Q

[n] ∗
[L/R] ≈ Q

[n−1] ∗
[L/R] :

λ̄
[n] αβ

[L] = Q
[n−1]∗ αγ

[L] s · A[n] γβ
s , λ̄

[n] αβ

[R] = A[n] αγ
s · Q

[n−1]∗ γβ

[R] s .

(E2)

Next, we use the same idea and replace the Q
[n−1]
[L/R] in

definition (42) by the Q
[n]
[L/R]:

|Āi〉 ≈ 1
2 |Ai〉 + 1

4

(
Q

[n]
[L] · λ̄[R] i + λ̄[L] i · Q

[n]
[R]

)
with

λ̄
αβ

[R] i ≈ |Ai〉αγ
s · Q

[n]∗ γβ

[R] s , λ̄
[n] αβ

[L] i ≈ Q
[n]∗ αγ

[L] s · |Ai〉γβ
s . (E3)

With that, we like to calculate |Ā〉 = |Āi〉 · ai [Eq. (44)].
Therefore, we first observe

λ̄
[n]
[L] i · ai ≈ Q

[n]∗ αγ

[L] s · |Ai〉γβ
s · ai = Q

[n]∗ αγ

[L] s · Aγβ
s = λ

[n] αβ

[L] ,

(E4)
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where we used A = |Ai〉 · ai [Eq. (41)] in line two and Eq. (E1)
in line three. Likewise, we find λ̄[R] i · ai ≈ λ[R] and

|Āi〉 · ai ≈ [
1
2 |Ai〉 + 1

4 (Q[L] · λ̄[R] i + λ̄[L] i · Q[R])
] · ai

≈ 1
2 |A〉 + 1

4 (Q[L] · λ[R] + λ[L] · Q[R])

= 1
4 |A〉 + 1

4 |A〉 + 1
4Q[L] · λ[R] + 1

4λ[L] · Q[R]

= 1
4Q[L] · λ[L] + 1

4Q[R] · λ[R]

+ 1
4Q[L] · λ[R] + 1

4λ[L] · Q[R]

= 1
2 (Q[L] · λ[sym] + λ[sym] · Q[R]) with

λ[sym] = 1
2 (λ[L] + λ[R]), (E5)

as claimed in Eq. (44).

APPENDIX F: MIRROR SYMMETRY

Here, we show that in case of a mirror-
symmetricHamiltonian H, i.e., a Hamiltonian that is
invariant under inversion of the order of its sites

Hs ′
1...s

′
n

s1...sn
= Hs ′

n...s
′
1

sn...s1 , (F1)

all tensors A
αlαr

[n] s can be chosen mirror symmetrical in their
auxiliary indices αl,αr , i.e.,

A
αlαr

[n] s = A
αrαl

[n] s . (F2)

This allows us to impose an extra constraint on A[n]. Commut-
ing the indices αl,αr also results in

Q
αlαr

[L] s = Q
αrαl

[R] s , λ
αlαr

[L] = λ
αrαl

[R] , (F3)

as can be seen directly from the decomposition (8). Further,
it is possible to construct Lα′

lμlαl and Rα′
rμrαr [Eq. (19)] such

that they are identical. But, therefore we need to resort to an
alternative MPO construction for the Hamiltonian, such that
the MPO tensors of the left half are mirror symmetric to the
tensors of the right half. This can be achieved if we include a
special interface tensor in the middle where Lα′

lμlαl and Rα′
rμrαr

are connected to build H̃. This reduces the requirement in
storage memory roughly by a factor of 2, but has nearly no
effect on the speed. Since storage capacities are usually not a
big issue, we do not elaborate this point any further.

One should be aware that Eq. (F1) enforces a mirror-
symmetric MPS. In case of a mirror-symmetry-breaking
ground state, the MPS will represent a superposition of both
chiralities, implying an unfavorably increased requirement in
bond dimension. We further remark that our definition of
a mirror-symmetric Hamiltonian does not forcedly imply a
symmetry in real space. Although in practical application the
order of the sites generally coincides with one specific spatial

direction, there is no mathematical connection between the
direction of space and the chosen order.

Assuming a mirror-symmetric Hamiltonian H [Eq. (F1)],
the claim of the mirror-symmetric tensor A

αlαr

[n] s [Eq. (F2)] can
be proven iteratively:

(1) If A
αlαr

[i] s = A
αrαl

[i] s for all i < n, then H̃[n] [Eq. (18)] is

mirror symmetric, i.e., H̃
α′

lαlα
′
r αr

[n] ss ′ = H̃
α′

r αrα
′
lαl

[n] ss ′ .
(2) If 1 is fulfilled, then A

αlαr

[n] s = A
αrαl

[n] s [Eq. (F2)].
The very first H̃[1] is constructed via the initialization pro-
cedure described in Sec. II E2. If we start with a mirror-
symmetric wave function and use Takagi’s factorization as
suggested in 3 of the initialization procedure, H̃[1] is symmetric
and the induction is well grounded.

Proof for 1. All H̃ represent a sum of operators according
to Eq. (18):

H̃ =
4n∑

i=1

Hi . (F4)

Each of these Hi contains an entire Hamiltonian MPO as
central unit sandwiched by bra and ket MPS, with a hole
where the new tensor A[new] = A[n] is supposed to be inserted.
The Hamiltonian is guaranteed to be mirror symmetric, while
there is no such condition for the MPS. The different MPS
are encoded in the building blocks Lα′

lμlαl and Rα′
rμrαr , which

are constructed symmetrically [Eq. (19)], i.e., in contrast to
the basic algorithm each new tensor is inserted in Lα′

lμlαl

and Rα′
rμrαr at equal footing. Hence, for each MPS exists a

counterpart which contains exactly the same tensors in inverted
order. In general, this alone is not enough because mirror
symmetry also exchanges the left and right auxiliary indices.
But, since all involved tensors A

αlαr

[i] s = A
αrαl

[i] s are supposed to
be invariant under this kind of exchange {and Q

αlαr

[L] s = Q
αrαl

[R] s

[Eq. (F3)], as needed}, mirror-symmetric counterparts for
all involved MPS are guaranteed and with that H̃ is mirror
symmetric.

Proof for 2. The tensor A
αlαr

[n] s is the result of the
minimization procedure described in more details in Sec. IV C.
Each element in this procedure maintains mirror symmetry if
H̃[n] and the initial tensor A

[refer]
[n] [Eq. (27)] are mirror sym-

metric. Since A
[refer]
[n] is a superposition of mirror-symmetric

tensors, all conditions are met.

Finally, we remark that accumulating numerical errors
might undermine the symmetry. Therefore, we recommend
to explicitly restore the symmetry of each A

αlαr

[n] s during its
calculation.

1U. Schollwoeck, Ann. Phys. (NY) 326, 96 (2011).
2S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
3M. Fannes, B. Nachtergaele, and R. F. Werner, Commun. Math.
Phys. 144, 443 (1992).

4I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, Phys. Rev. Lett.
59, 799 (1987).

5J. Dukelsky, M. A. Martı́n-Delgado, T. Nishino, and G. Sierra,
Europhys. Lett. 43, 457 (1998).

6G. Vidal, Phys. Rev. Lett. 99, 220405 (2007).
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