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Shaping a time-dependent excitation to minimize the shot noise in a tunnel junction
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We report measurements of shot noise in a tunnel junction under biharmonic illumination, Vac(t) =
Vac1 cos(2πνt) + Vac2 cos(4πνt + ϕ). The experiment is performed in the quantum regime, hν � kBT at low
temperature T = 70 mK and high frequency ν = 10 GHz. From the measurement of noise at low frequency, we
show that we can infer and control the nonequilibrium electronic distribution function by adjusting the amplitudes
and phase of the excitation, thus modeling its shape. In particular, we observe that the noise depends not only
on the amplitude of the two sine waves but also on their relative phase, due to coherent emission/absorption of
photons at different frequencies. By shaping the excitation we can minimize the noise of the junction, which no
longer reaches its minimum at zero dc bias. We show that adding an excitation at frequency 2ν with the proper
amplitude and phase can reduce the noise of the junction excited at frequency ν only.

DOI: 10.1103/PhysRevB.87.075403 PACS number(s): 72.70.+m, 05.40.−a, 42.50.Lc, 73.23.−b

I. INTRODUCTION

In recent years the dynamical control of mesoscopic
conductors has gained increasing interest, mainly motivated
by the realization of phase-coherent electronics for quan-
tum computation. One major challenge is the experimental
achievement of a single electron excitation above the Fermi
sea. The way to drive the ground state of a metallic conductor
to reach the single electron excitation should be optimized to
minimize the creation of electron-hole excitations; this can
be probed by noise measurements.1–7 For a conductor with
energy-independent transmission, the variance of the current
fluctuations due to the discrete nature of electrons, the so-called
shot noise, reaches a minimum when the excitation VL(t) is a
T = 1/ν periodic sequence of Lorentzian peaks of quantized
area

∫ T

0 eVL(t) dt = Nh each, with N integer. In a tunnel
junction this leads to a noise spectral density S2 = Ne2ν, i.e.,
the same as the shot noise of a purely dc current I = Neν.
Thus, this ac excitation creates a nonequilibrium electron
distribution function with the remarkable property that it yields
to a charge transfer of N electrons per cycle in average with a
variance �N2 = N .

It is experimentally difficult to generate Lorentzian pulses
with precise shape and high repetition rate, a condition neces-
sary to observe the predictions.1,2 The simplest ac excitation
consists of a pure sine wave Vac cos(2πνt). Unfortunately, the
presence of the ac voltage always increases the noise,8–11 i.e.,
S2(Vdc,Vac) > S2(Vdc,Vac = 0), where S2 is the noise spectral
density measured at low frequency. A much richer waveform,
which we have used in the present work, is the biharmonic
excitation:

Vac(t) = Vac1 cos(2πνt) + Vac2 cos(4πνt + ϕ). (1)

By controlling the three parameters Vac1,Vac2,ϕ, one can
modify the shape of the ac excitation, which modifies the
out-of-equilibrium electron distribution function and thus
the noise. As we show below, adding the excitation at
frequency 2ν may lower the noise, i.e., S2(Vdc,Vac1,Vac2) <

S2(Vdc,Vac1,Vac2 = 0), thus partially erasing the extra noise
created by the excitation at frequency ν. This occurs because
the absorption/emission of two photons of frequency ν may

interfere destructively with that of one photon of frequency
2ν.

The paper is organized as follows. In Sec. II, we describe
the experimental setup. In Sec. III, we calculate the nonequi-
librium stationary distribution function generated by any time-
dependent, periodic excitation. From the noise measurements
we deduce in Sec. IV the experimental electron distribution
function in the presence of the biharmonic excitation. We
show in Sec. V that a biharmonic excitation with two spectral
components ν and 2ν can reduce the monoharmonic photon-
assisted noise at frequency ν. In Sec. VI, we summarize our
discussion. For the sake of clarity, some technical details are
moved from the main body of the paper to the Appendices.

II. EXPERIMENTAL SETUP

We have measured the shot noise of an Al/Al oxide/Al
tunnel junction similar to that used for noise thermometry12

cooled to 70 mK. We apply a 0.1 T perpendicular magnetic
field to turn the Al normal. We measure the noise at low
frequency while the junction is excited by the biharmonic ac
voltage (1), as depicted in Fig. 1. To generate the biharmonic
signal, a microwave source of frequency ν = 10 GHz is split in
two arms. A frequency doubler in the upper arm generates the
oscillating voltage at 2ν = 20 GHz. Its phase ϕ can be tuned by
a mechanical phase shifter while its amplitude Vac2 is set by the
tunable output power of the source. In the lower arm, a variable
attenuator allows us to modify Vac1. The signals from the two
arms are recombined at point A and sent to the sample through
a directional coupler placed at liquid helium temperature. A
bias tee, sketched by an inductor and a capacitor in Fig. 1,
allows us to add the dc voltage Vdc to the ac one coming
from the coupler. An example of an achievable waveform is
shown in Fig. 1(b), together with a Lorentzian. The ac voltages
experienced by the sample are measured by fitting the data of
the photo-assisted noise with a single frequency, as in Ref. 11.
The resistance of the sample 1/G = 48 � is close enough to
50 � to provide a good impedance matching to the coaxial
cable and avoid reflection of the ac excitation. Thus, only
the fluctuating current due to the tunneling process is ampli-
fied by a low noise cryogenic amplifier (noise temperature
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FIG. 1. (Color online) Experimental setup for the measurement
of the photon-assisted noise in a tunnel junction under biharmonic
excitation. Inset B: T -periodic sequence of biharmonic excitation
(blue line) with eVdc = eVac1 = 2eVac2 = hν and ϕ = 0, approximat-
ing Lorentzian pulses of width τ = ln 2/(2π T ) and height N = 1
(red dashed line). Inset C: normalized differential noise spectral
density with (blue line) and without (black dotted line) microwave
excitation vs normalized dc bias. The power of the generator,
the variable attenuator, and the phase shifter are tuned to obtain
eVac1 = 2eVac2 = 5.4 hν and ϕ = 0.

TN � 7 K). The noise is filtered to keep frequencies in the
range 0.5–1.8 GHz before impinging on a power detector. The
dc voltage at point C is proportional to the noise power density
S2 integrated over the bandwidth of the filter, see Appendix A.
The derivative of the noise ∂S2/∂eVdc is measured with an
additional 77 Hz, small voltage modulation, and a usual lock-
in detection. To calibrate the measurement, we use the noise
spectral density at high voltage being S2(eV � kBT ) = eI as
in shot noise thermometry.12 Figure 1(c) shows measurements
of the differential noise ∂S2/∂eVdc with and without ac
excitation. From the data without ac excitation and taking into
account the finite bandwidth of the detection, we determine
the electrons temperature: Tel = 70 mK = 0.14 hν/kB . When
the ac excitation is switched on, the differential noise exhibits
an intermediate step, a consequence of the electron energy
distribution function differing from that of Fermi-Dirac.

III. MEASUREMENTS OF DISTRIBUTION FUNCTIONS

Distribution functions in samples driven out of equilib-
rium by a dc voltage have been obtained by the mea-
surement of the differential conductance in systems where
the density of states depends on energy. This occurs with

superconducting electrodes,13,14 in the presence of dynamical
Coulomb blockade15,16 or with a quantum dot.17 In our
case, the differential conductance of the junction is totally
voltage-independent and its measurement does not provide
any spectroscopic information. However, as we show below,
the differential noise does. As with differential conductance
measurements, we cannot access the distribution functions
of the two contacts separately. We measure the distribution
functions that are involved in the transport, which depends only
on the voltage difference between the contacts. This can be
described by taking one of the contacts at equilibrium while the
other one experiences the full time-dependent voltage. For not
too small energy ξ , ξ � h�νf ,kBTel where �νf = 1.3 GHz
is the bandwidth of the noise detection, we show in Appendix A
that the distribution function f̃ is related to the differential
noise ∂S2/∂eVdc by

f̃ (εF + ξ ) � 1

2

(
1 − 1

G

∂S2

∂eVdc

)
eVdc=ξ

. (2)

An energy resolution better than h�ν,kBTel can be achieved
by numerical deconvolution of the noise data, as explained in
Appendix A.

IV. DISTRIBUTION FUNCTION FOR A
TIME-DEPENDENT EXCITATION

In the presence of a periodic voltage Vac(t) of frequency ν,
the electron wave functions acquire an extra phase factor:19

�(t) = exp

(−i

h̄

∫ t

0
eVac(t ′) dt ′

)
. (3)

Electronic states with energy ε are split into subbands
with energies ε ± nhν and spectral weight given by the
modulus squared of the Fourier coefficients cn of �(t) =∑+∞

n=−∞ cne
i2πνnt . The corresponding nonequilibrium distri-

bution function is20

f̃ (ε) =
+∞∑

n=−∞
|cn|2f (ε + nhν), (4)

where f is the equilibrium Fermi-Dirac distribution. For har-
monic excitation (Vac2 = 0), cn = Jn(eVac1/hν) with Jn the
Bessel functions of the first kind. For biharmonic excitation:

cn =
+∞∑

m=−∞
Jn−2m

(
eVac1

hν

)
Jm

(
eVac2

2hν

)
e−imϕ. (5)

The sum in Eq. (5) expresses the interference involving several
absorption/emission processes of photons of frequencies ν and
2ν. This interference depends on the relative phase ϕ. Figure 2
shows measured nonequilibrium distribution functions f̃ for
different ac excitations. They are obtained from numerical
deconvolution of the noise data (see Appendix A). Although
biharmonic excitation depends on only three parameters Vac1,
Vac2, and ϕ, a large class of distribution functions can be
realized, which allows us to control related physical properties
such as the shot noise. For example, taking Vac1 = 2Vac2

creates a distribution function with two steps. The height and
width of the steps can be controlled by tuning the phase
shift [see Fig. 2(a)] or the amplitude of the ac excitation
[see Figs. 2(b)–2(c)]. We show in the following that this
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FIG. 2. (Color online) Nonequilibrium distribution functions
obtained from numerical deconvolution of the measured differential
noise. (a) Noise is measured for eVac1 = 2eVac2 = 5.4 hν, for phase
shifts ϕ = 0 (blue), ϕ = π/2 (green), and ϕ = π (red). (b) [resp. (c)]
Noise is measured for various amplitudes of excitation Vac1 and Vac2

keeping Vac1 = 2Vac2, for ϕ = 0 (resp. ϕ = π/2).

distribution minimizes the shot noise for a given amplitude
Vac1. Making the spectroscopy of a system with discrete levels
has been performed in solid state qubits with harmonic21 and
biharmonic22 excitation. In such systems, one can directly
measure the population of the levels in the presence of the
excitation. In our case, the noise, i.e., the variance of the
fluctuations of the populations, provides the spectroscopic
information. It should be noted that the energy distribution
function f̃ (ε) refers to a single-particle distribution function
and takes, by definition, no account of potential correlations
between electrons and holes.

V. NOISE MINIMIZATION

In the following we show how controlling the distribution
function via the shape of the exciting waveform allows us to
reduce the shot noise in the tunnel junction. The current noise
of a coherent conductor biased by a time-dependent, periodic
voltage has been calculated for a pure sine wave excitation.8,23

For a tunnel junction and an arbitrary periodic excitation, we
obtain

S2,ac(eVdc) =
+∞∑

n=−∞
|cn|2 S

(0)
2 (eVdc + nhν), (6)

where S
(0)
2 (hν) = Ghν coth(hν/2kBTel) is the Johnson-

Nyquist equilibrium noise, and cn are given by Eq. (5). In
the case of a harmonic excitation, one observes features on

(a)

(b)

-15 -10 -5 0 5 10 15

FIG. 3. (Color online) Calculated (a) and measured (b) second
derivative of the biharmonic photon-assisted noise ∂2S2,ac/∂V 2

dc as
a function of normalized dc bias and phase shift. In both cases
eVac1 = 2eVac2 = 5.4 hν with ν = 10 GHz, and the temperature
is Tel = 0.14 hν/kB = 70 mK. Red curves correspond to the cal-
culated (a) and measured (b) minimum of the photon-assisted noise,
∂S2,ac/∂Vdc = 0. Dashed lines correspond to phase shifts that are
used in Fig. 4.

S2,ac(eVdc) at bias eVdc = nhν with n integer (discontinuities
of dS2/dV rounded by the finite temperature and detection
bandwidth).9,11 For biharmonic excitation the interferences
between multi-photon-assisted processes at frequency ν and
2ν induce interference fringes on a larger scale. We show
this additional complexity in the interference pattern for
Vac1 = 2Vac2 in Fig. 3(b), where the second derivative of
the noise ∂2S2,ac/∂eV 2

dc is plotted. The choice Vac1 = 2Vac2

has been motivated by a numerical calculation described in
Appendix B. The interference pattern in the (eVdc,ϕ) space
exhibits fringes with a fringe spacing �5hν [see Fig. 3(b)], in
agreement with numerical calculations using Eqs. (5) and (6),
see Fig. 3(a), whereas the substructure at hν is almost washed
out by thermal broadening. Red curves in Fig. 3 correspond
to the calculated (a) and measured (b) eVdc value at which
the photon-assisted noise is minimal (∂S2,ac/∂eVdc = 0). It
exhibits steps at eVdc = ±hν and eVdc = ±3hν.

The appearance of fringes at a scale larger than hν is
similar to what is observed when systems with discrete
spectrum are driven by a large amplitude signal:21,24 The
fringes due to individual photon resonances, characterized
by the energy scale hν, are superimposed fringes with larger
characteristic scale corresponding to Stückelberg oscillations.
The latter may persist even if the hν pattern is lost and are
a direct consequence of quantum coherence. In our case,
two contacts with time-dependent chemical potentials are
coupled by tunneling. The phase acquired by the electron-hole
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FIG. 4. (Color online) (a) Shape of the ac excitation with the
different phase shifts: ϕ = 0 (blue), ϕ = π/2 (green) and ϕ = π

(red). Dashed line: monoharmonic signal. (b) Normalized biharmonic
photon-assisted noise S2,ac/Ghν vs normalized dc bias for eVac1 =
5.4hν. Blue square, green circle, red triangle symbols: data for
eVac2 = 2.7hν and phase shifts ϕ = 0,π/2,π . Black circles: data
for Vac2 = 0, i.e., pure sine wave excitation. Cross symbols (×): data
for Vac1 = Vac2 = 0, i.e., shot noise without any ac excitation. Solid
lines: theoretical predictions, Eqs. (5) and (6). (c) Difference between
biharmonic and monoharmonic photon-assisted noise �S2,ac(Vdc) =
S2,ac(Vdc,Vac1,Vac2) − S2,ac(Vdc,Vac1,Vac2 = 0).

pairs involved in the transport mechanism depends on the
time dependence of the voltage. The probability to cross
the barrier involves interferences between several processes,
which results in the Stückelberg-like oscillations we observe.25

This behavior is generic for driven quantum systems and is a
part of the more general effect of Ramsey multiple-time-slit
interferences.26

We have calculated numerically the set of parameters
(eVdc,eVac2,ϕ) minimizing the photon-assisted noise S2,ac

for a given eVac1 and temperature Tel , see Appendix B.
The optimal dc voltage is zero only for ϕ = π/2, which
corresponds to the existence of a symmetry in the waveform:
For each positive value of Vac(t) there is a symmetric, negative

value [green curve on Fig. 4(a)]. When this symmetry is lost
there is no reason for the noise to reach its minimum at Vdc = 0.
For experimental parameters T = 0.14 hν/kB and eVac1 =
5.4 hν, we obtain that optimal values are eVac2 = eVdc =
2.4 hν and ϕ = 0. For ϕ = π , the waveform is reversed [see
Fig. 4(a)] and the minimum occurs at the opposite value of
Vdc. Figure 4(b) shows noise measured for eVac2 = 2.7 hν

(i.e., close to optimal) for ϕ = 0 (blue), π/2 (green), and π

(red). All the data (symbols) are very well fitted by the theory
(solid lines). One observes that the minima for ϕ = 0 and π

occur at opposite values of eVdc = ±2.3 hν in agreement with
the numerical result.

The black curve on Fig. 4(b) (black circles) shows the
noise for Vac2 = 0. There is a clear region of Vdc where
it is above the red or blue curve, which correspond to
Vac2 �= 0. We have emphasized this result by plotting in
Fig. 4(c) the difference �S2,ac(Vdc) = S2,ac(Vdc,Vac1,Vac2) −
S2,ac(Vdc,Vac1,Vac2 = 0) between the noise under biharmonic
and monoharmonic excitations, which can be negative. This
proves that the addition of the excitation at frequency 2ν may
reduce the noise. It is also noticeable that the noise under
biharmonic excitations drops below the absolute minimum
of the noise with monoharmonic excitation, which occurs at
zero bias, in agreement with our numerical simulations (see
Appendix B).

Noise has been predicted to be minimal when the excitation
is a sequence of Lorentzian peaks of a quantized area∫ T

0 eV (t) dt = Nh.1,2 Such an excitation does not add more
noise than its dc voltage alone. In other words, the noise as a
function of the dc voltage has minima for quantized values of
Vdc. This property seems to be valid for many ac waveforms
at zero temperature,6 including the biharmonic excitation (see
Appendix C). We observe that this is no longer the case at finite
temperature for the biharmonic excitation (data not shown), in
agreement with numerical calculations (see Appendix C). Let
us now consider the difference in the noise for two excitations
at the same frequency. Obviously, it should have extrema for
the same quantized values of Vdc at zero temperature. As shown
in Fig. 4(c), this property seems to survive at finite temperature
if we consider the difference between the monoharmonic and
biharmonic excitations �S2,ac, which has minima at ±3hν.

VI. CONCLUSION

We have observed the effect of biharmonic illumination on
the nonequilibrium current noise in a tunnel junction. We have
measured the low frequency shot noise of the junction while
varying the shape of the ac excitation and showed that from
these measurements we can determine the out-of-equilibrium
distribution function induced by the excitation. This opens the
way of engineering the waveform of an ac signal to control the
out-of-equilibrium distribution function of the electrons in a
mesoscopic conductor, thus modifying its physical properties.
We have demonstrated this ability by reducing the shot noise
in a tunnel junction irradiated at frequency ν by adding another
coherent irradiation at frequency 2ν of controlled amplitude
and phase. Such a procedure may be used in many situations.
For example, it may be used to dynamically control the
amplitude of the critical current of a superconductor/normal
metal/superconductor tunnel junction,27 or even reverse it as
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with a dc current.28,29 This would realize a Josephson junction
that can be switched from 0 state to π state dynamically, an
interesting device in the context of quantum computation.
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APPENDIX A: TUNNELING SPECTROSCOPY OF
DISTRIBUTION FUNCTIONS

The quantity we measure is

�I 2(eVdc) =
∫ +∞

−∞
S2(eVdc,hν ′) |H (ν ′)|2 dν ′, (A1)

where S2(eVdc,hν ′) is the spectral density of current fluctua-
tions at frequency ν ′ and H (ν ′) the frequency response of the
bandpass filter, of width �νf , and central frequency νf (in our
experiment, νf = 1.15 GHz, �νf = 1.3 GHz). S2(eVdc,hν ′)
depends on the ac excitation Vac(t). For a tunnel junction with
energy-independent transmissions, S2(eVdc,hν ′) is simply

S2(eVdc,hν ′) = 1
2

[
S

(0)
2 (eVdc + hν ′) + S

(0)
2 (eVdc − hν ′)

]
,

(A2)

with S
(0)
2 (eVdc) = S2(eVdc,0) the zero-frequency noise spec-

tral density, given by

S
(0)
2 (eVdc) = G

∫ +∞

−∞
[fL(ε)(1 − fR(ε))

+ fR(ε)(1 − fL(ε))] dε. (A3)

Here fL (respectively fR) is the energy distribution function
of electrons in the left (resp. right) contact. In the presence of
both dc and ac bias, we can without loss of generality consider
that the dc bias is applied to the left reservoir while the ac
voltage is applied to the right one. Thus fL is the Fermi-
Dirac distribution f with a shifted electrochemical potential,
fL(ε) = f (ε − eVdc), whereas fR = f̃ is the nonequilibrium
distribution function we wish to measure. Defining the differ-
ence in the noise with and without ac excitation, M(eVdc) =
�I 2(eVdc,eVac �= 0) − �I 2(eVdc,eVac = 0), we obtain the
following convolution:

∂M

∂eVdc

(eVdc) =
∫ +∞

−∞
K(eVdc − ε) [f̃ (ε) − f (ε)] dε (A4)

with a kernel:

K(ε) = −G

h

∫ +∞

−∞
|H (ν ′)|2 ∂f

∂ν ′ (hν ′ − ε) dν ′. (A5)

Thus, the nonequilibrium function f̃ can be calculated using
the Fourier transform FT :

f̃ (ε) = f (ε) + FT −1

{
FT

[
∂M

∂eVdc

]
FT [K]

}
(ε). (A6)

In the limit ξ � hνF ,h�νf ,kBTel , using K(ε) =
−4G�νf δ(ε − εF ), Eq. (A6) reduces to

f̃ (εF + ξ ) � 1

2

(
1 − 1

G

∂S2

∂eVdc

)
eVdc=ξ

. (A7)

In our experiment, hνf /kB = 50 mK, h�νf /kB = 56 mK,
and Tel = 70 mK.

APPENDIX B: OPTIMIZATION OF THE BIHARMONIC
PHOTON-ASSISTED NOISE AT FINITE TEMPERATURE

The photon-assisted noise in the tunnel junction depends
on the shape of the ac excitation. In the case of biharmonic
excitation, we determine numerically the set of parameters
(eV 

dc,eV

ac1,eV


ac2,ϕ

) which minimize the noise at temper-
ature Tel . At each temperature, the noise spectral density
is calculated for 100 × 100 × 100 × 100 different values
of (eVdc/hν,eVac1/hν,eVac2/hν,ϕ) in the range [−5,5] ×
[0,10] × [0,5] × [0,π ]. Let us suppose we excite at frequency
ν with an amplitude Vac1 and we want to minimize the low
frequency shot noise. Figures 5(a) and 5(b) show respectively
how to choose Vdc and Vac2 to reach this goal, as a function
of Vac1 and for various Tel . The obtained noise reduction, R =
S2(Vdc = 0,Vac1,Vac2 = 0) − S2(V 

dc,Vac1,V

ac2), is plotted in

Fig. 5(c). It appears that one always has V 
dc � V 

ac2. For
example, for our experimental parameters kBTel = 0.14 hν

and eVac1 = 5.4 hν, the optimum is eVdc = 2.38 hν, eVac2 =
2.4 hν, and ϕ = 0 (or the opposite Vdc for ϕ = π ). Adding
dc voltage and ac voltage at frequency 2ν allows us to reduce
the noise below that with no dc bias and the same excitation at
frequency ν, by an amount R = 0.04 Ghν (or in terms of noise
temperature, by 20 mK). We observe this effect in Fig. 4(b)
of the paper: The minimum of S2(Vdc,Vac1,V


ac2) drops below

S2(Vdc = 0,Vac1,Vac2 = 0) for Vdc ∼ V 
dc.

For a given Vac1, there is a temperature Tmax(eVac1 ) above
which the optimal point does not exist anymore: V 

dc = V 
ac2 =

0, see inset of Fig. 5(c). Above that temperature, adding a
second harmonic will never reduce the noise. In particular, for
eVac1 < 2 hν it is never possible to reduce the noise with a
biharmonic excitation. In our experiment, Tmax � 250 mK >

Tel , so the addition of the sine wave at frequency 2ν may lead
to a reduction of the noise, as we observe.

It is interesting to remark that the waveform we found that
minimizes the noise for a given Vac1 at finite temperature is
not close to Lorentzian, but corresponds almost to the first two
harmonics of a Lorentzian with a dc offset [see Fig. 1(b)].
The Lorentzian pulses are optimal only if we consider the
noise at zero frequency, zero temperature, and integer values
of eVdc/hν. They are no longer optimal if we work at finite
detection frequency, finite temperature, or a noninteger value
of eVdc/hν, see Appendix C.

APPENDIX C: PHOTON-ASSISTED NOISE AT FINITE
TEMPERATURE FOR VARIOUS WAVEFORMS

We consider the three waveforms shown in Fig. 6(a): VL(t)
is the Lorentzian shape of width τ = ln 2/2π T (this value is
chosen to have the same first two harmonics as the one we have
chosen in our experiment), V1(t) = Vdc[1 + cos(2πνt)] is the
same Lorentzian waveform truncated to the same dc and first
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between the monoharmonic photon-assisted noise at zero dc bias
and the optimal biharmonic one with the same ac amplitude Vac1 at
frequency ν. (a), (b), and (c) are plotted as a function of the reduced
amplitude eVac1/hν at frequency ν, for various reduced temperature
kBTel/hν ranging from 0 (blue line) to 0.65 by steps of 0.05. Inset:
Temperature above which the noise cannot be reduced by biharmonic
excitation.

harmonic, and V2(t) = Vdc[1 + cos(2πνt) + 0.5 cos(4πνt)]
is again the same Lorentzian waveform but truncated to dc
and first two harmonics. We show in Fig. 6(b) the numerical
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FIG. 6. (Color online) (a) T -periodic sequence of Lorentzian
pulses of width τ = ln 2/2π T [red line, VL(t)] and its harmonic
[green line, V1(t)] and biharmonic [blue line, V2(t)] approximations.
(b) Noise difference S2 − S2,dc for the different waveforms. Dashed
lines correspond to zero temperature whereas solid lines correspond
to our experimental temperature kBT = 0.14 hν.

difference in the noise, S2 − S2,dc between ac+dc excitation
and dc-only excitation for these three waveforms. At zero
temperature (dashed lines), there is a sharp minimum for
each integer value of eVdc/(hν) for the three waveforms. The
Lorentzian reaches zero and the biharmonic is better than the
monoharmonic. For eVdc < hν the Lorentzian is the worst.
At finite temperature (solid lines, kBT = 0.14 hν as in the
experiment), none of the waveforms minimize the noise at
quantized values of eVdc/hν.
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