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Superlattice Dirac points and space-dependent Fermi velocity in a corrugated graphene monolayer
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Recent studies show that periodic potentials can generate superlattice Dirac points at energies ±h̄νF|G|/2
in graphene (where h̄ is the reduced Planck constant, νF is the Fermi velocity of graphene, and G is the
reciprocal superlattice vector). Here, we perform scanning tunneling microscopy and spectroscopy studies of a
corrugated graphene monolayer on Rh foil. We show that the quasiperiodic ripples of nanometer wavelength
in the corrugated graphene give rise to weak one-dimensional electronic potentials and thereby lead to the
emergence of the superlattice Dirac points. The position of the superlattice Dirac point is space dependent and
shows a wide distribution of values. We demonstrate that the space-dependent superlattice Dirac points are closely
related to the space-dependent Fermi velocity, which may arise from the effect of the local strain and the strong
electron-electron interaction in the corrugated graphene.
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I. INTRODUCTION

Since the laboratory realization of graphene in 2004,1 this
two-dimensional (2D) honeycomb lattice of carbon atoms has
motivated intense theoretical and experimental investigations
of its properties.2–8 It has been demonstrated that the electronic
chirality (the spinorlike structure of the wave function) is of
central importance to many of graphene’s unique electronic
properties.3,9–12 Recently, a number of theoretical studies
predicted that the chiral nature of charge carriers results in
highly anisotropic behaviors of massless Dirac fermions in
graphene under periodic potentials and generates new Dirac
points at energies ESD = ±h̄νF|G|/2 in graphene superlattice
(where h̄ is the reduced Planck constant, νF is the Fermi
velocity of graphene, and G is the reciprocal superlattice
vector).13–16 Despite these suggestive findings13–16 and many
other interesting physics17–22 in graphene superlattice, the
experimental study of this system is scarce due to the difficulty
in fabricating graphene under nanoscale periodic potentials.23

Until recently, it was understood that corrugated graphene or
the moiré pattern induced between the top graphene layer
and the substrate (or the underlayer graphene) acts as a weak
periodic potential, which generates superlattice Dirac points at
an energy determined by the period of the potential.24–26 These
seminal experiments provided a facile method with which
to realize graphene superlattice and open opportunities for
superlattice engineering of electronic properties in graphene.

In this paper, we address the electronic structures of a
corrugated graphene monolayer on Rh foil. We show that the
quasiperiodic ripples of nanometer wavelength give rise to a
weak one-dimensional (1D) electronic potential in graphene.
This 1D potential leads to the emergence of the superlattice
Dirac points ESD, which are manifested by two dips in the
density of states, symmetrically placed at energies flanking
the pristine graphene Dirac point ED. The position of ESD

is space-dependent and shows a wide distribution of values.
Our experimental result demonstrates that the space-dependent
ESD is closely related to the space-dependent Fermi velocity,

which is attributed to the effect of the local strain and the strong
electron-electron interaction in the corrugated graphene.

II. EXPERIMENTAL METHODS

The graphene monolayer was grown on a 25 micron thin
polycrystalline Rh foil, which is mainly (111) oriented, via a
traditional ambient pressure chemical vapor deposition (CVD)
method, as reported in previous papers.27,28 The sample was
synthesized at 1000 ◦C, and the growth time was varied from 3
to 15 min to control the thickness of graphene. The thickness
of the as-grown graphene was further characterized by Raman
spectra measurements,27,28 and in this paper, we focus on the
structure and electronic properties of the graphene monolayer.
The as-grown sample was cooled down to room temperature
and then transferred into the ultrahigh-vacuum condition for
further scanning tunneling microscopy (STM) characteriza-
tions. The STM system was an ultrahigh-vacuum, four-probe
scanning probe microscope from UNISOKU. All STM and
scanning tunneling spectroscopy (STS) measurements were
performed at liquid-nitrogen temperature, and the images were
taken in a constant-current scanning mode. The STM tips
were obtained by chemical etching from a wire of Pt(80%)
Ir(20%) alloys. Lateral dimensions observed in the STM
images were calibrated using a standard graphene lattice. The
STS spectrum, i.e., the dI/dV-V curve, was carried out with a
standard lock-in technique using a 957 Hz alternating current
modulation of the bias voltage.

Due to thermal expansion mismatch between graphene and
the substrate (the Rh foil contracts, whereas the graphene
layer expands during the cooling process), defect-like wrinkles
and ripples tend to evolve along the boundaries of crystalline
terraces for strain relief.29,30 Very recently, this thermal strain
engineering was used to generate (sub)nanometer-wavelength
periodic ripples in graphene,31 and it was demonstrated that the
strained graphene structures modify the local electronic struc-
tures dramatically.31–35 Theoretically, it was predicted that
corrugated graphene could lead to an electronic superlattice
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with a period set by the corrugation wavelength.36 Motivated
by this proposal, we addressed the electronic structures in
graphene with quasiperiodic ripples of nanometer wavelength
by STM and STS.

III. EXPERIMENTAL RESULTS

Figure 1(a) shows an STM image of a flat area of the
graphene monolayer on polycrystalline Rh foil. No periodic
moiré superstructures can be seen, and an almost identical fea-
ture has been observed in several tens of flat areas of graphene
monolayers on Rh foil. This feature differs substantially from
that of both the graphene bilayer on Rh foil and the graphene
monolayer on a (111) surface of single-crystal Rh.27 For the
graphene bilayer, the misorientation between the bilayer usu-
ally results in moiré superstructures with different periods.27

For the latter case, the strong C-Rh covalent bond and the
lattice mismatch between graphene (0.246 nm) and Rh(111)
(0.269 nm) could lead to hexagonal moiré superstructures with
the periodicity of 2.9 nm.27,37–39 The absence of moiré super-
structures, as shown in Fig. 1(a), indicates that the coupling
between graphene and the Rh foil is much weaker than that
of monolayer graphene on a single-crystal Rh.27 Figure 1(b)
shows an atomic resolution STM image of the graphene, where
a clear honeycomb lattice is observed. Figure 1(c) shows a typ-
ical STS spectrum of the sample. The tunneling spectrum gives

FIG. 1. (Color online) (a) An STM image of a flat graphene
monolayer on Rh foil (Vsample = 550 mV and I = 6.26 pA). The bright
dots around the bottom left corner arise from charge accumulation at
the boundary of graphene. (b) Atomic-resolution image of graphene
in the blue frame of panel (a) (Vsample = 600 mV and I = 14.8 pA).
The atomic structure of graphene is overlaid onto the STM image.
(c) A typical tunneling spectrum, i.e., dI/dV-V curve, recorded on the
graphene monolayer. The Dirac point, as marked by the black arrow,
is located at ED ∼ 38 mV, indicating a slight charge transfer between
the graphene and substrate. Around the Dirac point, the density of
states increases linearly with the energy, which is identical to that in
pristine graphene. The dashed and dotted lines are a guide to the eyes.

direct access to the local density of states (LDOS) of the surface
at the position of the STM tip. The linear DOS around the
Dirac point ED is consistent with that of the pristine graphene.
The position of the Dirac point ED is slightly above the Fermi
level, suggesting charge transfer between the graphene and the
substrate.40–42

As mentioned above, a corrugated graphene monolayer
with quasiperiodic ripples of nanometer wavelength is easy
to be found along the boundaries of crystalline terraces of
Rh foil. Figure 2(a) shows a typical corrugated graphene with
quasiperiodic ripples. The average width of these ripples is
estimated to be about 3.5 nm, and the height of these ripples is
usually smaller than 1 nm. The inset is the Fourier transform
showing the reciprocal-lattice of the ripples. Figure 2(b) and
2(c) shows atomic-resolution images of the ripples, and only
a honeycomb lattice is observed, suggesting that the local
curvature of the ripples does not break the sixfold symmetry
of the graphene lattice. This result also implies that there is no
gap opening at the Dirac point. In literature, a triangular lattice
was observed on a graphene wrinkle ∼10 nm in width and
∼3 nm in height.43 The triangular lattice along the wrinkle
may arise from its large local curvature (strain), which breaks
the sixfold symmetry of the lattice.

FIG. 2. (Color online) (a) A STM topography of corrugated
graphene with quasiperiodic ripples of nanometer wavelength on
Rh foil (Vsample = 440 mV and I = 10.31 pA). The inset is a
Fourier transform of the main panel showing the reciprocal-lattice
of the quasiperiodic ripples. The scale bar of the inset is 5 Gm−1.
(b) Zoom-in topography of the blue frame in (a) shows a 1D
superlattice (Vsample = 393 mV and I = 10.31 pA). (c) Atomic-
resolution image of the red frame in panel (b) shows a honeycomb
lattice (Vsample = 393 mV and I = 10.31 pA). (d) Tunneling spectra,
i.e., dI/dV-V curves, recorded at different positions, as marked by the
stars with different colors in panel (a). The spectra were vertically
offset for clarity. The positions of the superlattice Dirac points, which
contribute to the dips of the local density of states, are indicated by
the arrows.
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FIG. 3. (Color online) (a) An STM topography of a corrugated
graphene with quasiperiodic ripples. The dashed lines represent the
boundaries of the quasiperiodic ripples. The index n is shown above
the ripples. The inset is a Fourier transform of the main panel showing
the reciprocal-lattice of the quasiperiodic ripples. (b) A line profile
along the black curve in panel (a). (c) Three tunneling spectra, i.e.,
dI/dV-V curves, recorded at different positions, as marked by the
stars with different colors in panel (a). The spectra were vertically
offset for clarity. The positions of the superlattice Dirac points, which
contribute to the dips of the local density of states, are indicated by
the arrows.

Figure 2(d) shows seven STS spectra recorded at different
positions, as marked by the stars with different colors in
Fig. 2(a). Around the Dirac point, the DOS (the slope of the
spectra) is linear in energy, which is similar to that of the
pristine graphene. Besides the low-energy linear DOS, these
spectra show two dips, which are generally of asymmetric
strength, flanking the Dirac point. By taking into account
the weak 1D electronic potential in the graphene induced by
the quasiperiodic ripples,36 it is expected that the electronic
chirality will result in highly anisotropic behaviors of both the
Fermi velocity of the charge carriers and the gap opening at the
minizone boundary (MB) formed by the periodic potential.13

Therefore, the new Dirac points at energies ESD = ±h̄νF|G|/2
can be generated by the 1D potential at the center of the MB.
The two dips in the tunneling spectra are attributed to the
positions of the superlattice Dirac points in the DOS. The
asymmetric strength of the two dips in the tunneling spectra, as
shown in Fig. 2(d), was also observed in the superlattice Dirac
points generated by 2D moiré potentials. The asymmetry was
mainly attributed to the electron-hole asymmetry originating
from next-nearest-neighbor hopping.25 In strained graphene
structures, such large electron-hole asymmetry is expected
because of the lattice deformation, which enhances the next-
nearest-neighbor hopping.32–34 Similar asymmetry of the STS
spectra is also observed in other corrugated graphene with
similar quasiperiodic ripples, as shown in Fig. 3.

IV. ANALYSIS AND DISCUSSION

To further understand the experimental result, we compare
our experimental data with the expected theoretical result
quantitatively. For simplicity, we assume that the quasiperiodic
ripples generate a weak 1D Kronig–Penney type of potential
U (x) on graphene periodic along the x direction with spatial

FIG. 4. (Color online) (a) The schematic structural model of 1D
graphene superlattice formed by a Kronig–Penney type of potential
periodic along the x direction with spatial period L and barrier
width W . (b) Energy dispersions of charge carriers at the minizone
boundaries of a 1D graphene superlattice with U1D = 0.5 eV, L =
10 nm, and W = 5 nm. The gap closes at the minizone boundaries
(kx = ±π/L and ky = 0) where the superlattice Dirac points are
generated. In panel (c), we have a cut of the electronic band structures
at a fixed ky. The straight lines correspond to ky = 0, and the green
and blue curves correspond to ky = 0.012 Å−1. The energy gap at
the minizone boundaries is zero for ky = 0. (d) The energy of the
superlattice Dirac points away from the Dirac point as a function
of the potential period L. The two solid curves are the theoretical
dependence of ESD(L) with η = 0.95 (blue) and 0.5 (red), respectively
(here η = W/L). The solid circles are the positions of the superlattice
Dirac points obtained from the tunneling spectra of Fig. 2(d).

period L and barrier width W , as shown in Fig. 4(a). Here,
we assume that L is equal to the nominal width of the
ripples. The intervalley scattering of such a system may be
neglected because L is much larger than the nearest-neighbor
carbon-carbon distance. Then, we can use the model developed
in Ref. 13 to show the new Dirac points induced by the
1D potential and derive the period dependence of ESD. We
only consider eigenstates near the K point in the Brillouin
zone of graphene. The effective Hamiltonian for low-energy
quasiparticles of graphene in this basis is given by44

H1 = h̄vF

(
0 −kx + i · ky

−kx − i · ky 0

)
, (1)

where vF is the Fermi velocity, and k the small wave vector
of the quasiparticle near the K point. The energy eigenvalues
can be written as

Es,�k = εs,�k = sh̄vF k. (2)

here s = +1 for conduction band and s = −1 for valence band.
Then, we consider the 1D periodic potential case discussed
earlier, and the Hamiltonian has the following form14

H2 = h̄vF

(
0 −kx + i · ky

−kx − i · ky 0

)
+ IU (x). (3)
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Here, I is the 2 × 2 identity matrix. After a unitary
transformation H3 = M†H2M , using the unitary matrix14

M =
√

2

2

(
e−iψ(x)/2 e−iψ(x)/2

e−iψ(x)/2 eiψ(x)/2

)
, (4)

where ψ(x)is given by

ψ(x) = 2
∫ x

0
U (x ′)dx ′/h̄vF , (5)

we obtain

H3 =
(

εs,
−→
k

1
2 (1 + P ) · U (2π/L)

1
2 (1 + P ) · U (2π/L) εs,

−→
k −(2π/L,0)

)
. (6)

Here, εs,
−→
k = εs,

−→
k −(2π/L,0) = sh̄vF k, P = e

−i·θ−→
k ,

−→
k −(2π/L,0) ,

and U (2π/L) is the Fourier component of the periodic
potential.13 The energy eigenvalues can be worked out by
diagonalizing the Hamiltonian matrix. Figure 4(b) and 4(c)
shows energy dispersions of charge carriers at the minizone
boundaries of a 1D graphene superlattice. The group velocity
is not renormalized, and the energy gap at the MB vanishes
when k is along the direction of the periodic potential, i.e.,
ky = 0. Therefore, the 1D graphene superlattice generates
four new Dirac points at energies ESD = ±h̄νF|G|/2, which
contribute to the two dips in the tunneling DOS. Our analysis
also indicates that the ratio of W/L only influences the position
of the superlattice Dirac points slightly, as shown in Fig. 4(d).

The experimental ESD of different ripples of the corrugated
graphene shows a wide distribution of values, as shown in
Fig. 2(d). We carefully examined all the STS spectra and their
measured positions. At a fixed measured position, the value
of ESD is almost a constant irrespective of the STM tips and
the measured times. However, at different positions, the value
of ESD is space-dependent and shows a wide distribution of
values. This suggests that the space dependence of ESD is
an intrinsic phenomenon in the corrugated graphene. Similar
space-dependent superlattice Dirac points were also observed
in each ripple of the corrugated graphene. This excludes the
different widths of the ripples as a dominating origin of
the space-dependent ESD. We attribute the observed space-
dependent ESD mainly to the space-dependent Fermi velocity,
which may originate from the local strain45 and the strong
electron-electron interaction46,47 in the corrugated graphene
according to ESD = ±h̄νF|G|/2. The model developed in
Ref. 13 treated the ripples as the quasiperiodic electronic
superlattice. The effects of both the strain and the electron-
electron interaction were not taken into account in that model.
However, recent studies pointed out that the strain and the
electron-electron interaction influence the Fermi velocity of
graphene dramatically.45–48 For example, the Fermi velocity is
only about 1.0 × 106 m/s for graphene without electron-
electron interaction or with a very weak electron-electron
interaction, whereas it could reach as high as 3.0 × 106 m/s for
graphene with strong electron-electron interaction.47 Actually,
the ripples of a corrugated graphene were predicted to lead to a
strong electron-electron interaction.18,19,46 Additionally, it was
also predicted theoretically that the corrugated graphene will
have a space-dependent Fermi velocity.45

The best way to confirm the above analysis is to directly
measure the space-dependent Fermi velocity in the corrugated
graphene. However, this is not easy to be realized experi-
mentally. Here, we propose a possible solution to explore the
space-dependent Fermi velocity in the corrugated graphene.
In the pristine graphene, the DOS per unit cell around the
Dirac point is given by ρ(E) ∝ |E|/v2

F ,3 which indicates
that the slope of the DOS reflects the magnitude of the
Fermi velocity. Please note that both theoretical13 and our
experimental results demonstrated that the charge carriers
of the graphene superlattice still show a linear increase in
the low-energy DOS. Theoretically, the slope of the DOS in
graphene under 1D periodic potential is larger than that of the
pristine graphene because of the velocity renormalization in
the graphene superlattice.13 This suggests that the slope of the
DOS still reflects the magnitude of the average Fermi velocity
in the graphene superlattice. In the STS measurements, the
slope of the STS spectrum, S, is proportional to ρ(E). On
the assumption that the slope of the DOS of the corrugated

FIG. 5. (Color online) (a) Two typical dI/dV-V curves recorded
at different positions of the corrugated graphene (the two curves are
reproduced from that of Fig. 2 with the same colors) along with the
STS spectrum of the flat graphene monolayer. Only the spectra in
positive bias are shown for clarity. The arrows point to the positions
of the superlattice Dirac points observed in the corrugated graphene.
(b) The STS spectrum of the flat graphene monolayer. (c)–(i) Seven
dI/dV-V curves of the corrugated graphene from top to bottom in
Fig. 2(d). Only the spectra in positive bias are shown for clarity.
Around the Dirac point, the slope of the spectrum is almost linear
in energy. The dashed line is a linear fit to obtain the slope of the
spectrum.
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FIG. 6. (Color online) (a) The value of S, deduced from the spec-
tra at different positions of different corrugated graphene samples,
as a function of E

exp
SD/Eth

SD . Here, S is the normalized slope of an
STS spectrum, and S = 1 corresponds to the slope of the STS
spectrum of pristine graphene, E

exp
SD is the corresponding position

of the superlattice Dirac points, Eth
SD is the theoretical position of the

superlattice Dirac points calculated with the width of the ripples L

determined experimentally and W/L = 0.5. It reveals that the value
of Eth

SD is closely related to the slope of the STS spectrum. (b) The
value of (1/S)0.5, deduced from the spectra at different positions of
different corrugated graphene samples, as a function of E

exp
SD/Eth

SD .
The right y axis shows vcorr

F /vflat
F . The red dashed line is a guide to the

eyes.

graphene still reflects the magnitude of the Fermi velocity, i.e.,
S ∝ 1/v2

F (or vF ∝ ( 1
S

)0.5), then we can use the STS spectra
to derive the local Fermi velocity according to the slope of the
spectrum.

If this assumption is valid, the value of ESD should be
proportional to the value of (1/S)0.5 according to ESD =
±h̄νF|G|/2. Our experimental result reveals that the value of
ESD is closely related to the slope of the STS spectrum, as
shown in Fig. 5(a). The two typical curves recorded in the

corrugated graphene indicate that the value of ESD is larger at
the position where the slope of the STS spectrum is smaller.
The method to determine the slope of the STS spectrum is
shown in Fig. 5(b)–5(i). For more experimental evidence,
please see Fig. 6(a), in which we plot the slope of the STS
spectra, deduced from the spectra at different positions of
different corrugated graphene samples, as a function of the
position of the superlattice Dirac points. Figure 6(b) shows
the value of (1/S)0.5 as a function of E

exp
SD/Eth

SD . The linear
dependence of (1/S)0.5 and E

exp
SD/Eth

SD indicates that the slope
of the DOS of the corrugated graphene really reflects the
magnitude of the Fermi velocity. The slope of the STS spectra
recorded at different positions shows a wide distribution of
values, which is attributed to the effect of the local strain
and the strong electron-electron interaction in the corrugated
graphene. The right y axis of Fig. 6(b) shows vcorr

F /vflat
F . Here,

vcorr
F is the local Fermi velocity in the corrugated graphene, and

vflat
F is the Fermi velocity in the flat graphene monolayer (these

values are obtained on the assumption that vF ∝ ( 1
S

)0.5). The
average Fermi velocity in the corrugated graphene is estimated
as 1.1vflat

F .

V. CONCLUSIONS

In summary, we address the electronic structures of a
corrugated graphene monolayer on Rh foil. We show that the
quasiperiodic ripples of nanometer wavelength give rise to a
weak 1D electronic potential in graphene, which leads to the
emergence of the superlattice Dirac points. Our experimental
results further demonstrate that the corrugated graphene has
a space-dependent Fermi velocity originating from the strain
and the electron-electron interaction. These results suggest
that the strain and the electron-electron interaction play vital
roles in the electronic properties of corrugated graphene, and
this system could provide an ideal platform to study strongly
correlated phases in graphene with desirable properties.
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