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We study transport properties of a quantum chain formed by an array of chaotic quantum dots coupled to each
other and to electron reservoirs via barriers of arbitrary transparencies. We introduce two exact representations of
the generating function (GF) of charge counting statistics: a transfer matrix model for numerical simulations and a
supersymmetric σ model for analytical calculations. Using the σ model, we calculate analytically the semiclassical
term and the leading quantum correction (weak localization) of GF as a function of barriers’ transparencies and the
number of quantum dots. We observe that the density of transmission eigenvalues, obtained from the semiclassical
term of the GF, exhibits a quantum transition, associated with the emergence of Fabry-Perot modes, in a region
of the parameter space of barriers’ transparencies that expands by increasing the number of quantum dots in the
chain. Simple analytical expressions for the transition lines are derived, which may be used to tune the different
regimes. We demonstrate that the presence of these Fabry-Perot (FP) modes plays a decisive role in controlling
the ballistic-diffusive crossover in the quantum chain. We also find interesting nonmonotonic behaviors in the
leading semiclassical terms and changes of sign in the weak-localization corrections of high-order charge transfer
cumulants, as a function of the number of dots. Our results agree well with independent analytical calculations
using a diagrammatic technique for integration over the unitary group and also with numerical simulations using
the transfer matrix model.
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I. INTRODUCTION

Nanoscale and microscale devices based on semiconductor
heterostructures, such as quantum dots and quantum wires,
provide natural laboratories in which to study quantum
signatures of electron transport in the presence of complete
or partial phase coherence.1 The possibility one has to control
the relevant parameters in such systems has had a great impact
in the development of the theoretical approaches to quantum
transport in artificial devices. More recently, much attention
have been given to complex devices, such as quantum networks
formed by arrays of quantum dots on GaAs, arranged in various
geometries, such as chains2–4 and honeycomb patterns.5–7

The possibility of building artificial quantum simulators of
complex many-body systems in this way is an exciting
perspective that may come out from these efforts.8,9

The study of the process of transferring particles through
quantum devices led to the concept of charge counting statistic
(CCS),10 a fermionic version of the photon counting statistics
developed by Glauber in 1963.11 The central concept of
CCS is the probability, Pn(Tob), that n units of charge are
transferred during an observation time Tob. The randomness
on the quantum transmission process, and the Pauli principle,
play an important role in the value of Pn(Tob). The CCS
of a phase coherent conductor is fully characterized by a
characteristic or cumulant generating function, �(λ), defined
via the Fourier series e�(λ) ≡ ∑

n Pn(Tob)einλ. In Ref. 10,
the cumulant generating function of a quantum device was
calculated in terms of its transmission eigenvalues {τi}, i.e.,
the eigenvalues of t t†, where t is the transmission matrix
of the device. More recently, a powerful connection has
been found between the CCS of a quantum point contact
and the entanglement entropy,12 which may allow a direct

measurement of entanglement via current fluctuations. A
particularly interesting result is the reconstruction of the full
entanglement spectrum, i.e., the full set of eigenvalues of the
reduced density matrix, via high-order CCS cumulants.13 In
Ref. 14, a unified approach based on fluctuation theorems
was proposed to describe nonequilibrium properties, such as
charge transfer statistics, of open quantum systems. A central
concept in this approach is the notion of two-point projective
measurements. It was shown that several known approaches to
quantum transport can be recovered by taking particular cases
of two-point measurements. For instance, a trajectory approach
can be obtained from an interpretation of the quantum master
equation in terms of continuous positive operator measure-
ments for systems weakly coupled to reservoirs.15 Another
approach that can be recovered is the modified propagator
technique defined via the Keldysh Green’s function, which
can be used to calculate �(λ) of an arbitrary quantum device.
Semiclassical approaches to quantum scattering theory have
also been used to obtain �(λ).16 A different route to obtain
the CCS generating function of a quantum device was put
forward in Ref. 17 using the language of many-body physics.
In this work, the microscopic description of the whole system,
including the detectors, is treated in a quantum many-body
language. The dynamics of the system is obtained via the
projective technique of nonequilibrium statistical mechanics,
combined with an extended-in-time measurement scheme. The
main result obtained from this approach is a general formula
expressing �(λ) in terms of the many-body Green’s function
of the device.

An important universal transport regime appears when the
quantum device is a network of ballistic chaotic cavities
coupled to each other via potential barriers. In this case,
a random matrix approach18 applies, and it predicts that the
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transmission eigenvalues of the conductor become strongly
correlated random variables. This means that the generating
function �(λ) fluctuates, and can no longer be considered a
complete characterization of the stochastic process associated
with charge transfer. In the semiclassical regime, characterized
by a large number of open transmission channels, we may
neglect such fluctuations and calculate the average generat-
ing function S(λ) = 〈�(λ)〉 using a quantum circuit theory
(QCT).1 The main advantage of QCT is the fact that one can
calculate S(λ) directly as a function of the system’s control
parameters without having to obtain first the joint distribution
of transmission eigenvalues. In Ref. 19, it was shown how to
extend QCT to obtain weak localization (WL) corrections and
universal fluctuations of transport observables.

Experimental realizations of quantum networks with the
topology of a chain show an interesting ballistic-diffusive
crossover,2,3 evidence of localization effects.4 In Ref. 3,
experimental results for the Fano factor, defined as the ratio
between the second and the first charge transfer cumulant, as
a function of the number of dots in the chain were compared
with theoretical results obtained from the Boltzmann-Langevin
semiclassical formalism.20 A study of this crossover using the
first three charge transfer cumulants, obtained from QCT, was
presented in Ref. 21. Continuous advances in measurement
techniques of high-order charge transfer cumulants22 suggest
that experimental data, for at least the first three charge
transfer cumulants, may soon be available for several types
of quantum networks. The recently found connection between
high-order cumulants and the full entanglement spectrum13

provides another motivation for the development of effective
methods to calculate and analyze these cumulants for arbitrary
quantum networks.

In this paper, we present a detailed study of charge transfer
cumulants, including weak-localization (WL) corrections, for
a chain of quantum dots coupled to each other, and to
electron reservoirs, via barriers of arbitrary transparencies. Our
analytical results provide an essentially complete description
of the ballistic-diffusive crossover, by showing explicitly
the dependence on the number of dots in the chain and
on all barriers’ transparencies. Furthermore, we observe
that the density of transmission eigenvalues, obtained from
the dominant semiclassical contribution to S(λ), exhibits a
quantum transition, associated with the emergence of Fabry-
Perot modes, in a region of the parameter space of barriers’
transparencies that expands by increasing the number of
quantum dots in the chain. We demonstrate that the presence of
these Fabry-Perot modes plays a decisive role in controlling the
ballistic-diffusive crossover in the quantum chain. Crossovers
from pure symmetry ensembles are also accounted for by
calculating S(λ) in terms of the rates for spin-orbit scattering
and magnetic-field decoherence. Our results agree well with
those obtained from a diagrammatic technique for integration
over the unitary group23 and with numerical simulations using
random unitary matrices.24

This paper in organized as follows. In Sec. II, we discuss
a model for the coupling between adjacent quantum dots
and introduce a mathematical description of charge transfer
statistics in a chain of quantum dots by means of a nonlinear
σ model. In Sec. III, we derive the equations of quantum
circuit theory for a quantum chain. These equations are

used to calculate the dominant semiclassical contributions
to the first four charge transfer cumulants of two types of
quantum chains: (i) a homogenous array, described as a chain
where all barriers connecting adjacent dots have the same
transparency, and (ii) a heterogenous array, where there are
one or several connectors with transparencies that differ from
those of the rest of the chain. In the latter case, we also
study the density of transmission eigenvalues of the chain.
We observe the emergence of Fabry-Perot modes in a certain
region in parameter space, and we describe how it depends
on the number of quantum dots in the chain. In Sec. IV,
we apply quantum circuit theory to the calculation of WL
corrections. We derive a generating function for the WL
corrections of charge transfer cumulants of a homogenous
chain, and use it to calculate explicit expressions for WL
corrections of the first three cumulants as a function of the
number of dots and the transparencies of the barriers. The
WL corrections of high-order cumulants agree well with
numerical simulations based on random unitary matrices. We
also present an analytical expression for the WL correction of
the conductance of the chain including crossover parameters,
which generalizes several recent results of the literature. A
summary and conclusions are presented in Sec. VI.

II. STATISTICS OF CHARGE TRANSFER THROUGH
A QUANTUM CHAIN

In this section we introduce a model that describes the
statistics of charge transfer through an array of quantum dots,
coupled to each other and to electron reservoirs via potential
barriers. The reservoirs are in thermodynamical equilibrium
characterized by a Fermi-Dirac distribution fL(R)(E). The
potential drop across the system is given by eV = μL − μR ,
where μL (μR) is the chemical potential in the left (right)
reservoir and e is the electron charge. In Fig. 1 we give a
pictorial representation of our system.

We now discuss a mathematical representation of the
generating function for the counting statistics of charge
transfer through the chain. Following Ref. 25, we start from
the Levitov-Lesovik expression for the generating function10

of charge transfer through a generic device characterized by
its transmission matrix t(E):

�(λ) = −Tob

h

∫ ∞

−∞
dE Tr ln[1 + Jλ(E)t(E)t†(E)], (1)

where Tob is the observation time, λ is the count-
ing parameter, Jλ(E) = (eiλ − 1)f1(E)[1 − f2(E)] + (e−iλ −
1)f2(E)[1 − f1(E)], and fj (E) is the Fermi-Dirac distribution
function in the j th reservoir. We assume universal chaotic
dynamics inside the dots, which implies that t(E) can be
described by a random matrix, and that we may neglect its
energy dependence. Consequently, �(λ) is a random function
and an average over its realizations has to be performed. There
is an exact procedure to do this, known as the supersymmetry
technique.26 One of the advantages of this approach is the
possibility of accessing both the perturbative and nonpertur-
bative physical regimes, which correspond to large and small
numbers of open scattering channels respectively.

075404-2



CHARGE COUNTING STATISTICS AND WEAK . . . PHYSICAL REVIEW B 87, 075404 (2013)

FIG. 1. At the top, we show a pictorial representation of a linear
array of quantum dots connected to each other via nonideal contacts.
The dots at the boundaries are connected to a left (L) and a right
(R) electron reservoir, characterized by Fermi distribution functions
with chemical potentials given by μL and μR respectively. In the
middle, we have a circuit representation of the array, in which every
dot is labeled by a member of a set of auxiliary variables {φi}. The
variable φ in the left reservoir plays the role of a pseudopotential in the
language of quantum circuit theory. Each connector coupling adjacent
dots, or an outer dot to a reservoir, is characterized by a transmission
coefficient Ti and a number Ni of equivalent propagation channels.
At the bottom, we show an effective two-dot representation of a chain
in which all internal connectors have transmission coefficient equal
to T .

We proceed by considering the following average ratio of
determinants27

�(φ0,θ0) =
〈
det

(
1 − sin2(φ0/2)tt†

1 − sinh2(θ0/2)tt†

)〉
, (2)

where φ0 and θ0 are auxiliary variables. The connection
between �(φ0,θ0) and the ensemble average of �(λ) is
obtained via the auxiliary function

q(λ) = i
∂ 〈�(λ)〉

∂λ

= −i
Tob

h

∫ ∞

−∞
dE

∂Jλ(E)

∂λ

K[sinh−1 √
Jλ(E)]√

Jλ(E)[1 + Jλ(E)]
,

where K(x) is given by

K(x) = 1

2

〈
Tr

(
sinh(2x)tt†

1 + sinh2(x)tt†

)〉

= −i
∂�(φ0,θ0)

∂φ0

∣∣∣∣
φ0=−2ix=iθ0

. (3)

The ensemble average shown in Eqs. (2) and (3) can
be calculated numerically using a random scattering matrix
model. The numerical procedure requires a generator of
random unitary matrices from the circular Wigner-Dyson
ensemble.28 The universal chaotic dynamics inside each dot
can be modeled by sampling a scattering matrix, Sj , from this
generator. Due to the multiplicative rule of the transfer matrix
of a chain in terms of the transfer matrices of the dots and the

connectors, it is convenient to convert the scattering matrix of
the dot, Sj , into a transfer matrix, Mj . The transfer matrix of
the j th connector can be written as24,29

Mj =
(

t−1
j 1 rj t

−1
j 1

−rj t
−1
j 1 t−1

j 1

)
, j = 1, . . . ,N, (4)

where 1 is the Nc × Nc identity matrix, Nc is the number
of open channels in the connector, and rj = i

√
1 − Tj and

tj = √
Tj are the reflection and transmission amplitudes of

the connector respectively. The transfer matrix of the whole
system is obtained from the following matrix product:24,29

M = M1M1M2M2M3 · · · MN−1MN . (5)

Equation (5) is the main formula for the implementation of our
numerical procedure.

In analytical calculations, we may proceed by using
the supersymmetry technique26 to represent �(φ0,θ0) as a
propagator of a supersymmetric nonlinear σ model,

�(φ0,θ0) =
∫

Q̂2
j =1

N−1∏
j=1

dQ̂j e
S({Q̂}), (6)

in which Q̂j are supermatrices associated with each dot in the
chain. The σ -model action is given by

S({Q̂}) =
N−1∑
j=0

Sj (Q̂j ,Q̂j+1), (7)

where

Sj (Q̂j ,Q̂j+1) = −Nc

4
Str ln

(
1 − Tj+1

4
(Q̂j − Q̂j+1)2

)
,

(8)

in which Nc is the number of open scattering channels in the
chain and Tj+1 is the transmission coefficient of the (j + 1)th
connector. We defined the indices such that the supermatrix
Q̂0 ≡ Q̂φ describes the left reservoir, while Q̂N describes
the right one. Although we do not provide here a formal
proof of the equivalence between the random transfer matrix
representation, Eq. (5), and the supersymmetric σ -model
representation, Eq. (6), detailed comparisons between these
representations will be made via explicit calculations of the
first four charge transfer cumulants.

An alternative formulation of charge counting statistics
using the nonequilibrium Keldysh Green’s function technique
was put forward in Refs. 30 and 31. In this formalism, the
counting field is introduced via a gauge transformation and
the effective action coincides with Eq. (7), after appropriate
redefinitions of the trace operation and the Q̂j matrices,
which acquire a Keldysh structure. The main result of the
Keldysh approach is the derivation, via the extremum of
the action, of a matrix version of quantum circuit theory of
charge counting statistics at finite temperature.30 In the above
supermatrix formalism, an equivalent quantum circuit theory
emerges from the evaluation of Eq. (6) using the saddle-point
approximation. In both approaches the resulting equations
are scalar for a two-terminal setup. The main advantage
of the supersymmetry approach, however, is the possibility
to perform nonperturbative calculations, which are essential,
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for instance, to understand the transition from the metallic to
the insulating regimes in the network32,33 A detailed compari-
son between the Keldysh and supersymmetry approaches was
presented in Ref. 25.

III. QUANTUM CIRCUIT THEORY

In this section we describe the supersymmetric version
of quantum circuit theory (QCT) relevant to the statistics of
charge transfer through a quantum chain. We show how it
emerges from the saddle-point approximation of Eq. (6) and
we use it to calculate charge transfer cumulants of several
types of chains as a function of the number of connectors in the
circuit. We also calculate the average density of transmission
eigenvalues of a heterogeneous chain.

We start by connecting the average dimensionless generat-
ing function, S(λ) ≡ h〈�(λ)〉/(eV Tob), to the average density
of transmission eigenvalues, ρ(τ ) = ∑

n〈δ(τ − τn)〉, at zero
temperature and low voltages. With the condition of universal
chaotic dynamics inside the dots we may neglect the energy
dependence of the transmission eigenvalues; we thus find

S(λ) =
∫ 1

0
dτ ρ(τ ) ln[1 + τ (eiλ − 1)]. (9)

In the semiclassical regime, the number of open scattering
channels is large and ρ(τ ) becomes a smooth function. From
a technical point of view it is convenient to introduce a new
counting parameter ε given by

ε2 = 1 − eiλ, (10)

and to define the following auxiliary function

g(ε) = −i
∂S(λ)

∂λ

∣∣∣∣
eiλ=1−ε2

=
∫ 1

0
dτ ρ(τ )

(1 − ε2)τ

1 − ε2τ
, (11)

from which the charge transfer cumulants can be obtained
through the formula

ql+1 =
(

ε2 − 1

2ε

d

d ε

)l

g(ε)

∣∣∣∣
ε = 0

, l = 0,1, . . . . (12)

It is also convenient to introduce the change of variables
τ = sech2x, and to define a new average density ν(x), which
can be obtained from g(ε) through

ν(x) = 2

π
Im

{
iε√

1 − ε2
g(ε)

∣∣∣∣
ε=cosh x

}
. (13)

The density ν(x) is directly related to ρ(τ ) via the transforma-
tion formula

ρ(τ ) = ν[cosh−1(1/
√

τ )]

2τ
√

1 − τ
. (14)

We proceed by introducing a function I (φ) which, in the
saddle-point approximation, plays the role of a conserving
pseudocurrent. In the nonperturbative sector it is connected to
the propagator of the nonlinear σ model, �(φ0,θ0), via25

I (φ) = −2
∂�(φ0,θ0)

∂φ0

∣∣∣∣
φ0=φ=iθ0

. (15)

The relation between I (φ) and g(ε) is given by

g(ε) =
√

1 − ε2

2ε
I (φ)

∣∣∣∣
sin(φ/2)=ε

. (16)

In the semiclassical regime characterized by a large number
of propagating modes, Nc � 1, we may evaluate �(φ0,θ0)
using the saddle-point approximation. The saddle-point equa-
tions are obtained from the extremum of S( ˆ{Q}) with respect
to Qj , for j = 1, . . . ,N − 1, under the constraint Q̂2

j = 1.
The resulting equations can be interpreted as a conservation
law for a supermatrix current. One can greatly simplify these
equations by the use of the following parametrization for the
matrices Q̂j :

Q̂j =
(

0 e−i�̂j

ei�̂j 0

)
, (17)

where �̂j = diag(iθj ,iθj ,φj ,φj ), for j = 0, . . . ,N , with the
boundary conditions θ0 = −iφ, θN = 0, φ0 = φ, and φN = 0.
With this parametrization the action reads

S({Q̂}) = Nc

N−1∑
j=0

ln (1 − Tj+1 sin2(�φj+1/2))

−Nc

N−1∑
j=0

ln (1 − Tj+1 sinh2(�θj+1/2)),

where �φj+1 = φj − φj+1 and �θj+1 = θj − θj+1. The
saddle-point equations are obtained from

∂S
∂φj

= 0 = ∂S
∂θj

, j = 1, . . . ,N − 1, (18)

and can be used to calculate �(φ0,θ0) with logarithmic
accuracy. After using Eq. (15), we obtain the following
conservation laws for a scalar pseudocurrent:

I (φ) = I1(φ − φ1) = · · · = Ij (φj−1 − φj ) = · · · = IN (φN−1)

(19)

where

Ij (�φj ) = NcTj sin(�φj )

1 − Tj sin2(�φj/2)
, j = 1,2, . . . ,N. (20)

We remark that Eqs. (19) and (20) can also be obtained via the
Keldysh approach.30

The problem is thus reduced to the determination of the
pseudopotentials φj at all nodes of the circuit. We shall apply
this procedure to two interesting cases: a homogenous linear
array and a heterogeneous chain.

A. Homogeneous chain

The homogeneous chain is obtained by setting Tj = T at all
connectors. The physical solution of Eq. (19) can be obtained
from the set of equations sin(�φj ) = sin(�φj−1), for j =
1, . . . ,N , with the boundary conditions, φ0 = φ, and φN =
0. We obtain φj = (N − j )φ/N , which gives the following
expression for the pseudocurrent:

I (φ) = NcT sin(φ/N )

1 − T sin2(φ/2N )
. (21)
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Substituting Eq. (21) into Eq. (16), and expanding the result in powers of ε, we obtain

g(ε)

Nc

= T

N
− T

3

(N2 + 2 − 3T )

N3
ε2 + T

15

[2(1 − N4) − 15(1 − T )T ]

N5
ε4

+ T

315N7
[−24N6 + (14 − 21T )N4 + (14 − 105(1 − T )T )N2 + 315T 3 − 420T 2 + 126T − 4]ε6 + O(ε8), (22)

Using Eq. (12) we can calculate the ratios of the second (shot
noise), third (skewness), and fourth (curtosis) cumulants to the
conductance of the system. We find

F ≡ q2

q1
= 1

3
+ 1

3

2 − 3T

N2
, (23)

S ≡ q3

q1
= 1

15
+ 1

3

2 − 3T

N2
+ 2

15

2 − 15(1 − T )T

N4
, (24)

Q ≡ q4

q1
= − 1

105
+ 1

5

2 − 3T

N2
− 4

5

15(1 − T )T − 2

N4

− 2

105

315T 3 − 420T 2 + 126T − 4

N6
. (25)

The expressions for the Fano factor (F ) and the skewness-
conductance ratio (S) agree with those obtained in Ref. 21
using a matrix version of quantum circuit theory.

In Fig. 2 we show the behaviors of F , S, and Q as a
function of the number of connectors N for several values
of T . The behaviors of F and S reproduce those obtained
in Ref. 3 using a Boltzmann-Langevin approach. In both
graphs we can see an increasing monotonic behavior for
T = 0.7 (green lines), and T = 1 (red lines) approaching
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FIG. 2. (Color online) Behavior of three transport observables
as a function of the number of connectors for several barrier
transparencies. The analytical results for the Fano factor F (top left),
the ratio of the skewness to the conductance S (top right), and the
ratio of the curtosis to the conductance Q (bottom) are plotted with
red lines for T = 1, green lines for T = 0.7, blue lines for T = 0.4,
and magenta ones for T = 0.1. The horizontal dashed lines show the
values of F , S, and Q for a quantum wire: 1/3, 1/15, and −1/105
respectively. The numerical data are represented by a different symbol
for each transparency value.

the expected values in the quantum wire limit, Fwire = 1/3
and Swire = 1/15 respectively, as we increase the number of
connectors. It is interesting to observe that there exists a value
close to T = 0.7 at which the observables tend faster to the
quantum wire values, as can be seen in Fig. 2, where the
quantum wire limit is reached already for a small number of
connectors, N ≈ 5. This feature is consistent with shot-noise
measurements by Oberholzer et al.2,3 Furthermore, note that
the curtosis-conductance ratio (Q) displays a nonmonotonic
behavior for intermediate values of T and tends to the quantum
wire limit, −1/105, for large N . It is also interesting to
notice that, at T = 2/3, the first correction term O(N−2)
due the discreteness of the chain vanishes for F , S, and Q.
Remarkably, the Fano factor of the chain becomes independent
of N at T = 2/3.

We stress that our results are in complete agreement with
the numerical simulations using the transfer matrix model,
which are presented in Fig. 2 with symbols. The numerical
procedure consists of extracting the transmission eigenvalues
from the random transfer matrix of the chain, M [see Eq. (5)],
and the transport observables (e.g., conductance, shot noise
power, etc.) are calculated for each realization. We generated
105 realizations of the matrix ensemble, which proved to be
sufficiently large to estimate the averages of the observables.
The semiclassical limit was reached by the following proce-
dure: we obtained results for Nc = 20,21, . . . ,50, and then
numerically extrapolated to Nc → ∞.

In the next subsection we describe how a nonhomogeneity,
due to a pair of barriers with transparencies different from
all the others in the chain, uncovers a key ingredient in the
ballistic-diffusive crossover.

B. Heterogenous Chain

In this section we apply quantum circuit theory to the
heterogeneous setup described in Fig. 1. We focus our attention
on a circuit with only four adjustable parameters, three
of which are barrier’s transparencies shown in Fig. 1. We
distinguish between the connectors joining adjacent dots,
with transparency T , and barriers which connect the external
dots in the chain to the reservoirs, with transparencies T1

and T2. The remaining parameter is the number of quantum
dots in the chain. A key simplification in this configuration
arises from the translational symmetry of the pseudopotential
drops between adjacent dots in the array (similar to the
homogenous case discussed above), which allows, as we show
below, the reduction of the initial problem of N − 1 coupled
quantum dots into a problem of two coupled quantum dots (see
Fig. 1).

Applying quantum circuit theory to this heterogeneous
chain, we obtain the following equations for the pseudo-current
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through the connectors:

I1(φ − φ1) = NcT1 sin(φ − φ1)

1 − T1 sin2[(φ − φ1)/2]
,

due to the “potential drop” through the barrier T1,

Ij,j+1(φj − φj+1) = NcT sin(φj − φj+1)

1 − T sin2[(φj − φj+1)/2]
,

with j = 1, . . . ,N − 1, which describes the pseudocurrent
through the internal connectors, and finally

I2(φN−1) = NcT2 sin(φN−1)

1 − T2 sin2(φN−1/2)
,

due to the “potential drop” through the barrier T2.
The pseudocurrent conservation law in the circuit reads

I1(φ − φ1) = Ij,j+1(φj − φj+1) = I2(φN−1). (26)

Taking into account the translational symmetry inside the
chain, we conclude that the potential drop in any internal
connector satisfies the equations

sin(φj − φj+1) = sin

(
φ1 − φN−1

N − 2

)
, j = 1,2, . . . ,N − 2,

which means that we can rewrite the conservation law, Eq. (26),
in the reduced form

I1(φ − φ1) = Ic(φ1 − φN−1) = I2(φN−1), (27)

in which we defined the effective pseudocurrent

Ic(φ1 − φN−1) = NcT sin[(φ1 − φN−1)/(N − 2)]

1 − T sin2[(φ1 − φN−1)/(2N − 4)]
. (28)

related to the total pseudopotential drop in the internal chain.
One can see that the problem of N − 1 quantum dots was
reduced, through a kind of decimation procedure, into an
effective problem of two quantum dots coupled to each other
via a renormalized connector. The pseudopotentials φ1 and
φN−1 are found by numerically solving the effective pseu-
docurrent conservation laws, Eq. (27). We use this numerical
procedure to calculate the density, ν(x = 0), inside the chain.
This quantity was introduced in Ref. 34 for a single quantum
dot, where it was shown to behave like an “order parameter”
as a function of the barriers’ transparencies. The related
quantum transition indicates the appearance of Fabry-Perot
modes associated with ideal transmission eigenvalues (τ = 1
or x = 0). Signatures of a similar quantum transition have been
found in the tails of the transmitted charge distribution of a
single quantum dot with nonideal contacts35 and in the charge-
transfer statistics of a quantum dot connected to a normal
metal and to a superconducting reservoir via two potential
barriers.36
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FIG. 3. (Color online) T1 × T2 diagram for T = 1, and N = 3
(red lines), N = 4 (green), N = 5 (blue), and N = 10 (magenta).
The regions inside the curves ζN = 1 and ζN = ζ 0

N with the same
color correspond to the regime where the system sustains Fabry-Perot
modes, i.e., ν(x = 0) > 0. The inset shows the behavior of the “order
parameter” ν(x = 0) for T1 = T = 1 for N = 3, N = 4, and N = 5
connectors as a function of T2. The vertical dashed lines indicates the
special values of T2, for each fixed number of connectors, where we
observe the emergence of Fabry-Perot modes.

In Fig. 3, we show the transition lines [points where
ν(x = 0) vanishes] in the T1T2 plane, for different numbers
of connectors. In the inset we show the behavior of ν(x = 0)
as a function of N and T2 with T1 = 1 = T . We observe
that for N = 3, i.e., a circuit with two dots, ν(x = 0)
vanishes for T2 � 1/3, and is nonzero otherwise. We remark
that in the N = 2 case, where there is a single dot,34 the
transition point for T1 = 1 is T c

2 (N = 2) = 1/2. In the case
of N − 1 dots in the chain and T1 = 1 = T , we obtain
T c

2 (N ) = 1/N . We may generalize this result to the case where
T1, T2 and T are arbitrary, through the following auxiliary
variables

ζN = T2

T1

(
1 + (N − 2 + T )

T1

T

)
(29)

and

ζ 0
N = 1 + (N − 2 + T ) T1

T

1 − (N − 2 + T ) T1
T

. (30)

In Fig. 3 (main plot), we show the transition lines defined by
ζN = 1 and ζN = ζ 0

N in the T1T2-plane for T = 1. The region
between the curves gives the support of ν(x = 0) and corre-
sponds to the parameter values at which the system sustains
a finite density of Fabry-Perot modes, thus generalizing the
single-dot results of Ref. 34.

Let us now turn to the charge transfer cumulants of the
heterogenous chain. For the sake of simplicity, we set T = T1,
so that we are left with only two free parameters, T1 and T2.
In this case, the equivalent circuit contains only one dot. The
pseudocurrent in the connectors are given by

I1(φ − φ1) =
2NcT1 tan

(
φ−φ1

2(N−1)

)
1 + (1 − T1) tan2

(
φ−φ1

2(N−1)

) (31)
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and

I2(φ1) = 2NcT2 tan (φ1/2)

1 + (1 − T2) tan2 (φ1/2)
. (32)

From the pseudo-current conservation law, I (φ) = I1(φ −
φ1) = I2(φ1), we find φ1 and thus I (φ), which we then insert
into Eq. (16) to obtain g(ε). Expanding g(ε) in powers of ε,
we calculate the Fano factor F and the skewness-conductance
ratio S. The results are

F = 1

3

(nT2 + 3T1)n2T 2
2 + [

(2 − 3T1)T 2
2 + 3T 2

1

]
nT2 + 3(1 − T2)T 3

1

(T1 + nT2)3
(33)

S = 1

15(T1 + nT2)6

{
(nT2 + 6T1)n5T 5

2 + 5
[
(2 − 3T1)T 2

2 + 3T 2
1

]
n4T 4

2 + 15
[
(2 − 3T1)T 2

2 + (2 − T2)T 2
1

]
n3T1T

3
2

+ [
2
(
2 − 15(1 − T1)T 4

2

) + 15(2 − 3T1)T 2
1 T 2

2 + 45(1 − T2)T 4
1

]
n2T 2

2 + [
6
( − 6 + 15T1 − 10T 2

1

)
T 3

2

+ 60(2 − 3T1)T 2
1 T 2

2 + 15
(
6 − 9T1 − 4T 2

1

)
T 2

1 T2 + 45T 4
1

]
nT1T

2
2 + 15(1 − (3 − 2T2)T2)T 6

1

}
, (34)

where n = N − 1 is the number of quantum dots in the
chain. In the limit of large N these ratios behave as fol-
lows: F = 1/3 + f (T1,T2)N−2 + O(N−3) and S = 1/15 +
f (T1,T2)N−2 + O(N−3), where f (T1,T2) = 2/3 − T1. We
remark that 1/3 and 1/15 are the values of these observables
in the quantum wire limit.

In Fig. 4 we show the behavior of F and S for several values
of N as a function of T1 with fixed T2 = 0.1 (left side of Fig. 4),
and also the other way around, as a function of T2 with fixed
T1 = 0.1 (right side). The dashed lines represent the values of
F and S in the diffusive quantum wire limit, which are 1/3
and 1/15 respectively. As shown in Ref. 37 these values can
be easily derived from the density of transmission eigenvalues
of a diffusive quasi-one-dimensional conductor

ρD(τ ) = g

2

1

τ
√

1 − τ
, (35)
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FIG. 4. (Color online) The behavior of the Fano factor, panels
(a) and (b), and skewness-conductance ratio, panels (c) and (d), as
a function of T2(T1) with T1(T2) fixed at the value 0.1, and N = 2
(black line), N = 3 (red), N = 4 (green), N = 5 (blue), N = 11
(magenta), and N = 15 (light blue). The vertical arrow in panel (a)
indicates where the variable N increases. We observe a minimum in
each curve indicating an attraction towards the diffusive limit caused
by the presence of Fabry-Perot modes. The horizontal dotted lines
show the expected values of F and S in the diffusive limit.

where g is the dimensionless conductance of the system. For
instance, the Fano factor reads

F =
∫ 1

0 dτ ρD(τ )τ (1 − τ )∫ 1
0 dτ ρD(τ )τ

= 1

3
. (36)

Note that the bimodal structure of ρD(τ ) with an accumulation
around the Fabry-Perot singularity at τ = 1 is the central
mechanism for the universal shot-noise reduction in this
regime. In order to make contact with our results, note that
from the transformation formula (14) we obtain νD(0) = g,
which indicates, since g � 1, that a diffusive conductor has
a very large density of FP modes. By contrast, there are no
FP modes in the insulating regime. From Fig. 4, we see that
for T1 < 2/3 both F and S exhibit nonmonotonic behavior
as a function of the barriers’ transparencies. We observe, in
particular, a minimum in each curve indicating an attraction
towards the diffusive limit caused by an increase in the density
of the Fabry-Perot modes. We conclude that the introduction of
an inhomogeneity in an array of quantum dots, via barriers of
tunable transparencies, can change the density of FP modes and
thus lead to some control over the charge transfer mechanism.
This procedure may be used to delay or even suppress the
emergence of the universal diffusive behavior.

In the next section we discuss the weak localization
corrections for the charge transfer cumulants of a chain of
quantum dots.

IV. WEAK LOCALIZATION

Campagnano and Nazarov19 developed an interesting
method to calculate the weak localization corrections of the
charge transfer cumulants, which builds on quantum circuit
theory and can be applied to quantum networks. The method
provides a way to obtain the weak localization corrections
directly from an expansion of the semiclassical action up to
second order and the computation of eigenvalues of a finite
element version of the Cooper propagator. The extension of
this method to the supersymmetry action used here is straight-
forward and thus we shall concentrate our discussion on how
to use the Cooper propagator eigenvalues, which we obtain
from our model, to calculate the weak localization corrections
of the charge transfer cumulants of the quantum chain.
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Let M±
j (φ) denote the eigenvalues of the finite element

version of the Cooper propagator. The weak-localization
correction to the pseudocurrent is given by19

Iwl(φ) = −2
∂

∂φ
Swl(φ), (37)

where

Swl(φ) = 2 − β

2β

N−1∑
j=1

ln

(
M+

j (φ)

M−
j (φ)

)
, (38)

and β is Dyson’s symmetry index. We must set β = 1 for
systems with time-reversal (TR) symmetry and spin-rotation
(SR) invariance, β = 2 for systems with broken TR, and β = 4
for systems with broken SR in the presence of TR symmetry.

Defining the auxiliary function

gwl(ε) =
√

1 − ε2

2ε
Iwl(φ)

∣∣∣∣
sin φ/2=ε

, (39)

the weak localization correction of the charge transfer cumu-
lants can be obtained from the simple formula

qwl
l+1 =

(
ε2 − 1

2ε

d

dε

)l

gwl(ε)

∣∣∣∣
ε=0

. (40)

In the next subsections, we apply this procedure to obtain
weak localization corrections to the first three charge transfer
cumulant of some quantum chains.

A. Single dot

For the sake of comparison with previous works, we
consider first the case N = 2, where the “chain” has only
one quantum dot connected to reservoirs via barriers of
arbitrary transparencies. The WL correction to the first two
charge transfer cumulants was already calculated with the
same technique in Ref. 38, where it was found to agree
with independent diagrammatic technique for integration
over the unitary group. Here we extend this result to in-
clude the WL correction to the third cumulant. The Cooper
propagator eigenvalues for the single dot are obtained by
applying the method of Ref. 19 to our σ -model action. We
find

Mσ (φ) = 2
2∑

j=1

NjZj [cos(φj−1) + (δσ,+)2Zj sin2(φj−1)],

(41)

where

Zj = Tj

4 − 4Tj sin2(�φj/2)
, (42)

with �φj = φj−1 − φj , φ0 = φ, φ2 = 0, and φ1 is obtained
from the solution of I (φ) = I1(φ − φ1) = I2(φ1). Inserting
Mσ (φ) into Eq. (38), calculating Iwl(φ) = −2∂Swl(φ)/∂φ,
and inserting the result into Eq. (39), we obtain the weak
localization generating function gwl(ε), which we expand in
powers of ε to get

gwl(ε) = − (2 − β)(1 + a)aT 2
2 T 2

1

β(T1 + aT2)3

{
1 + 1

(T1 + aT2)3

[−(3 − 4T2)T 3
1 + 2((3 − 4T2) − 4aT2)T2T

5
1

+ a2(3 + 4aT2)T 2
2 T1 − 3a3T 3

2

]
ε2 + 1

(T1 + aT2)6

[(
2 − (10 − 9T2)T 2

2

)
T 6

1

+ a
(
8(2 − 3a)T2 − (

18 − 49T2 + 33T 2
2

))
T2T

5
1 − a2{9 + 52a − 4(4(1 + a2) + 17a)T2}T 3

2 T 4
1

+ a4(16 + 49a + 9a2T2)T 5
2 T 2

1 − 2a5(9 + 5aT2)T 5
2 T1 − 2a6T 6

2

]
ε4

}
+ O(ε6),

where a = N2/N1 is the ratio of the number of open channels
in each connector.

Using the above equation one can easily calculate the first
three charge transfer cumulants, which for brevity will not be
displayed here. The analytical expressions for the first two
cumulants are in perfect agreement with the results obtained
in Ref. 38. The above equation also coincides, for vanishing
Ehrenfest time, with the semiclassical trajectory-based result
obtained in Ref. 39. We stress that the result for the third
cumulant, which was easily obtained from the σ -model
expansion, would require a very cumbersome calculation in
the diagrammatic technique.

In the next subsection, we calculate the weak localization
corrections to the first three charge transfer cumulants of the
homogeneous quantum chain.

B. Homogeneous chain

We start by presenting the eigenvalues of the finite element
version of the Cooper propagator, which was obtained using

the same procedure described in the previous subsection:

M+
j (φ) = 4Z(φ)

(
cos

πj

N
− 1

) [
2Z(φ)sin2 φ

N
+ cos

φ

N

]
,

(43)

and

M−
j (φ) = 4Z(φ)

(
cos

φ

N
− cos

πj

N

)
, (44)

where Z(φ) ≡ T/{4 − 4T sin2[φ/(2N )]}. Setting β = 1 and
inserting these eigenvalues into Eq. (38), we obtain

Swl(φ) = (N − 1)

2
ln

(
2Z(φ)sin2 φ

N
+ cos

φ

N

)

− 1

2
ln

(
cos

φ

N

)
+ 1

2
ln

(
sin 2φ

N

sinφ

)
. (45)
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FIG. 5. (Color online) Behavior of the weak localization correc-
tions of transport observables of a quantum chain. The conductance
(top left), shot-noise power (top right), and skewness (bottom) are
shown as a function of the number of dots in the chain, for T = 1
(red line), T = 0.7 (green line), T = 0.4 (blue line), and T = 0.1
(magenta line). The special symbols represent our numerical data for
each observable. The quantum wire limits are shown by horizontal
lines. The respective values are −1/3 for the conductance, −1/45 for
the shot-noise power, and −1/945 for the skewness.

Calculating Iwl(φ) = −2∂Swl(φ)/∂φ and inserting the
result into Eq. (39), we obtain the weak localization generating
function gwl(ε) as an expansion in powers of ε. The weak
localization correction for the first three charge transfer
cumulants can be obtained by substituting this expansion into
Eq. (40). The analytical expressions are given below and the
behavior as a function of the number of connectors is shown in
Fig. 5. The weak localization correction for the conductance
in given by

Gwl = − 1

3N2
(N − 1) (N − 2 + 3T ) . (46)

This result is in complete agreement with what we obtained
via a simple extension of the diagrammatic technique for
integration over the unitary group. We also checked Eq. (46)
with numerical simulations using the random transfer matrix
model, Eq. (5), and found very good agreement, as can
be seen in Fig. 5. We remark that the above expression
reproduces for T = 1 the result obtained by Argaman,40

gwl = −1/3(1 − 1/N2), using a semiclassical approach. In
the limit T → 0, where the system becomes a chain of tunnel
junctions, we recover the result obtained in Ref. 19. The
results for the weak localization of the shot noise and the
third cumulant are given by

P wl = − 1

45N4
(N − 1) (N − 2) (N + 2) (N + 15T − 14) ,

(47)

and

Cwl = − 1

945N6
(N − 1)[N5 − (62 − 63T )N4 − 20N3

+ (1240 − 1260T )N2 + 64N + 2f (T )]. (48)

respectively, where f (T ) ≡ 945T 3 − 2835T 2 + 3906T −
1984.

Note that for N � 1 the above expressions for Gwl and P wl

tend to the values −1/3 and −1/45 obtained from a random
matrix description41 of a disordered quantum wire. In Fig. 5
we show the behavior of these corrections as a function of
the number of connectors in the circuit for several values of
the transparency T . We observe that both the second cumulant
(top right figure), and the third cumulant (bottom figure) show a
nonmonotonous behavior for certain values of T and a striking
change of sign at some critical chain size. This change of sign
in P wl and Cwl is quite unexpected, since there is no breaking of
symmetry when we increase the size of the chain. The above
expressions also show another nontrivial feature concerning
the role of the barriers’ transparencies in the ballistic-diffusive
crossover in a quantum chain. One could naively imagine that
the lower the transparency of the barriers between the quantum
dots, the closer an array of quantum dots is from a diffusive
wire, since the number of effective scattering events increases.
But, as we can see in Fig. 5 this is not what happens. The
cases of ideal barriers (red lines) converge to the quantum
wire values (dashed lines) much faster than the cases of barriers
with low transparencies (e.g., T = 0.1, the magenta line) as
a function of the number of connectors. We can understand
this behavior by observing that the density of Fabry-Perot
modes increases with the transparency of the barriers in
the homogeneous case, thus pushing the system, as we
increase the number of dots in the chain, towards the diffusive
regime, where the density of FP modes satisfies the relation
limN→∞ ν(0)/g = 1. It would be interesting to find alternative
physical explanations for these weak-localization effects using
concepts from semiclassical trajectory-based approaches.39,42

The trajectory-based generating function method presented in
Ref. 43 appears to be particularly promising for this purpose.

In the next subsection, we present an analytical expression
for the weak localization correction of the conductance in the
crossover regime.

C. The crossover regime

In the presence of both an external magnetic field and
spin-orbit scattering we have partial breaking of time-reversal
symmetry and spin-rotation invariance. These effects can be
accounted for by introducing additional terms in the σ -model
action. The weak localization corrections of the charge transfer
cumulants are sensitive to these new terms, as can be seen from
the modification in the generating function, derived in Ref. 19,
and shown below:

Swl(φ) = 1

4

N−1∑
j=1

[
ln

(
M−

j (φ) + ηH

M+
j (φ) + ηH

)

+ 3ln

(
M+

j (φ) + ηH + ηSO

M−
j (φ) + ηH + ηSO

)]
, (49)

where the parameters ηH and ηSO are magnetic and spin-orbit
scattering rates, which are related to the breaking of time-
reversal symmetry and spin-rotation invariance respectively.
The pure symmetry ensembles of random matrix theory are
obtained by setting ηH = 0 and ηSO = 0 for the orthogonal
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ensemble, also charaterized by Dyson’s index β = 1; ηH →
∞ for the unitary ensemble, β = 2; and ηH = 0 and ηSO → ∞
for the symplectic ensemble, β = 4. Substituting the Cooper
propagator eigenvalues of the chain M±

j (φ), Eqs. (43) and (44),
into Eq. (49), we can calculate analytical expressions for the

weak localization corrections of all cumulants using Eq. (40).
The resulting expressions for P wl and Cwl are somewhat
cumbersome, and thus we shall present only the result for
the conductance, which can be written in the following rather
neat form:

Gwl = − T

2N2

N−1∑
j=1

(
T + (1 − T ) cos πj

N

)[
(2ηH − ηSO) + 2T

(
1 − cos πj

N

)]
T 2

(
1 − cos πj

N

)2 + [
η2

H + 2
(
T

(
1 − cos πj

N

) + ηSO
)
ηH + T

(
1 − cos πj

N

)
ηSO

] . (50)

This formula generalizes several previous results of the
literature. For instance, if we set ηSO = 0, we obtain

Gwl = − T

N2

N−1∑
j=1

T + (1 − T ) cos πj

N

ηH + T
(
1 − cos πj

N

) , (51)

in agreement with Ref. 44. For N = 3 (two dots) we obtain

Gwl = −2T 2

9

3T + 1 + 4ηH

(3T + 2ηH)(T + 2ηH)
, (52)

which reproduces the result obtained in Ref. 45. In the case of
just one quantum dot with nonideal contacts we obtain

Gwl = −G1G2(G1T2 + G2T1)(G + 2ηH − ηSO)

G2(G + 2ηH )(G + 2ηH + 2ηSO)
, (53)

where, G = G1 + G2. This result was obtained in Ref. 46
using a diagrammatic technique for integration over the unitary
group.

The main crossover effect on the WL correction of the
conductance is a change of sign induced by symmetry
breaking. The situation is, however, much richer for higher-
order cumulants, as can be seen from the single-dot result
of Refs. 38 and 46, where the sign of the shot-noise power
WL correction can be changed by varying the barriers’
transparencies without breaking any symmetry or by breaking
TR symmetry with nonideal contacts in the presence of SR
invariance. The detailed analysis of crossover effects on the
weak-localization correction of higher-order cumulants of the
chain would benefit greatly from numerical simulations using
the transfer matrix model. Since the inclusion of the symmetry
breaking fields in the presence of chaotic scattering requires a
substantial extension of our current numerical procedure, we
leave this discussion for a future publication.

V. SUMMARY AND CONCLUSIONS

The study of charge, spin, and heat transport through
quantum networks is a very active and exciting research
field. The existence of a great variety of transport regimes,
ranging from ballistic to metallic and insulating behaviors
poses serious challenges, both theoretical and experimental, in
the development of appropriate tools to describe and control
the quantum mechanisms underlying the observed phenomena.
In this work, we provide one step forward in this quest by
studying in detail the statistics of charge transfer through

a chain of chaotic quantum dots in the semiclassical and
weak-localization regimes. We observed that the density of
transmission eigenvalues, obtained from the semiclassical term
of the GF, exhibits a quantum transition, associated with the
emergence of Fabry-Perot modes, in a region of the parameter
space of barriers’ transparencies that expands by increasing
the number of quantum dots in the chain. We demonstrated
that the presence of these Fabry-Perot modes plays a decisive
role in controlling the ballistic-diffusive crossover. It appears
to be possible to delay or even suppress the emergence
of the universal diffusive behavior by tuning the barrier’s
transparencies outside the region where the system sustains
Fabry-Perot modes. We also found interesting nonmonotonic
behaviors in the leading semiclassical terms and changes of
sign in the weak-localization corrections of high-order charge
transfer cumulants, as a function of the number of dots. Our
results agree well with independent analytical calculations
using a diagrammatic technique for integration over the unitary
group and also with numerical simulations using the transfer
matrix model.

There are many ways in which our work could be extended.
One interesting possibility is the inclusion of a coupling
to an electromagnetic environment, which can be used as
an effective model of Coulomb interactions and dephasing.1

These effects are essential if the temperature dependence of
high-order cumulants are to be properly described.45 The de-
pendence of the weak-localization correction on the topology
of the quantum dot network is also an interesting subject for
future research, which would have important connections with
the literature on disordered quantum networks.47 Last, but not
least, we must mention the recent efforts to understand the
Anderson transition in quantum networks. Interesting results
using the finite-element version of a modified supersymmetric
σmodel48 suggest that there is room for advances in this
challenging problem as well.
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Rev. B 78, 235305 (2008).
39R. S. Whitney, Phys. Rev. B 75, 235404 (2007).
40N. Argaman, Phys. Rev. B 53, 7035 (1996).
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