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Effects of electron-phonon coupling in the Kondo regime of a two-orbital molecule
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We study the interplay between strong electron-electron and electron-phonon interactions within a two-orbital
molecule coupled to metallic leads, taking into account Holstein-like coupling of a local phonon mode to the
molecular charge as well as phonon-mediated interorbital tunneling. By combining canonical transformations
with numerical renormalization-group calculations to address the interactions nonperturbatively and on equal
footing, we obtain a comprehensive description of the system’s many-body physics in the antiadiabatic regime
where the phonons adjust rapidly to changes in the orbital occupancies and are thereby able to strongly affect
the Kondo physics. The electron-phonon interactions strongly modify the bare orbital energies and the Coulomb
repulsion between electrons in the molecule and tend to inhibit tunneling of electrons between the molecule and
the leads. The consequences of these effects are considerably more pronounced when both molecular orbitals lie
near the Fermi energy of the leads than when only one orbital is active. In situations where a local moment forms
on the molecule, there is a crossover with increasing electron-phonon coupling from a regime of collective Kondo
screening of the moment to a limit of local phonon quenching. At low temperatures, this crossover is associated
with a rapid increase in the electronic occupancy of the molecule as well as a marked drop in the linear electrical
conductance through the single-molecule junction.
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I. INTRODUCTION

Single-molecule junctions1–4 are structures consisting of
a single molecule bridging the gap between source and
drain electrodes, allowing electronic transport when a bias
voltage is applied across the structure. These systems, which
manifest a rich variety of experimentally accessible physics
in a relatively simple setting,5 have attracted much theoret-
ical and experimental effort in connection with molecular
electronics.6,7 A major goal of these efforts has been to take
advantage of natural or artificial molecules for technological
purposes. Examples of single-molecule junctions encompass,
for example, single hydrogen molecules8–10 and more com-
plex structures such as 4,4′-bipyridine molecules coupled to
metallic nanocontacts.11–13

An important ingredient in transport through molecular
systems is the electron-electron interaction (Coulomb re-
pulsion), the effect of which is greatly enhanced by the
spatial confinement of electrons in molecules. Electron-
electron (e-e) interactions are known to produce Coulomb
blockade phenomena14–16 and Kondo correlations15,17–20 at
low temperatures. Confined electrons are also known to couple
to quantized vibrations (phonons) of the molecules,21 resulting
in important effects on electronic transport,22–27 including
vibrational sidebands found at finite bias in the Kondo
regime.28–30 Single-molecule junctions therefore provide a
valuable opportunity to study charge transfer in systems with
strong competing interactions.31,32

It has recently been demonstrated that the energies of
the molecular orbitals in a single-molecule junction can be
tuned relative to the Fermi energy of the electrodes by
varying the voltage applied to a capacitively coupled gate.33

Similar control has for some time been available in another
class of nanoelectronic device: a quantum dot coupled to a
two-dimensional electron gas.34,35 The electrons confined in a

quantum dot couple—in most cases quite weakly—to collec-
tive vibrations of the dot and its substrate.36 In single-molecule
devices, by contrast, the confined electrons interact with local
vibration modes of the molecule that can produce pronounced
changes in the molecular electronic orbitals. Consequently,
electron-phonon (e-ph) interactions are expected to play a
much more important role in molecules than in quantum dots.

From the theoretical point of view, addressing both e-e and
e-ph interactions from first principles is a very complicated
task. However, simple effective models can provide good
qualitative results, depending on the parameter regime and
the method employed to solve the model Hamiltonian.31 For
example, the essential physics of certain experiments24,26

appears to be described by variants of the Anderson-Holstein
model, which augments the Anderson model37 for a magnetic
impurity in a metallic host with a Holstein coupling38 of the
impurity charge to a local phonon mode. Variants of the model
have been studied since the 1970s in connection with other
problems39–49 prior to their application to single-molecule
devices.50–59 Various analytical approximations as well as
nonperturbative numerical renormalization-group calculations
have shown that, in equilibrium, the Holstein coupling reduces
the Coulomb repulsion between two electrons in the impurity
level, even yielding effective e-e attraction for sufficiently
strong e-ph coupling. Increasing the e-ph coupling from zero
can produce a smooth crossover from a conventional Kondo
effect, involving conduction-band screening of the impurity
spin degree of freedom, to a charge Kondo effect in which it
is the impurity “isospin” or deviation from half-filling that is
quenched by the conduction band. In certain cases, the system
may realize the two-channel Kondo effect.59

Single-molecule devices at finite bias are usually studied
via nonequilibrium Keldysh Green’s functions that system-
atically incorporate the many-body interactions within a
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system. Although this approach has proved to be the most
reliable for calculation of transport properties, the results are
highly sensitive to the approximations made. For instance,
the equation-of-motion technique60 generates a hierarchy
of coupled equations for Green’s functions containing 2n

fermionic operators for n = 1, 2, 3, . . .: a hierarchy that must
be decoupled at some level in order to become useful. The most
commonly used decoupling scheme is based on a mean-field
decomposition of the n = 2 Green’s functions, leading to the
well-known Hubbard I approximation.61 This approximation
gives reasonable results for temperatures T above the system’s
Kondo temperature TK , but as it neglects spin correlations
between localized and conduction electrons, it fails in the
Kondo regime.

A few years ago, two of us applied the equation-of-motion
method decoupled at level n = 2 to study a single-molecule
junction that features phonon-assisted interorbital tunneling.62

However, to capture the physics at T � TK requires extension
of the equation-of-motion hierarchy to higher order, which
in most cases is carried out in the limit of infinite Coulomb
interaction. The Kondo regime may also be studied via dia-
grammatic expansion within the noncrossing approximation,
which is again most straightforward in the infinite-interaction
limit.63

This paper reports the results of an investigation of the
Kondo regime of a two-orbital molecule, with focus on
situations in which Coulomb interactions are strong but finite.
Our model Hamiltonian, which includes both phonon-assisted
interorbital tunneling and a Holstein-type coupling between
the molecular charge and the displacement of the local phonon
mode, may also be used to describe two-level quantum dots
or a coupled pair of single-level dots. In order to treat e-e
and e-ph interactions on an equal basis, we employ Wilson’s
numerical renormalization-group approach,64–66 which pro-
vides complete access to the equilibrium behavior and linear
response of the system for temperatures all the way to absolute
zero. We show that the renormalization of e-e interactions is
strongly dependent on the energy difference between the two
molecular orbitals. For small interorbital energy differences,
the renormalization is significantly enhanced compared with
the situation of one active molecular orbital considered in
previous work. This enhancement is detrimental for realization
of the Kondo effect but improves the prospects for accessing a
phonon-dominated regime of effective e-e attraction. A sharp
crossover between Kondo and phonon-dominated regimes,
which has its origin in a level crossing that occurs when
the molecule is isolated from the leads, has signatures in
thermodynamic properties and in charge transport through the
system.

Understanding the equilibrium and linear-response prop-
erties of this model is an important precursor to studies of
the nonequilibrium steady state, where e-ph effects are likely
to reveal themselves at finite bias.28–30 Moreover, the model
we address can readily be adapted to treat the coupling of
a single-molecule junction to electromagnetic radiation, a
situation where driven interorbital transitions is likely to be
of particular importance.

The rest of the paper is organized as follows. Section II
describes our model system and provides a preliminary
analysis via canonical transformations. Section III reviews the

FIG. 1. (Color online) Schematic representation of the model
studied in this work. A molecule with two active orbitals (α and
β) spans the gap between left and right electrodes. The molecular
orbitals are subject to both e-e and e-ph interactions.

numerical solution method and Sec. IV presents and analyzes
results for cases of large and small energy differences between
the two molecular orbitals. The main results are summarized
in Sec. V.

II. MODEL AND PRELIMINARY ANALYSIS

A. Model Hamiltonian

We consider a system composed of a two-orbital molecule
interacting with a local phonon mode and also coupled to two
metallic leads, as shown schematically in Fig. 1. This system
is modeled by the Anderson-type Hamiltonian

H = Hmol + Hleads + Hmol−leads, (1)

with Hmol describing the isolated molecule, Hleads modeling the
leads, and Hmol−leads accounting for electron tunneling between
the molecule and the leads.

The molecular Hamiltonian can, in turn, be divided into four
parts: Hmol = He + Hph + HHol + Htun. Here, the electronic
part is

He =
∑
i=α,β

(εini + Uini↑ni↓) + U ′nαnβ, (2)

where niσ = d
†
iσ diσ is the number operator for electrons

of energy εi and spin σ in molecular orbital i = α or β,
ni = ni↑ + ni↓, and Ui and U ′ parametrize intraorbital and
interorbital Coulomb repulsion, respectively. Without loss of
generality, we take εβ � εα . The phonon part,

Hph = h̄ω0 nb, (3)

describes a dispersionless optical phonon mode of energy h̄ω0,
with nb = b†b. The remaining two parts of Hmol describe two
different types of e-ph interaction:

HHol = λnmol(b
† + b) (4)

is a Holstein coupling between the phonon displacement and
the combined occupancy (i.e., charge),

nmol = nα + nβ, (5)

of the two molecular orbitals, while

Htun = λ′ ∑
σ

(d†
ασ dβσ + d

†
βσ dασ )(b† + b) (6)

describes interorbital tunneling accompanied by emission
or absorption of a phonon. Without loss of generality, we
take λ � 0 (since a negative sign can be absorbed into a
redefinition of the operator b), but we allow λ′ to be of either
sign.
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The left (� = L) and right (� = R) leads are represented by

Hleads =
∑
�,k,σ

εkc
†
�kσ c�kσ , (7)

where c�kσ annihilates an electron with energy εk, wave vector
k, and spin σ in lead �. For simplicity, each lead is characterized
by a flat density of states,

ρ(ε) = N−1
s

∑
k

δ(ε − εk) = 1

2D
�(D − |ε|), (8)

where Ns is the number of lattice sites in each lead, D is the
half bandwidth, and �(x) is the Heaviside function.

Last,

Hmol−leads = 1√
Ns

∑
i=α,β

∑
�,k,σ

(V�id
†
iσ c�kσ + Vi�c

†
�kσ diσ ) (9)

describes tunneling or hybridization between the molecular
orbitals and the leads, allowing transport through the system.
We assume that the tunneling matrix elements are real and have
left-right symmetry so we can write V�i = Vi� = Vi . Then it is
useful to perform an even/odd transformation,

cekσ = 1√
2

(cRkσ + cLkσ ), (10)

cokσ = 1√
2

(cRkσ − cLkσ ), (11)

which allows Eq. (9) to be rewritten

Hmol-leads =
√

2

Ns

∑
i=α,β

Vi

∑
k,σ

(d†
iσ cekσ + c

†
ekσ diσ ), (12)

With this transformation, the odd-parity degrees of freedom
are fully decoupled from the molecular orbitals and can safely
be dropped. As a result, the problem reduces to one effective
conduction channel described by a modified

Hleads =
∑
k,σ

εkc
†
ekσ cekσ . (13)

This channel is still described by the density of states in Eq. (8),
and it imparts to molecular orbital i a width

�i = πV 2
i

/
D. (14)

A similar transformation to an effective one-channel model
can be derived in any situation where the tunneling matrix
elements satisfy VLαVRβ = VLβVRα , ensuring that both molec-
ular orbitals couple to the same linear combination of left- and
right-lead states.

The Hamiltonian (1) may also describe certain quantum-dot
systems. In this setting, the “orbitals” α and β can be taken to
describe either two active levels within a single quantum dot
or the sole active level in two different dots that are coupled to
the same pair of external leads.

Since the model laid out above contains 11 energy
parameters, it is important to consider the relative values
of these parameters in real systems. For small molecules
containing up to a few hundred atoms, the largest energy
scale (apart possibly from the half bandwidth) is the local
Coulomb interaction or charging energy, which is generally

of order electron volts. In carbon nanotubes, by contrast, the
charging energy can be as low67 as 3–4 meV. The numerical
results presented in Sec. IV were obtained for the special
case of equal intraorbital Coulomb repulsions Uα = Uβ = U

as well as equal orbital hybridizations Vα = Vβ = V (and
hence orbital broadenings �α = �β = �). These choices prove
convenient for the algebraic analysis carried out in Secs. II B
and IV, but qualitatively very similar behavior is obtained
for more general ratios Uβ/Uα and Vβ/Vα . Most of the
numerical data were computed for an intraorbital interaction
Uα = Uβ = U = 0.5D with an interorbital interaction U ′ of
similar size. However, we also include a few results for the
limiting cases U = U ′ = 0 and U = U ′ = 5.

In the limit where one of the molecular orbitals (β,
say) is removed or becomes decoupled from the rest of the
system, the Hamiltonian (1) reduces to the Anderson-Holstein
Hamiltonian.39–51 It is well-established for this model that the
ratio h̄ω0/� is a key quantity governing the interplay between
e-ph interactions and the Kondo effect. In the instantaneous
or antiadiabatic regime h̄ω0 � �, the bosons adjust rapidly
to any change in the orbital occupancy, leading to polaronic
shifts in the orbital energy and in the Coulomb interaction
and to exponential suppression of certain virtual tunneling
processes. In the adiabatic regime h̄ω0 � �, by contrast, the
phonons are unable to adjust on the typical time scale of
hybridization events, and therefore have little impact on the
Kondo physics. We expect similar behavior in the two-orbital
single-molecule junction, and concentrate in this paper solely
on the antiadiabatic regime U � h̄ω0 � �.

In most experiments on molecular junctions, both the
phonon energy24,30,68,69 and the orbital level broadening due
to the leads19,20,28,30,70 have been found to lie in the range
5–100 meV. All our numerical calculations were performed
for a phonon energy h̄ω0 = 0.1D and a hybridization matrix
element V = 0.075, yielding an orbital width � = πV 2/D �
0.0177 and a ratio ω0/� � 6 that is somewhat larger than—but
not out of line with—that found in one of the few experiments30

that has clearly observed vibrational effects in the Kondo
regime: transport through a single tetracyanoquinodimethane
molecule, where h̄ω0 = 41 meV and � = 11–22 meV. Mod-
erate control of both � and ω0 has been demonstrated in
single-molecule break junctions by changing the separation
between the two electrodes,29 so it seems probable that
antiadiabatic regime will be accessible in future experiments.

Two other important energy scales are the e-ph couplings
λ and λ′ (or, as is seen below, the corresponding orbital
energy shifts λ2/h̄ω0 and λ′2/h̄ω0). We are aware of no direct
measurements of e-ph couplings in single-molecule devices.
However, first-principles calculations for one particular setup
(a 1,4-benzenedithiolate molecule between aluminum elec-
trodes) have yielded values corresponding in our notation to
λ2/h̄ω0 up to 0.02 D at zero bias and up to 0.08 D at strong
bias.71 On this basis, we believe that it is very reasonable to
consider values of λ2/h̄ω0 and λ′2/h̄ω0 as large as 0.1 D.

Also important are the orbital energies εα and εβ . Many
experimental setups allow essentially rigid shifts of these
energies through tuning of a back-gate voltage, so we consider
sweeps of this form in Sec. IV B. The energy difference
εβ − εα will vary widely from system to system, but is not
so readily susceptible to experimental control.
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It is impossible in a paper of this length to attempt a
complete exploration of the model’s parameter space. Instead,
guided by the preceding discussion of energy scales, we focus
on a few representative examples that illustrate interesting and
physically relevant regimes of behavior.

B. Preliminary analysis via canonical transformation

Insight can be gained into the properties of the two-
orbital model by performing a canonical transformation of
the Lang-Firsov type72 from the original Hamiltonian (1) to
H̃ = eS1He−S1 . Following extensive algebra, it can be shown
that the choice

S1 = λ

h̄ω0
nmol(b

† − b) (15)

eliminates the Holstein coupling between the local phonons
and the molecular electron occupancy [Eq. (4)], leaving a
transformed Hamiltonian,

H̃ = H̃e + Hph + H̃tun + Hleads + H̃mol−leads, (16)

in which Hph and Hleads remain as given in Eqs. (3) and (13),
respectively; H̃e has the same form as He [Eq. (2)] with the
replacements

εi → ε̃i = εi − λ2/h̄ω0, (17a)

Ui → Ũi = Ui − 2λ2/h̄ω0, (17b)

U ′ → Ũ ′ = U ′ − 2λ2/h̄ω0; (17c)

the interorbital tunneling maps to

H̃tun = λ′ ∑
σ

(d†
ασ dβσ + d

†
βσ dασ )

×
[
b† + b − 2λ

h̄ω0
(1 + nασ̄ + nβσ̄ )

]
, (18)

where σ̄ = −σ ; and the molecule-leads coupling term be-
comes

H̃mol−leads =
√

2

Ns

∑
i=α,β

Vi

∑
k,σ

(B†
λd

†
iσ cekσ + Bλc

†
ekσ diσ ),

(19)

with

Bξ = exp

[
− ξ

h̄ω0
(b† − b)

]
≡ B

†
−ξ . (20)

This transformation extends the one applied previously
(e.g., see Ref. 46) to the Anderson-Holstein model. It ef-
fectively eliminates the Holstein Hamiltonian term [Eq. (4)]
by mapping the local phonon mode to a different displaced
oscillator basis for each value of the total molecular occupancy
nmol, namely, the basis that minimizes the ground-state energy
of He + Hph + HHol. There are three compensating changes to
the Hamiltonian. (1) Shifts in the orbital energies [Eq. (17a)]
and, more notably, a reduction in the magnitude—or even a
change in the sign—of each e-e interaction within the molecule
[Eqs. (17b) and (17c)]. These renormalizations reflect the fact
that the Holstein coupling lowers the energy of doubly occu-
pied molecular orbitals relative to singly occupied and empty

orbitals. This well-known effect underlies the standard e-ph
mechanism for superconductivity. (2) Addition of correlated
(molecular-occupation-dependent) interorbital tunneling [the
λ-dependent term in Eq. (18)] to the phonon-assisted tunneling
present in the original Hamiltonian. (3) Incorporation into the
molecule-leads coupling [Eq. (19)] of operators Bλ and B

†
λ

that cause each electron tunneling event to be accompanied
by the creation and absorption of a packet of phonons as the
local bosonic mode adjusts to the change in the total molecular
occupancy nmol.

The effects of the phonon-assisted interorbital tunneling
term Htun can be qualitatively understood by rewriting Eq. (16)
in terms of even and odd linear combinations of the α and β

molecular orbitals:

deσ = 1√
2

(dασ + dβσ ), doσ = 1√
2

(dασ − dβσ ). (21)

In this parity basis, Eq. (18) becomes

H̃tun = λ′ ∑
σ

(neσ − noσ )

[
b† + b − 2λ

h̄ω0
(1 + neσ̄ + noσ̄ )

]
,

(22)

where npσ = d
†
pσ dpσ for p = e or o. The phonon-assisted

tunneling component of H̃tun (i.e., the original Htun) can be
eliminated by performing a second Lang-Firsov transforma-
tion

Ĥ = eS2H̃ e−S2 , (23)

with

S2 = λ′

h̄ω0
(ne − no)(b† − b), (24)

where np = np↑ + np↓. Lengthy algebra reveals a transformed
Hamiltonian,

Ĥ = Ĥe + Hph + Hleads + Ĥmol−leads, (25)

where

Ĥe =
∑

p=e,o

(ε̃p np + Ũp np↑np↓) +
∑

σ

(Ũ‖ neσnoσ

+ Ũ⊥ neσnoσ̄ ) +
∑

σ

[t + W (neσ̄ + noσ̄ )](B†
2λ′d

†
eσ doσ

+B2λ′d
†
oσ deσ ) + J (S+

e S−
o + S+

o S−
e + B

†
4λ′I

+
e I−

o

+B4λ′I
−
e I+

o ), (26)

with S+
p ≡ (S−

p )† = c
†
p↑cp↓ and I+

p ≡ (I−
p )† = c

†
p↑c

†
p↓ being

spin- and charge-raising operators, respectively, and

Ĥmol−leads = 2√
Ns

∑
p=e,o

Vp

∑
k,σ

(B†
λ+λ′d

†
pσ cekσ

+Bλ+λ′c
†
ekσ dpσ ). (27)

The renormalized parameters entering Eqs. (26) and (27) are

ε̃p = εα + εβ

2
− λ2

p

h̄ω0
, (28a)

Ũp = 2U ′ + Uα + Uβ

4
− 2λ2

p

h̄ω0
, (28b)
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Ũ‖ = U ′ − 2λeλo

h̄ω0
, (28c)

Ũ⊥ = 2U ′ + Uα + Uβ

4
− 2λeλo

h̄ω0
, (28d)

t = εα − εβ

2
, (28e)

W = Uα − Uβ

2
, (28f)

J = 2U ′ − Uα − Uβ

4
, (28g)

Ve,o = Vα ± Vβ

2
, (28h)

where

λe,o = λ ± λ′. (29)

Since the e-e interactions are expressed much less compactly in
the parity basis than in the original basis of α and β orbitals, the
elimination of the boson-assisted interorbital tunneling from
the Hamiltonian comes at the price of much greater complexity
in Ĥe compared to He [Eq. (2)] and H̃e. It is notable, though,
that the e-e repulsion between two electrons within the even-
parity [odd-parity] molecular orbital undergoes a non-negative
reduction proportional to λ2

e = (λ + λ′)2 [λ2
o = (λ − λ′)2]. By

contrast, the Coulomb repulsion between electrons in orbitals
of different parity undergoes a shift proportional to −λeλo =
λ′2 − λ2 that may be of either sign. Whereas large values of
λ favor double occupancy of both the α and the β molecular
orbital, large values of |λ′| favor double occupancy of either the
e or the o linear combination [the degeneracy between these
alternatives being broken by an amount (2ε̃e + Ũe) − (2ε̃o +
Ũo) = −16λλ′/h̄ω0]. Both limits yield a unique many-body
ground state of a very different character than the spin-singlet
Kondo state.

Since S1 defined in Eq. (15) can be rewritten S1 =
(λ/h̄ω0)(ne + no)(b† − b), it commutes with S2 given in
Eq. (24). As a result, the two Lang-Firsov transformations
can be combined into a single canonical transformation,

Ĥ = eSHe−S, (30)

with

S = S1 + S2 = λene + λono

h̄ω0
(b† − b). (31)

This canonical transformation maps the original phonon
annihilation operator b to

b̂ = eSbe−S = b − λene + λono

h̄ω0
. (32)

Since b̂† − b̂ = b† − b, Eq. (20) can be rewritten

Bξ = exp

[
− ξ

h̄ω0
(b̂† − b̂)

]
. (33)

Thus, the operators B2λ′ and B4λ′ entering Eq. (26), as well as
Bλ+λ′ in Eq. (27), can be reinterpreted as leading to changes
in the occupation n̂b ≡ b̂†b̂ of the transformed phonon mode.

If the phonon energy h̄ω0 were to greatly exceed the thermal
energy kBT and all other energy scales within the model, the
system’s low-energy states would be characterized by 〈n̂b〉 � 0
or, equivalently,

〈nb〉 ≡ 〈b†b〉 �
〈(

λene + λono

h̄ω0

)2〉
. (34)

Moreover, one could approximate other physical quantities by
taking expectation values in the transformed phonon vacuum.
This approach, which was pioneered in the treatment of the
small-polaron problem,73 becomes exact in the antiadiabatic
limit ω0 → ∞. However, the physical limit of greatest interest
in the two-orbital molecule is one in which the Coulomb
interactions Uα , Uβ , and U ′—and hence quite possibly the
couplings |W | and |J | associated with changes in n̂b—are
larger than h̄ω0. The applicability to such situations of
the approximation n̂b = 0, and of Eq. (34) in particular, is
addressed in Sec. IV.

III. NUMERICAL RENORMALIZATION-GROUP
APPROACH

In order to obtain a robust description of the many-body
physics of the model, we treat the Hamiltonian (1) using Wil-
son’s numerical renormalization-group (NRG) method,64–66 as
extended to incorporate local bosonic degrees of freedom.46

The effective conduction band formed by the even-parity
combination of left- and right-lead electrons is divided into
logarithmic bins spanning the energy ranges D�−(m+1) <

±ε < D�−m for m = 1, 2, 3, . . . , for some discretization
parameter � > 1. After the continuum of band states within
each bin is approximated by a single representative state (the
linear combination of states within the bin that couples to
the molecular orbitals), Eq. (13) is mapped via a Lanczos
transformation to

Hleads �
∞∑

n=0

∑
σ

τn(f †
nσ fn+1,σ + f

†
n+1,σ fnσ ), (35)

representing a semi-infinite, nearest-neighbor tight-binding
chain to which the impurity couples only at its end site n = 0.
Since the hopping decays exponentially along the chain as
τn ∼ D�−n/2, the ground state can be obtained via an iterative
procedure in which iteration N involves diagonalization of a
finite chain spanning sites n � N . At the end of iteration N , a
predetermined number of low-lying many-body eigenstates is
retained to form the basis for iteration N + 1, thereby allowing
reliable access to the low-lying spectrum of chains containing
tens or even hundreds of sites. See Ref. 66 for general details
of the NRG procedure.

For our problem, NRG iteration N = 0 treats a Hamilto-
nian H0 = Hmol + Hmol−leads, with N

−1/2
s

∑
k cekσ in Eq. (12)

replaced by
√

2f0σ . Since the phonon mode described by Hph

has an infinite-dimensional Hilbert space, we must work in
a truncated space in which the boson number is restricted to
nb � Nb.
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A. Thermodynamic quantities

The NRG method can be used to evaluate a thermodynamic
property X as

X(T ) = 1

Z(T )

∑
m

〈�m|X|�m〉 e−βEm, (36)

where |�m〉 is a many-body eigenstate at iteration N having
energy Em, β = 1/kBT , and

Z(T ) =
∑
m

e−βEm (37)

is the partition function evaluated at the same iteration. For
a given value of N , Eqs. (36) and (37) provide a good
account64–66 of X(T ) over a range of temperatures around
TN defined by kBTN = D�−N/2.

For extensive properties X, it is useful to define the
molecular contribution to the property as

Xmol = Xtot − Xleads, (38)

where Xtot (Xleads) is the total value of X for a system with
(without) the molecule. In our problem, the local phonon mode
is treated as part of the host system. Accordingly, we define
the molecular entropy as

Smol(T ) = Stot(T ) − Sleads(T ) − Sph(T ), (39)

where Stot(T ) is the total entropy of the system, Sleads(T ) is the
contribution of the leads when isolated from the molecule, and
Sph(T ) is the entropy of the truncated local-phonon system,
given by

Sph(T ) = kB[ln Zph(T ) − ∂ ln Zph/∂β], (40)

with

Zph(T ) =
Nb∑

nb=0

e−nbβh̄ω0 = 1 − e−βh̄ω0(Nb+1)

1 − e−βh̄ω0
. (41)

Another property of interest is the molecular contribution to
the static magnetic susceptibility,

χ (T ) = β(gμB)2

Z(T )

∑
m

[〈�m|S2
z |�m〉 − |〈�m|Sz|�m〉|2]e−βEm,

(42)

where Sz is the total spin z operator, μB is the Bohr magneton,
and g is the Landé g factor (assumed to be the same for
electrons in the leads and in the molecular orbitals). One can
interpret |μmol|2 = 3T kBχmol as the magnitude-squared of the
molecule’s effective magnetic moment.

B. Linear-response transport properties

In this paper, we restrict our calculations to equilibrium
situations in which no external bias is applied. In such cases,
inelastic transport produced by the e-ph interaction can be
neglected74 and the linear conductance through the molecule
can be obtained from a Landauer-type formula,

G(T ) = G0

∫ ∞

−∞

(
− ∂f

∂ω

)
[−Im T (ω,T )] dω, (43)

where

T (ω,T ) = π

2D

∑
i=α,β

∑
σ

VLi G
σ
ij (ω,T ) VjR. (44)

and G0 = 2e2/h is the quantum of conductance. The fully
dressed retarded molecular Green’s functions Gσ

ij (ω,T ) are
defined by

Gσ
ij (ω,T ) = −i

∫ ∞

0
〈[diσ (t),d†

jσ (0)]+〉 ei(ω+iη)t dt, (45)

where 〈· · ·〉 represents the equilibrium average in the grand
canonical ensemble and η is a positive infinitesimal real
number.

As shown for the related problem of two quantum dots
connected in common to a pair of metallic leads,75 in the case
V�i = Vi� = Vi assumed in the present work, Eq. (43) can be
recast in the simpler form,

G(T )/G0 = π �c

∑
σ

∫ ∞

−∞

(
− ∂f

∂ω

)
Aσ

cc(ω,T ) dω, (46)

where �c = �α + �β and Aσ
cc(ω,T ) = π−1Im Gσ

cc(ω,T ) [de-
fined via Eq. (45)] is the spectral function for the current-
carrying linear combination of the α and β orbitals:

dcσ =
∑
i=α,β

√
�i/�c diσ . (47)

Within the NRG approach, one can calculate

Aσ
cc(ω,T ) = 1

Z

∑
m,m′

|〈�m′ |d†
cσ |�m〉|2(e−βEm + e−βEn′ )

× δT (ω − (Em′ − Em)/h̄), (48)

where δT (ω) is a thermally broadened Dirac δ function.66 We
consider only situations where there is no magnetic field, and
hence Aσ

cc(ω,T ) = Acc(ω,T ) independent of σ .

IV. RESULTS

This section presents and interprets essentially exact NRG
results for the Hamiltonian defined by Eqs. (1)–(6), (12),
and (13). We have been guided in our choice of model
parameters by the physical considerations laid out at the end
of Sec. II A. We take the half bandwidth D = 1 as our primary
energy scale and adopt units in which h̄ = kB = gμB = 1.

The results shown below were all obtained for the spe-
cial case of equal orbital hybridizations Vα = Vβ = V and
equal intraorbital Coulomb repulsions Uα = Uβ = U . These
choices, which simplify algebraic analysis because they lead
to W = 0 in Eq. (26) and Vo = 0 in Eq. (27), are not
crucial; qualitatively very similar results are obtained in more
general cases. Most of the numerical data were computed for
equal intraorbital and interorbital interactions U = U ′ = 0.5.
However, we also include results for other values of U ′/U and
for the limiting cases U = U ′ = 0 and U = U ′ = 5.

Our calculations were performed for phonon energy ω0 =
0.1 and hybridization V = 0.075, resulting in an orbital width
� = πV 2/D � 0.0177. As discussed in Sec. II A, the resulting
ratio ω0/� � 6 places the system in the antiadiabatic regime of
greatest interest from the perspective of competition between
e-e and e-ph effects. For this fixed value of ω0/�, we show the
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FIG. 2. (Color online) Variation with orbital energy εα at zero
temperature of (left) the charge 〈nmol〉 and (right) the phonon
occupation 〈nb〉, for U = 0 (top), U = 5 (middle), and U = 0.5
(bottom). Data are for εβ = 4, U ′ = U , λ′ = λ, and the four values
of λ2/ω0 listed in the legend.

consequences of changing the e-ph couplings (a variation of
theoretical interest that may be impractical in experiments) and
the orbital energies (which can likely be achieved by tuning
gate voltages).

Finally, all calculations were performed using an NRG
discretization parameter � = 2.5, allowing up to Nb = 60
phonons in the local mode, and retaining 2000–4000 many-
body states after each iteration. These choices are sufficient to
reduce NRG discretization and truncation errors to minimal
levels.

A. Large orbital energy separation εβ − εα

We first consider the case of fixed εβ = 4, where the upper
molecular orbital lies far above the chemical potential of the
leads and therefore contributes little to the low-energy physics.
This situation, in which the two-orbital model largely reduces
to the Anderson-Holstein model,39–51 serves as a benchmark
against which to compare cases in which both molecular
orbitals are active.

Given that the β orbital will have negligible occupation,
the interorbital Coulomb repulsion U ′ entering He [Eq. (2)]
and the interorbital e-ph coupling λ′ entering Htun [Eq. (6)]
are not expected to greatly affect the low-energy proper-
ties. Throughout this section we assume U ′ = U to reduce
the number of different parameters that must be specified.
Figures 2–5 present results obtained for λ′ = λ; switching to
λ′ = −λ would interchange the roles of the even and odd linear
combinations of molecular orbitals, but would not change any
of the physical quantities shown. Figures 4 and 6 demonstrate
that very similar properties arise for λ′ = 0.

1. Isolated molecule

We begin by using the transformed Hamiltonian H̃ defined
in Eq. (16) to find analytical expressions for the energies of the
low-lying states of the isolated molecule in the absence of any
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FIG. 3. (Color online) Zero-temperature conductance G vs or-
bital energy εα for (a) U = 0, (b) U = 5, and (c) U = 0.5. Data are
for εβ = 4, U ′ = U , λ′ = λ, and the four values of λ2/ω0 listed in the
legend. The inset in (b) shows the data from the main panel replotted
as G vs ε̃α/Ũ .

electron tunneling to/from the leads (i.e., for V = 0). In the
regime where ε̃β is the largest energy scale of the molecule, λ′
manifests itself primarily through perturbative corrections to
the energies of the molecule when the α orbital is occupied by
nmol = 0, 1, or 2 electrons.

Let us focus on the state of lowest energy in each
occupancy sector. This is the state having zero occupancy
of the transformed boson mode entering the Hamiltonian H̃ ,
whose energy we will denote E(nmol)

min . The empty molecule is
unaffected by the interorbital e-ph coupling, so E(0)

min = 0. To
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FIG. 4. (Color online) (a) Zero-temperature conductance G vs
orbital energy εα for the same parameters as used in Fig. 3(c), except
here λ′ = 0. (b) Data for λ′ = λ from Fig. 3(c) replotted as G vs
ε̃α/Ũ . (c) Data for λ′ = 0 from (a) replotted as G vs ε̃α/Ũ .
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second order in H̃tun defined in Eq. (18),

E(1)
min ≡ ˜̃εα = ε̃α − λ′2

ε̃β − ε̃α + ω0
−

(
2λ

ω0

)2
λ′2

ε̃β − ε̃α

� εα − λ2/ω0 − (
1 + 4λ2/ω2

0

)
λ′2/εβ, (49)

where in the second expression we have used ε̃β − ε̃α =
εβ − εα . In the same approximation, the energy of the doubly
occupied molecule becomes

E(2)
min = 2ε̃α + Ũα − 2λ′2

ε̃β − ε̃α + Ũ ′ − Ũα + ω0

−
(

4λ

ω0

)2 2λ′2

ε̃β − ε̃α + Ũ ′ − Ũα

� 2ε̃α + Ũ − 2
(
1 + 16λ2/ω2

0

)
λ′2/εβ (50)
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FIG. 6. (Color online) Variation with λ2/ω0 of the crossover
temperature T ∗ calculated for U ′ = U = 0.5, λ′ = 0, εβ = 4, and the
four values of εα listed in the legend. (Inset) The same T ∗ data plotted
vs the ratio ε̃α/Ũα of phonon-renormalized molecular parameters.

in the case Uα = U ′ = U considered throughout this discus-
sion of large orbital separation. Equations (49) and (50) allow
us to define an effective interaction within the α orbital

˜̃Uα = E(2)
min − 2E(1)

min = U − 2λ2/ω0 − 24
(
λ2/ω2

0

)
λ′2/εβ.

(51)

For future reference, we also define

�E12 = E(1)
min − E(2)

min = 3λ2/ω0 + (
1 + 28λ2/ω2

0

)
λ′2/εβ

− εα − U. (52)

The ground state of the isolated molecule lies in the sector
of occupancy nmol having the smallest value of E(nmol)

min . Under
variation of a molecular parameter such as εα or λ, a jump
will occur between nmol = 0 and 1 at any point where E(1)

min =
0 < E(2)

min, between nmol = 1 and 2 where E(2)
min = E(1)

min < 0,
and directly between nmol = 0 and 2 where E(2)

min = 0 < E(1)
min.

In the presence of a small level width � > 0, one expects
these jumps to be broadened into smooth crossovers centered
at points in parameter space close to their locations for the
isolated molecule.

2. Effect of varying the lower orbital energy

Now we turn to numerical solutions of the full problem with
εβ = 4, a dot-lead hybridization V = 0.075, and a phonon
energy ω0 = 0.1. In this section we examine the effect of
varying the energy εα of the lower molecular orbital at T = 0.

Figure 2 shows the total molecular charge 〈nmol〉 and the
occupation 〈nb〉 of the original phonon mode [as opposed
to the occupation 〈n̂b〉 of the transformed mode defined in
Eq. (32)] as functions of εα for four values of λ and three
values of U . First consider the case U = 0 of vanishing e-e
interactions shown in panels (a) and (d). For λ = λ′ = 0,
εα = 0 is a point of degeneracy between configurations having
molecular charges 0, 1, and 2; 〈nmol〉 increases from 0 to 2
over a narrow range �εα � 4� as the α orbital drops below
the chemical potential of the leads. For λ > 0, Ũ = −2λ2/ω0

is negative, and the ground state switches from charge 0
to charge 2 around the point where E(2)

min = E(0)
min or εα =

2λ2/ω0 + (1 + 16λ2/ω2
0) λ′2/εβ . There is a marked decrease

with increasing λ in the width �εα of the region of rapid
change in the charge. (We henceforth refer to such a measure
as the “rise width” to avoid possible confusion with the width
of the plateau between two successive rises.)

It is evident from Figs. 2(a) and 2(d) that changes in
the ground-state phonon occupation are closely correlated
with those in the total molecular charge. The prediction of
Eq. (34) for the case λ′ = λ (hence, λe = 2λ and λo = 0)
is 〈nb〉 = (2λ/ω0)2 〈n2

e〉. Although this relation captures the
correct trends in the variation of 〈nb〉 with εα in Fig. 2(d), it
overestimates the phonon occupation by a significant margin.
Such deviations are not unexpected, given that Eq. (34) was
derived under the assumption that h̄ω0 is the largest energy
scale in the problem, whereas here εβ is the dominant energy
scale, followed by U = U ′. Empirically, we find that 〈nb〉 lies
closer to

n̄b = (2λ/ω0)2 〈ne〉2, (53)

which also serves as an empirical lower bound on the phonon
occupation. The error 〈nb〉 − n̄b is largest in the vicinity of the
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sharpest rise in 〈nmol〉 and vanishes as 〈nmol〉 approaches 0 or
2. For λ2/ω0 = 0.064, 〈nb〉 − n̄b < 0.06 both for εα � 0.149
and for εα � 0.151, whereas for εα = 0.149 945, n̄b � 0.88
underestimates 〈nb〉 by approximately 0.68. The peak error is
smaller for the other e-ph couplings shown in Fig. 2(d).

For the case U = 5 of very strong e-e interactions
[Figs. 2(b) and 2(e)], the molecular charge rises from 0 to
1 around the point where E(1)

min = E(0)
min or εα � 2λ2/ω0 + (1 +

4λ2/ω2
0) λ′2/εβ . In contrast with the situation for U = 0, the

rise width �εα shows no appreciable change with λ. The
phonon occupation is described by Eq. (53) even better than for
U = 0, with the greatest error (〈nb〉 − n̄b � 0.08 for λ2/ω0 =
0.064) occurring around the point where 〈nmol〉 = 0.5.

Last, Figs. 2(c) and 2(f) show data for U = 0.5, exempli-
fying moderately strong e-e interactions. With decreasing εα

(at fixed λ), the molecular charge increases in two steps, first
rising from 0 to 1 as E(1)

min falls below E(0)
min, and then rising

from 1 to 2 as E(1)
min in turn falls below E(2)

min at [see Eq. (52)]

εα � −U + 3λ2/ω0 + (
1 + 28λ2/ω2

0

)
λ′2/εβ. (54)

Just as for U = 5, each rise has a width �εα = O(�) that is
independent of λ over the range of e-ph couplings shown. The
distance along the εα axis between the two rises (i.e., the width
of the charge-1 plateau) is roughly ˜̃U defined in Eq. (51), which
decreases as the e-ph coupling increases in magnitude. The
phonon occupation is again well-approximated by n̄b given in
Eq. (53).

Figure 3 plots the zero-temperature linear conductance as
a function of εα for the same set of parameters as was used in
Fig. 2. At T = 0 in zero magnetic field, Eq. (46) reduces to
G(T = 0)/G0 = π �cAcc(0,0). In any regime of Fermi-liquid
behavior, Acc(0,0) is expected to obey the Friedel sum rule,
implying that π �cAcc(0,0) = sin2(π〈nmol〉/2) in the wide-
band limit where all other energy scales in the model are small
compared with D. This property, which should hold even in
the presence of e-ph interactions within the molecule, leads to

G(T = 0) = G0 sin2

(
π

2
〈nmol〉

)
. (55)

For U = 0 [Fig. 3(a)], we observe a conductance peak at
the point of degeneracy between molecular charges 0 and 2.
This is the noninteracting analog of the Coulomb blockade
peak seen in strongly interacting quantum dots and single-
molecule junctions above their Kondo temperatures. For λ =
0, the peak is located at εα = 0 and has a full width �εα � 2�,
as expected for this exactly solvable single-particle case. With
increasing λ, the conductance peak shifts to higher εα while
its width narrows, trends that both follow via Eq. (55) from
the behavior of 〈nmol〉 in Fig. 2(a). For all values of λ, the
maximum conductance is G = G0, as predicted by Eq. (55)
for the point where 〈nmol〉 passes through 1.

The sharp features shown in Fig. 3(a) allow one to quantify
the accuracy of the approximation of using energies of the iso-
lated molecule in the no-boson state of the transformed phonon
mode to locate features in the full system. In the case λ2/ω0 =
0.064, for example, the NRG calculations place the peak in G

at εα = 0.152, whereas the criterion E(2)
min = E(0)

min gives εα =
2λ2/ω0 + (1 + 16λ2/ω2

0) λ′2/εβ = 0.146. Thus, the coupling
of the molecule to external leads and the admixture of states

with nonzero phonon number produces an upward shift in the
peak position of roughly 0.006 on top of the upward shift 0.018
predicted to arise from the λ′ interorbital e-ph coupling λ′.

For the interacting cases shown in Figs. 3(b) and 3(c),
the formation of a many-body Kondo resonance at the
chemical potential leads to a near-unitary conductance at
low-temperatures T � TK over the entire range of εα for
which 〈nmol〉 � 1. In the case U = 5, no data are shown for
εα � −0.4, a range in which the Kondo temperature TK is
so low that the ground-state properties are experimentally
inaccessible. For both nonzero values of U , the width of each
conductance rise is independent of λ over the range of e-ph
couplings shown.

The narrowing with increasing λ of the rises in the
molecular charge and the phonon occupancy, and of the
peaks in the linear conductance, seen for U = 0 but not
in the data presented for U = 0.5 or U = 5, is associated
with the presence of a crossover of 〈nmol〉 directly from 0
to 2. Similar narrowing is, in fact, seen for U > 0 when λ

become sufficiently large to suppress the 〈nmol〉 = 1 plateau.
(In the case U = 0.5 and λ′ = λ, this takes place around
λ2/ω0 = 0.15, considerably larger than any of the values
shown in Figs. 2 and 3.) This phenomenon is known from
the Anderson-Holstein model (e.g., see Ref. 50) to arise from
the small overlap between the bosonic ground state of the
displaced oscillator that minimizes the energy in the sector
nmol = 0 and the corresponding ground state for nmol = 2.
This small overlap leads to an exponential reduction in the
effective value of the level width � in the regime of negative
effective U .

It has already been remarked that the phonon-assisted
interorbital tunneling is expected to play only a minor role
in cases where the β orbital is far above the Fermi energy. To
test this expectation, we have compared data for λ′ = λ and
λ′ = 0 with all other parameters the same. The conductance
curves in the two cases are also similar, as exemplified for
U = 0.5 by Figs. 3(c) and 4(a). The same conclusion holds
for the molecular charge and phonon occupation (data for
λ′ = 0 not shown). However, there are subtle differences that
can be highlighted by replotting properties as functions of the
scaling variable ε̃α/Ũ . For example, the conductance data for
λ′ = 0 and U = 0.5 show almost perfect collapse [Fig. 4(c)],
confirming that in this case the conductance rises are centered
close to ε̃α = 0 and ε̃α = −Ũ , the values predicted based on
the low-lying levels of the isolated molecule. For λ′ = λ, the
data collapse [shown in Fig. 4(b) for U = 0.5 and in the inset
to Fig. 3(b) for U = 5] is good for small values of λ but less
so for λ2/ω0 = 0.064, a case where ˜̃εα and ˜̃Uα defined in
Eqs. (49) and (51) differ appreciably from ε̃α and Ũ .

3. Lower orbital close to chemical potential

We now switch focus from the variation of properties
with εα to trends with increasing e-ph coupling. Figure 5(a)
shows the evolution of the zero-temperature molecular charge
〈nmol〉 with λ2/ω0 for U = U ′ = 0.5, λ′ = λ, and four different
values of εα . We begin by considering the special case λ = 0
in which the electron and phonon subsystems are entirely
decoupled. Here, 〈nmol〉 ranges from roughly two-thirds for
εα = −0.025 (an example of mixed valence where the lower
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molecular orbital lies below the Fermi energy by an amount
that barely exceeds � = πV 2/D � 0.0177) to nearly one for
εα = −0.075 and −0.1. In the latter limit, the large Coulomb
repulsion U leads to local-moment formation in the α orbital.
The local moment is collectively quenched by lead electrons,
leading to a Kondo singlet ground state. Figure 5(c) shows
the characteristic temperature T ∗ of the quenching of the
molecular spin degree of freedom, determined via the standard
criterion64 T ∗χmol(T ∗) = 0.0701. This scale is of order �

deep in the mixed-valence limit (i.e., for |εα| � �), but is
exponentially reduced in the local-moment regime −εα � �,
where it represents the system’s Kondo temperature, given for
U � −εα � � by76

TK �
√

�U exp(πεα/2�). (56)

Upon initial increase of λ, the effective level position
˜̃εα decreases according to Eq. (49), the occupancy of the
lower molecular orbital (and hence the total occupancy 〈nmol〉)
rises ever closer to one, and the temperature T ∗ decreases as
expected from the replacement of εα and U in Eq. (56) by ˜̃εα

and ˜̃Uα . Neglecting both the subleading λ dependence coming
from ˜̃Uα and the λ′ contributions to ˜̃εα , one arrives at the
relation

T ∗(λ) � T ∗(0) exp[−πλ2/(2�ω0)], (57)

which accounts quite well for the initial variation of T ∗ in
Fig. 5(c).

Upon further increase in the e-ph coupling, 〈nmol〉 and
T ∗ both show rapid but continuous rises around some value
λ = λx that is close to the one predicted by the vanishing
of E(2)

min = E(1)
min for the increase from 1 to 2 in the charge

of the isolated molecule: solving Eq. (52) with �E12 = 0 to
find λ = λ′ yields λ2

x/ω0 = 0.122, 0.117, 0.112, and 0.106 for
εα = −0.025, −0.05, −0.075, and −0.1, respectively, values
close to but slightly above those observed in the full numerical
solutions [the magnitude and sign of the small discrepancies
being consistent with those noted previously in connection
with the U = 0 data in Fig. 3(a)]. For � > 0, the energies
corresponding to E

(1)
1 and E

(2)
1 each acquire a half width

�, so the crossover of the ground-state molecular charge
from 1 to 2 is smeared over the range |E(2)

min − E(1)
min| � 2�.

Solving Eq. (52) again with �E12 = ±2� gives the full width
for the crossover as �(λ2/ω0) � 0.016, an estimate in good
agreement with the data in Fig. 5(a).

In the regime λ � λx , minimization of the e-ph energy
through 〈nα〉 � 2, 〈nβ〉 � 0 outweighs the benefits of forming
a many-body Kondo singlet. Therefore, T ∗ characterizing the
vanishing of T χmol ceases to represent the Kondo temperature
and instead characterizes the scale, of order �E12 defined
in Eq. (52), at which nmol = 1 spin-doublet molecular states
become thermally inaccessible.

Over the entire range of δ and λ2/ω0 illustrated in Fig. 5, the
ground-state phonon occupation 〈nb〉 [Fig. 5(b)] closely tracks
n̄b defined in Eq. (53) to within an absolute error 0 � 〈nb〉 −
n̄b � 0.2, an error that peaks around λ = λx . Similarly, the
T = 0 conductance [Fig. 5(d)] is everywhere well-described
by Eq. (55), reaching the unitary limit G0 over a window of
Kondo behavior for λ � λx in which the molecular charge is

1, then plunging to zero as the Kondo effect is destroyed and
the occupancy rises to 2.

As another illustration of the effect of relaxing the assump-
tion λ′ = λ, Fig. 6 shows the variation with λ2/ω0 of T ∗, cal-
culated for the same parameters as in Fig. 5(c), except that here
λ′ = 0. For each value of εα , the variation of T ∗ is very similar
in the two cases apart from a considerably larger value of λx

for λ′ = 0, a change that is predicted at the level of the isolated
molecule where Eq. (52) with λ′ = �E12 = 0 gives λ2

x/ω0 =
(U + εα)/3, which ranges from 0.158 for εα = −0.025 to
0.133 for εα = −0.1. Just as seen in Fig. 4(c), the λ′ = 0
data exhibit excellent collapse when plotted against the ratio
ε̃α/Ũ of effective molecular parameters defined in Eqs. (17).

B. Small orbital energy separation εβ − εα

The rich behavior of the model described by Eqs. (1)–(9)
becomes apparent only in the regime where the two molecular
orbitals lie close in energy so that they can both contribute
strongly to the low-energy physics. For simplicity, we focus
primarily on situations with equal e-ph couplings λ′ = λ, equal
Coulomb interactions U ′ = U , and symmetrical placement of
the orbitals with respect to the chemical potential of the leads,
i.e., εβ = −εα = δ, a small positive energy scale. However, we
present results for more general parameter choices at several
points throughout the section.

1. Isolated molecule

Just as in the case of large εβ , we begin by examining
the low-lying states of the isolated molecule, this time
using the transformed Hamiltonian Ĥ defined in Eq. (25)
to find the energies. For the case Uα = Uβ = U considered
throughout this section, W = 0 in Eq. (26). Then the only
explicit e-ph coupling remaining in Ĥ enters through the
terms t

∑
σ (B†

2λ′d
†
eσ doσ + H.c.) and J (B†

4λ′I
+
e I−

o + H.c.). This
section is concerned only with cases where |t | = δ is small. If
one also takes |J | = 1

2 |U ′ − U | to be small, then the low-lying
molecular states will contain only a weak admixture of
components having n̂b > 0, where (as before) n̂b is the number
operator for the transformed boson mode defined in Eq. (32).
Under this simplifying assumption (which we re-examine in
Sec. IV B2), it suffices to focus on the eigenstates of P̂0ĤeP̂0,
where Ĥe given in Eq. (26) is the pure-electronic part of Ĥ , and
P̂0 projects into the n̂b = 0 Fock-space sector. Table I lists the
low-lying energy eigenstates in this sector for the case δ = 0,
where the α and β molecular orbitals are exactly degenerate.
Also listed are the energies of these states for the special
case λ′ = λ and U ′ = U extended to include the leading
perturbative corrections for δ > 0. These corrections contain
a multiplicative factor |〈0̂|B±2λ′ |0̂〉|2 = exp[−4(λ/ω0)2] (for
λ′ = λ) reflecting the reduction with increasing e-ph coupling
of the overlap of the phonon ground states for Fock-space
sectors of different nmol. Here and below, we denote by |0̂〉 the
state having nmol = n̂b = 0, which must be distinguished from
the state |0〉 in which nmol = nb = 0.

It can be seen from Table I that for δ = 0 the singly occupied
sector has two states—depending on the sign of λ′, either
|φ(1)

1 〉 and |φ(1)
2 〉 or |φ(1)

3 〉 and |φ(1)
4 〉—with lowest energy energy

E(1)
min = −(λ + |λ′|)2/ω0. In cases of small |U ′ − U | and/or

large |λ′|, the lowest state in the doubly occupied sector is
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TABLE I. Low-lying eigenstates of P̂0ĤeP̂0, where Ĥe describing the isolated molecule is defined in Eq. (26) and P̂0 is a projection operator
into the sector of the Fock space having occupancy n̂b = 0 for the transformed phonon mode defined in Eq. (32). Eigenstates |φ(nmol)

i (δ = 0)〉
for δ = εβ = −εα = 0 are grouped according to their total electron number nmol, and specified in terms of operators d†

pσ defined in Eqs. (21)

acting on |0̂〉, the state having nmol = n̂b = 0; c1 and c2 are real coefficients satisfying c2
1 + c2

2 = 1 that reduce for U ′ = U to c1 = 1, c2 = 0.
E

(nmol)
i (δ = 0) is the energy of state |φ(nmol)

i (δ = 0)〉, expressed in terms of x = λ/
√

ω0, x ′ = λ′/
√

ω0, Ū = (U + U ′)/2, and �̃ defined in
Eq. (58). E

(nmol)
i (δ > 0) is the energy of the same state in the special case U ′ = U and λ′ = λ > 0, but including the leading perturbative

correction for δ > 0, expressed in terms of y = ω0(δ/λ)2 exp[−4(λ/ω0)2]. For U ′ = U and −λ′ = λ > 0, the values E
(nmol)
i (δ > 0) would be

the same apart from the interchange of the energies of the even- and odd-parity nmol = 1 states.

nmol i |φ(nmol)
i (δ = 0)〉 E

(nmol)
i (δ = 0) E

(nmol)
i (δ > 0)

0 1 |0̂〉 0 0

1 1 d
†
e↑|0̂〉 −(x + x ′)2 −4x2 − 1

4 y

2 d
†
e↓|0̂〉 −(x + x ′)2 −4x2 − 1

4 y

3 d
†
o↑|0̂〉 −(x − x ′)2 1

4 y

4 d
†
o↓|0̂〉 −(x − x ′)2 1

4 y

2 1 (c1d
†
e↑d

†
e↓ + c2d

†
o↑d

†
o↓)|0̂〉 Ū − 4(x2 + x ′2) − �̃ U − 16x2 − 1

6 y

2 1√
2
(d†

e↑d
†
o↓ + d

†
e↓d

†
o↑)|0̂〉 U ′ − 4x2 U − 4x2 − 1

6 y

3 1√
2
(d†

e↑d
†
o↓ − d

†
e↓d

†
o↑)|0̂〉 U − 4x2 U − 4x2 − 1

6 y

4 d
†
e↑d

†
o↑|0̂〉 U ′ − 4x2 U − 4x2

5 d
†
e↓d

†
o↓|0̂〉 U ′ − 4x2 U − 4x2

6 (c2d
†
e↑d

†
e↓ − c1d

†
o↑d

†
o↓)|0̂〉 Ū − 4(x2 + x ′2) + �̃ U + 1

2 y

|φ(2)
1 〉 with energy E(2)

min = 1
2 (U + U ′) − 4(λ2 + λ′2)/ω0 − �̃,

where

�̃ =
√

(8λλ′/ω0)2 + J̃ 2 , (58)

with

J̃ = J |〈0̂|B±4λ′ |0̂〉|2 = 1
2 (U ′ − U ) exp

(−8λ′2/ω2
0

)
. (59)

One can use energies E(1)
min and E(2)

min to define an effective
Coulomb interaction,

˜̃U = E(2)
min − 2E(1)

min = 1

2
(U + U ′) − 2(λ − |λ′|)2

ω0
− �̃.

(60)

For U ′ = U , this value simplifies to ˜̃U = U − 2(λ +
|λ′|)2/ω0, which decreases with e-ph coupling at a greater rate
than the effective Coulomb interaction ˜̃Uα [Eq. (51)] acting in
the α orbital when εβ − εα is large. The enhancement of e-ph
renormalization of the Coulomb interaction in molecules hav-
ing multiple, nearly degenerate orbitals improves the prospects
of attaining a regime of effective e-e attraction and may have
interesting consequences in the area of superconductivity.

Table I also indicates that the ground state of the isolated
molecule crosses from single electron occupancy (for weaker
e-ph couplings) to double occupancy (for stronger e-ph
couplings) at the point where E(2)

min = E(1)
min, which reduces for

δ = 0 and small J̃ to

(λ + |λ′|)2

ω0
= U + U ′

6
. (61)

Just as in cases where the β molecular orbital lies far above
the Fermi energy of the leads (Sec. IV A), we will see
that this level crossing in the isolated molecule is closely

connected to a crossover in the full problem that results
in pronounced changes in the system’s low-temperature
properties. The lowest energy of any molecular state having
three electrons (not shown in Table I) is E(3)

min(δ = 0) = U +
2U ′ − (3λ + |λ′|)2/ω0, while the sole four-electron state has
energy E

(4)
1 (δ = 0) = 2U + 4U ′ − 16λ2/ω0. For all the cases

considered in Figs. 7–13 below, these energies are sufficiently
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FIG. 7. (Color online) Variation with λ2/ω0 of (a) the ground-
state molecular charge 〈nmol〉 = 〈ne + no〉, (b) the ground-state
phonon occupation 〈nb〉, (c) the crossover temperature T ∗, and
(d) the zero-temperature linear conductance G, all calculated for
U ′ = U = 0.5, λ′ = λ, and the four values of δ = εβ = −εα listed
in the legend. In the case δ = 0.05, the orbital energy splitting is in
resonance with the phonon energy, i.e., εβ − εα = 2δ = ω0.
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FIG. 8. (Color online) Occupation of individual molecular or-
bitals vs λ2/ω0 for U ′ = U = 0.5, λ′ = λ, and the four values of
δ = εβ = −εα listed in the legend: (a) 〈nα〉 (open symbols) and 〈nβ〉
(solid symbols); (b) 〈ne〉 (open symbols) and 〈no〉 (solid symbols).

high that states with nmol > 2 play no role in the low-energy
physics.

2. Both orbitals close to the chemical potential

This section presents numerical solutions of the full
problem under variation of the e-ph coupling. As before, we
focus primarily on the reference case λ′ = λ, U ′ = U = 0.5.

Figure 7 plots the evolution with λ2/ω0 of the same
properties as appear in Fig. 5 for four values of δ chosen
so that the two figures differ only as to the energy of the
upper molecular orbital: εβ = 4 � U in the earlier figure
versus εβ = δ � U here. The results in the two figures
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FIG. 9. (Color online) Crossover temperature T ∗ vs scaled e-ph
coupling (λ/λx)2. The left panels show different ratios U ′/U for
λ′ = λ while the right panels show different λ′/λ for U ′ = U . The
top panels (a),(b) correspond to δ = 0.05, and the bottom panels
(c),(d) treat δ = 0.1. All data are for U = 0.5. Vertical dashed lines
at λ = λx [calculated via the condition E(2)

min(δ = 0) = E(1)
min(δ = 0)]

separate the Kondo regime from the phonon-dominated regime.
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FIG. 10. (Color online) Temperature dependence of (a) the
molecular entropy, (b) temperature times the molecular susceptibility,
T χmol ≡ |μmol|2/3, where μmol is the molecule’s magnetic moment,
and (c) the phonon occupation. Data are for U ′ = U = 0.5, δ = 0.1,
λ′ = λ, and the four values of λ2/ω0 listed in the legend. In (a), the
horizontal dashed lines mark Smol = ln 2, ln 3, and ln 5. In (c), the
dashed line shows the occupation of a free phonon mode of energy
ω0 = 0.1.

are superficially similar, although there are some significant
differences, as explained below.

We begin by considering the behavior for λ = 0. Figure 7(a)
shows the zero-temperature molecular charge 〈nmol〉, while
Fig. 8 displays the corresponding occupancies of individual
molecular orbitals: 〈nα〉 and 〈nβ〉 in panel (a) and 〈ne〉 and
〈no〉 in panel (b). For δ � � = πV 2/D � 0.0177, 〈nmol〉 �
〈ne〉 � 0.5, which may be understood as a consequence of
the ground state being close to that for U = V = ∞ and
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FIG. 11. (Color online) Temperature times the molecular sus-
ceptibility T χmol vs scaled temperature T/T ∗ for U ′ = U = 0.5,
λ′ = λ, δ = 0.1, and values of λ2/ω0 spanning the crossover from
the Kondo regime to the doubly occupied regime. The collapse over
the range T � 10T ∗ of all curves corresponding to λ2/ω0 � 0.0391
demonstrates the universal physics of the Kondo regime. No such
universality is present in the boson-dominated limit.
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FIG. 12. (Color online) Zero-temperature conductance G as a
function of εα = −δ − Vg (where Vg is an applied gate voltage)
for the five values of λ2/ω0 listed in the legend and (a) δ = 0.025,
(b) δ = 0.05, and (c) δ = 0.1. The other parameters are U ′ = U = 0.5
and λ′ = λ.

δ = 0: a product of (1) 1
2 [c†e↑d

†
e↓ − c

†
e↓d

†
e↑ − √

2c
†
e↑c

†
e↓]|0〉

where ceσ = (2Ns)−1/2 ∑
k cekσ annihilates an electron in the

linear combination of left- and right-lead states that tunnels
into/out of the molecular orbitals and (2) other lead degrees
of freedom that are decoupled from the molecule. The total
charge increases with δ and approaches 〈nmol〉 = 〈nα〉 = 1
for δ � �, in which limit the large Coulomb repulsion U

leads to local-moment formation in the α orbital, followed at
low temperatures by Kondo screening, very much in the same
manner as found for εβ = 4 (Sec. IV A3).

Turning on e-ph couplings λ′ = λ lowers the energy of the
even-parity molecular orbital below that of the odd orbital,
and initially drives the system toward 〈ne〉 = 1, 〈no〉 = 0, and
toward a many-body singlet ground state formed between the

0

0.5

1

1.5

2

to
ta

l c
ha

rg
e

λ2
/ω

0
=0

λ2ω
0
=0.00625

λ2
/ω

0
=0.025

λ2
/ω

0
=0.0417

λ2
/ω

0
=0.0640

-0.75 -0.5 -0.25 0 0.25
εα

0

2

4

6

8

10

ph
on

on
 o

cc
up

at
io

n

U=0.5

δ=0.1(a)

(b)

FIG. 13. (Color online) (a) Ground-state molecular charge and
(b) ground-state phonon occupation as functions of εα = −δ − Vg

(where Vg is an applied gate voltage) for δ = 0.1 and the values of
λ2/ω0 listed in the legend. The other parameters are U ′ = U = 0.5
and λ′ = λ.

leads and a local moment in the even-parity molecular orbital
(rather than the local moment in the α orbital that is found for
εβ = 4). The spin-screening scale T ∗ in Fig. 7(c) shows an
initial decrease with increasing λ2/ω0 that is very strong for
the smaller values for δ, where the e-ph coupling drives the
system from mixed valence into the Kondo regime. For larger
δ, where the system is in the Kondo limit even at λ = 0, there is
a much milder reduction of T ∗ caused by the phonon-induced
shift of the filled molecular orbital further below the chemical
potential.

Upon further increase in the e-ph coupling, 〈nmol〉 and
T ∗ both show rapid but continuous rises around some
value λ = λx . The crossover value λ2

x/ω0 � 0.042, which
is independent of δ for δ � U , coincides closely with its
δ = 0 value U/12 � 0.0417 for the isolated molecule, where
it describes the crossing of the singly occupied state |φ(1)

1 〉 and
the doubly occupied state |φ(2)

1 〉 (see Table I). For � > 0, the
crossover of the ground-state molecular charge from 1 to 2
is smeared over the range |U − 12λ2/ω0| � 2�, suggesting
a full width for the crossover �(λ2/ω0) � 4�/12 = 0.006,
in good agreement with Figs. 7(a) and 8. The values of
λx and �(λ2/ω0) are smaller than the corresponding values
for εβ = 4 by factors of roughly 3 and 2, respectively, a
consequence of the stronger e-ph effects found for small
molecular orbital energy separation. Moreover, the absence
of any dependence of λx on δ is to be contrasted with the
linear dependence of the crossover e-ph coupling on εα in
Fig. 5.

In the regime λ � λx , the system minimizes the e-ph energy
by adopting orbital occupancies 〈ne〉 � 2, 〈no〉 � 0 (shown
in Fig. 8 to hold for all the δ values considered). Here, T ∗
approaches the scale 12λ2/ω0 − U at which occupation of
nmol = 1 molecular states becomes frozen out. Over the entire
range of δ and λ2/ω0 illustrated in Figs. 7 and 8, the ground-
state phonon occupation 〈nb〉 [Fig. 7(b)] closely tracks n̄b

and the T = 0 conductance [Fig. 7(d)] is everywhere well-
described by Eq. (55).

We note that the equilibrium properties shown in Figs. 7
and 8 exhibit no special features in the resonant case δ = 0.05
in which the molecular orbital spacing εβ − εα exactly matches
the phonon energy. We expect the resonance condition to play
a significant role only in driven setups where a nonequilibrium
phonon distribution serves as a net source or sink of energy
for the electron subsystem.

The properties presented above are little changed under
relaxation of the assumptions λ′ = λ and U ′ = U . For reasons
of space, we show data only for the variation of the crossover
temperature T ∗ with e-ph coupling with different fixed values
of U ′/U [Figs. 9(a) and 9(c)] or λ′/λ [Figs. 9(b) and 9(d)]. In
each case, T ∗ is plotted against (λ/λx)2, where λx is the value
of λ that satisfies the condition E(2)

min(δ = 0) = E(1)
min(δ = 0)

for crossover from single to double occupation of the isolated
molecule. For U ′ = 0.5U and U ′ = 2U , it must be recognized
that J = 1

2 (U ′ − U ) is not small, calling into question the
validity of the approximation n̂b = 0 used to derive the
energies in Table I. What is more, the data shown are for
nonzero orbital energy splittings δ = 0.05 (top panels) and
δ = 0.1 (bottom panels). Nonetheless, the plots all exhibit
good data collapse along the horizontal axis, showing that λx

calculated for n̂b = 0 and δ = 0 captures very well the scale
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characterizing the crossover from the Kondo regime (λ � λx)
to the phonon-dominated regime (λ � λx).

The data in Fig. 9 show greater spread along the vertical
axis, particularly in the Kondo regime under variation of U ′/U .
However, we find that in each panel, the value of T ∗ in the
phonon-dominated regime can be reproduced with good quan-
titative accuracy by applying the condition T ∗χ (T ∗) = 0.0701
to the susceptibility of the isolated molecule, calculated using
the 11 states listed in Table I. This provides further evidence
for the adequacy of the approximation n̂b = 0 employed in the
construction of the table. More importantly, Fig. 9 shows that
the physics probed in Figs. 7 and 8 for the special case λ′ = λ

and U ′ = U is broadly representative of the behavior over a
wide region of the model’s parameter space.

To this point, we have concentrated on ground-state (T =
0) properties and the temperature scale T ∗ characterizing
the quenching of the molecular magnetic moment. We now
illustrate the full temperature dependence of three thermody-
namic properties in situations where the molecular orbitals
are arranged symmetrically around the chemical potential.
Figure 10 plots the variation with T of the molecular entropy,
molecular susceptibility, and phonon occupation for U ′ =
U = 0.5, δ = 0.1, V = 0.075, and four different values of
λ′ = λ. As long as the temperature exceeds all molecular
energy scales, the entropy and susceptibility are close to
the values Smol = ln 4 and T χmol = 1/8 attained when every
one of the 16 molecular configurations has equal occupation
probability, while the phonon occupation is close to the
Bose-Einstein result for a free boson mode of energy ω0

[dashed line in Fig. 10(c)]. Once the temperature drops below
U , most of the molecular configurations (and all with total
charge nmol > 2) become frozen out. For λ � λx (exemplified
by λ2/ω0 = 0.025 in Fig. 10), there is a slight shoulder in the
entropy around Smol = ln 5 and a minimum in the square of the
local moment around T χmol = 1/5, the values expected when
the empty and singly occupied molecular configurations (the
first five states listed in Table I are quasidegenerate. At lower
temperatures, there is an extended range of local-moment
behavior (Smol = ln 2, T χmol � 1/4) associated with single
occupancy of the even-parity molecular orbital (states |φ(1)

1 〉
and |φ(1)

2 〉). Eventually, the properties cross over below the
temperature scale T ∗ defined above to those of the Kondo
singlet state: Smol = 0, T χmol = 0.

For λ just below λx (λ2/ω0 = 0.0391 in Fig. 10) there
are weak shoulders near Smol = ln 5 and T χmol = 1/5, as in
the limit of smaller e-ph couplings. In this case, however,
these features reflect the near degeneracy of the four nmol = 1
configurations and the lowest-energy nmol = 2 configuration:
|φ(2)

1 〉 in Table I. At slightly lower temperatures, the states
|φ(1)

3 〉 and |φ(1)
4 〉 become depopulated and the properties drop

through Smol = ln 3 and T χmol = 1/6 before finally falling
smoothly to zero. Even though there is no extended regime
of local-moment behavior, the asymptotic approach of Smol

and T χmol to their ground-state values is essentially identical
to that for λ � λx after rescaling of the temperature by T ∗.
As shown in Fig. 11, throughout the regime λ < λx , T χmol

follows the same function of T/T ∗ for T � 10T ∗. This is just
one manifestation of the universality of the Kondo regime, in
which TK ≡ T ∗ serves as the sole low-energy scale.

A small increase in λ2/ω0 from 0.0391 to 0.043 89, slightly
above λ2

x/ω0 = 0.0417, brings about significant changes in the
low-temperature properties. While there are still weak features
in the entropy at ln 5 and ln 3, the final approach to the ground
state is more rapid than for λ < λx , as can be seen from Fig. 11.
Note also the upturn in 〈nb〉 as T falls below about 10T ∗, a
feature absent for λ < λx that signals the integral role played
by phonons in quenching the molecular magnetic moment.

Finally, in the limit λ � λx (exemplified by λ2/ω0 =
0.064 in Fig. 10), E

(2)
1 is by a considerable margin the

lowest eigenvalue of P̂0ĤeP̂0, so with decreasing temperature,
Smol and T χmol quickly approach zero with little sign of
any intermediate regime. Even though the quenching of the
molecular degrees of freedom arises from phonon-induced
shifts in the molecular orbitals rather than from a many-body
Kondo effect involving strong entanglement with the lead
degrees, the λ → ∞ ground state is adiabatically connected
to that for λ = 0.

3. Effect of a uniform shift in the orbital energies

We finish by considering the effect of shifting the two
molecular orbitals at a fixed, small energy separation εβ −
εα = 2δ through the application of a gate voltage Vg that causes
εi in Eq. (2) to be replaced with εi − eVg , and ε̃p in Eq. (26)
to be replaced with ε̃p − eVg . Figure 12 plots the gate-voltage
dependence of the linear conductance for U ′ = U = 0.5, five
values of λ′ = λ, and for δ = 0.025 [panel (a)], δ = 0.05 (b),
and δ = 0.1 (c). Figure 13 shows the corresponding evolution
of the total molecular charge and the phonon occupation for
the case δ = 0.1. In both figures, the quantity plotted along
the horizontal axis is εα = −δ − eVg , which allows direct
comparison with the results shown in in Figs. 2(c), 2(f),
and 3(c) for the regime where the β molecular orbital lies
far above the chemical potential.

Just as in the other situations considered above, the
zero-temperature conductance obeys the Fermi-liquid relation
Eq. (55). A plateau at G � G0 spans the range of gate voltages
within which the total molecular occupancy is 〈nmol〉 � 1
[e.g., compare Figs. 12(c) and 13(a)], while the conductance
approaches zero for larger Vg , where the molecular charge
vanishes, and for smaller Vg , where 〈nmol〉 � 2.

Once again, we begin by considering the limit λ = 0 of
zero e-ph coupling. For δ = 0.025 � � = 0.0177, the rises
between zero and peak conductance are somewhat broader
(along the εα axis) than their counterparts in cases where
the β molecular orbital lies far above the chemical potential
[compare with Fig. 3(c)]. This broadening can be understood
as a consequence of the step in 〈nmol〉 being split into changes
in 〈nα〉 and in 〈nβ〉. When δ � �, the β molecular orbital
is essentially depopulated [as can be seen for the Vg = 0 in
Fig. 8(a)] and the conductance steps narrow to a width similar
to that for εβ = 4.

Increase of the e-ph coupling from zero results in shifts
of the occupancy and conductance steps to progressively
higher values of εα (or to lower values of Vg) that can be
attributed to the phonon-induced renormalization of the orbital
energies and of the Coulomb interactions. For δ = 0.025,
the width of the 〈nmol〉 � 1, G � G0 plateau is close to the
value ˜̃U defined in Eq. (60), which approaches U − 8λ2/ω0
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in the limit δ � λ2/ω0 satisfied by the δ = 0.025 curves in
Eq. 12(a). Even for the δ = 0.1 curves shown in Fig. 12(b),
the plateau width is at least U − 8λ2/ω0, considerably larger
than its value Ũ = U − 2λ2/ω0 when the orbital β lies far
above the chemical potential. The occupancy and conductance
plateau might be expected to disappear once ˜̃U becomes
negative around λ2/ω0 � U/8 = 0.0625. Indeed, the data for
λ2/ω0 = 0.064 in Fig. 12 show a narrow conductance peak
that can be associated with the rapid decrease of 〈nmol〉 directly
from 2 to 0 without any significant range of single occupancy
[illustrated for δ = 0.1 in Fig. 13(b)].

V. SUMMARY

We have studied the low-temperature properties of a single-
molecule junction formed by a two-orbital molecule con-
necting metallic leads. The model Hamiltonian incorporates
intraorbital and interorbital Coulomb repulsion, a Holstein
coupling of the molecular charge to the displacement of a
local phonon mode, and also phonon-mediated interorbital
tunneling. We have investigated the low-temperature regime
of the system using the numerical renormalization group
to provide a nonperturbative treatment of the competing
strong interactions. Insight into the numerical results has been
obtained by considering the phonon-renormalization of model
parameters identified through canonical transformation of the
starting Hamiltonian.

We have focused on two quite different regions of the
model’s parameter space. (1) In situations where one of the
two molecular orbitals lies close to the chemical potential
while the other has a much higher energy, the thermodynamic
properties and linear conductance are very similar to those
predicted previously for a single-orbital molecule, showing
phonon-induced shifts in the active molecular orbital and
a reduction in the effective Coulomb repulsion between
electrons on the molecule. In this region, interorbital e-ph

coupling can be treated as a weak perturbation. (2) In the
region in which the two orbitals both lie close to the chemical
potential, where all the interactions must be treated on an equal
footing, the phonon-induced renormalization of the Coulomb
interactions is stronger than in the case of one active molecular
orbital, enhancing the likelihood of attaining in experiments
the interesting regime of small or even attractive on-site
Coulomb interactions.

In both regions (1) and (2), electron-phonon interactions
favor double occupancy of the molecule and are detrimental
to the formation of a molecular local moment and to the
low-temperature Kondo screening of that moment by elec-
trons in the leads. With increasing electron-phonon coupling,
the Kondo effect is progressively destroyed and a phonon-
dominated nonmagnetic ground state emerges in its place. In
all the cases presented here, this evolution produces a smooth
crossover in the ground-state properties. Special situations that
result in first-order quantum phase transitions between Kondo
and non-Kondo ground states will be described in a subsequent
publication. We have left for future study cases involving
two degenerate (or nearly degenerate) molecular orbitals lying
below the chemical potential of the leads. In such cases, e-e
interactions favor the presence of an unpaired electron in each
orbital, and electron-phonon interactions may be expected to
significantly affect the competition between total-spin-singlet
and triplet ground states.77–79
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32R. Härtle and M. Thoss, Phys. Rev. B 83, 115414 (2011).
33H. Song, Y. Kim, Y. H. Jang, H. Jeong, M. A. Reed, and T. Lee,

Nature (London) 462, 1039 (2009).
34D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Abusch-

Magder, U. Meirav, and M. A. Kastner, Nature (London) 391, 156
(1998).

35H. Jeong, A. M. Chang, and M. R. Melloch, Science 293, 2221
(2001).

36E. Roca, C. Trallero-Giner, and M. Cardona, Phys. Rev. B 49, 13704
(1994).

37P. W. Anderson, Phys. Rev. 124, 41 (1961).
38T. Holstein, Ann. Phys. (NY) 8, 325 (1959).
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56M. D. Nuñez Regueiro, P. S. Cornaglia, G. Usaj, and C. A. Balseiro,

Phys. Rev. B 76, 075425 (2007).
57P. S. Cornaglia, G. Usaj, and C. A. Balseiro, Phys. Rev. B 76,

241403 (2007).
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