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Effect of a perpendicular magnetic field on the shallow donor states near
a semiconductor-metal interface
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We investigate the influence of an external perpendicular magnetic field on the lowest-energy states of an
electron bound to a donor which is located near a semiconductor-metal interface. The problem is treated within
the effective mass approach and the lowest-energy states are obtained through (1) the “numerically exact” finite
element method, and (2) a variational approach using a trial wave function where all image charges that emerge
due to the presence of the metallic gate are taken into account. The trial wave functions are constructed such
that they reduce to an exponential behavior for sufficiently small magnetic fields and become Gaussian for
intermediate and large magnetic fields. The average electron-donor distance can be controlled by the external
magnetic field. We find that the size of the 2pz state depends strongly on the magnetic field when the donor is
close to the interface, showing a nonmonotonic behavior, in contrast with the ground and the other excited states.
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I. INTRODUCTION

The physics of the hydrogen atom in a magnetic field
attracted a lot of attention because of its considerable im-
portance connected with the study of atoms and molecules in
the intense magnetic field of neutron stars.1 The hydrogen
atom in a uniform magnetic field is one of the simplest
physical examples of a nonintegrable system and shows
chaotic behavior.2 A large number of papers3–5 are devoted
to this problem, starting from the work of Schiff and
Snyder.6

This problem became important in semiconductor physics,
where due to the small effective mass and large dielectric
constant, strong magnetic field effects on excitons and hydro-
genlike atoms could be expected already for magnetic fields
that are available in the laboratory. As is well known, Coulomb
interaction changes the form of the optical absorption edge in a
strong magnetic field. The peaks in the absorption occur not at
the Landau energies, but at the lowest exciton levels associated
with each subband. Such excitons were called diamagnetic
excitons by Zakharchenya and Seysyan7 in view of their
connection with diamagnetic Landau subbands. The influence
of the Coulomb interaction on the nature of the absorption in
a strong magnetic field was investigated in Refs. 8 and 9.

Using the method of separation of variables6 to a hydrogen-
like atom in a strong magnetic field, Elliott and Loudon10 found
the eigenfunctions and the eigenvalues for exciton energies in
the limit of γ � 1 where 2γ is the ratio of the cyclotron energy
to the effective Rydberg. In Ref. 11, the problem for excited
excitonic states was solved using the adiabatic approach.
The theory predicts an increase of the binding energy of the
discrete exciton states with increasing magnetic field.12 Due
to the similarity between hydrogenlike and excitonic states,
an enhancement of the binding energy takes place also for
impurity states.

A doping with impurities in concentrations close to the
critical value “suppresses” the Coulomb interaction and
reduces the excitonic absorption. The quenching of the
exciton absorption in germanium due to the screening of the
Coulomb interaction by free carriers was observed in Ref. 13.

Reappearance of the excitonic absorption takes place in a
strong magnetic field.

This problem was theoretically investigated in Ref. 14,
where it was found that the extension of the exciton ground
state along the magnetic field decreases with increasing
magnetic field. Due to this, the destroyed excitonic states
reconstruct in a magnetic field.

Simple approximations suffice to obtain analytical results
for exciton and hydrogenlike atom binding energy in weak
and strong magnetic fields. For intermediate magnetic field,
no analytic exact results are available and one has to rely
on approximations or pure numerical approaches. In strong
magnetic fields, accurate analytical results could be obtained
by using the adiabatic approach.10,12

Renewed interest in the energetics of hydrogenlike atoms
in a magnetic field appeared with the investigation of the
energy spectrum of shallow donors in confined systems, e.g.,
a quasi-two-dimensional (Q2D) system in a magnetic field15

as well as with the study of dopant atoms in semiconductor
devices near different interfaces in the presence of external
fields.16 In Ref. 17, a theoretical study of the electronic and
magnetic properties of the Mn-induced acceptor level obtained
by substituting a single Ga atom in the surface layer of
GaAs was presented. It was shown that the proximity of
the Mn atoms to the surface must have a significant impact
on the magnetic anisotropy energy of the system which
was previously theoretically investigated in Ref. 18 for bulk
GaAs.

Recently, the problem of a gated donor has attracted a lot of
attention due to the perspective of atomic-scale electronics.
A donor located close to the oxide-silicon interface has
been proposed as a possible realization of the Kane qubit
architecture.19 In contrast to bulk donors, it is possible to
adiabatically pull the donor electron to the interface, and to
exert precise quantum control. Aside from applications in
quantum computing, discrete dopants become very important
for diverse applications in nanoscale electronics. In Ref. 20,
the possibility of the creation of a novel device based on
single-dopant functionality was studied, and single-electron
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pumping via a number of individual tunable donors located
between a set of gates in a nanowire was reported.

The charging energies of D0 and D− in silicon as a function
of applied electric field and donor depth was calculated in
Ref. 21 using the self-consistent field tight-binding method,
and it was shown that the results were in good agreement with
experimental measurements. Results based on the effective
mass approach can be found in Ref. 22.

For a single donor P in Si, close to a SiO2 interface, the
possibility of donor-bound electron manipulation, i.e., one-
qubit operation between the donor and the interface by electric
and magnetic fields, was investigated in Ref. 23. One of the
problems for quantum computation in doped Si emerges from
the incomplete control of the exact position of the donors
and therefore from the indetermination of the value of the
exchange energy between two neighboring donor electrons.
Recently, full spatial control of the incorporation of single P

dopant atoms in Si was realized in Ref. 24, which opens a new
possibility for the creation of atomic-scale electronic devices.
In a more recent study (Ref. 25), individual Mn atoms were
carefully positioned on the GaAs surface and on the first few
layers below.

On the other hand, exchange control can also be realized
by applying a magnetic field perpendicular to the interface,
which squeezes the electron wave function and, as a re-
sult, controls the overlap of the electron wave function of
neighboring dopant atoms. So, the problem of the energetics
of a single dopant near a semiconductor-metal interface in
a magnetic field becomes a problem of great interest both
from a theoretical as well as from an experimental point of
view.

In the absence of a magnetic field, the energy spectrum of a
shallow donor located near a semiconductor-metal interface
was investigated in Ref. 26 and in a gated semiconductor
nanowire27 by using the finite element method (FEM). It was
found that the dielectric mismatch effect has a very large
effect when the donor approaches the interface. In Ref. 28,
we developed a variational approach for shallow donor states
localized in a semiconductor near a semiconductor-insulator-
metal interface. We introduced a term in the variational wave
function which describes the interaction of the electron with
the images in the insulator and/or in the metallic gate which
leads to a considerable lowering of the energy, especially when
the impurity is located very near the interface. Our variational
results for the ground- and the first-excited-state energies of
the impurity electron were found to be in good agreement with
the energies found using FEM.

It is well known that a strong magnetic field affects the
energy spectrum of impurity states. In this paper, we extend our
previous work and investigate the energy spectrum of a shallow
donor near a semiconductor-metal interface in the presence
of a magnetic field perpendicular to the interface. Since the
Schrödinger equation for a hydrogenlike system in a magnetic
field can not be solved analytically, we resort to a variational
approach. Our variational calculation is an extension of the
variational approach presented in Ref. 28 where we include
now a factor which is responsible for magnetic field effects.
Similar as in Refs. 15 and 29, the wave function exhibits an
exponential behavior for small magnetic fields but becomes
Gaussian for large magnetic fields. To get a feeling of the

accuracy of our variational results, we also present “exact”
numerical calculations based on FEM.

This paper is organized as follows. In Sec. II, we propose
trial wave functions for the ground as well as for excited
states for an impurity electron near a semiconductor-metal
interface in the presence of a perpendicular magnetic field.
The discussion of the results obtained on the basis of our
variational approach together with the “exact” FEM results
are given in Sec. III.

II. TRIAL WAVE FUNCTIONS

In this section, we consider a donor at a semiconductor-
insulator-metal interface in the presence of an external
magnetic field. When a constant magnetic field B = (0,0,B)
with A = 1

2 [B × r] (Aϕ = Hρ/2, Aρ = Az = 0) is applied
along the z axis, the Hamiltonian for the impurity electron in
cylindrical coordinates becomes

H = − h̄2
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where ωc = eB/m⊥c is the cyclotron frequency, m⊥ is the
transverse effective mass, and σ is the ratio between the
transverse and longitudinal m‖ effective masses. As in Ref. 26,
we assume that the oxide layer is very thin and its only effect
is to provide a very high potential barrier for the electron,
i.e., to prevent the electron from penetrating into the metal.
The thin oxide layer does not contribute to any dielectric
mismatch, and only the metallic gate screens the Coulomb
potential. The potential energy Uc(�r) between the electron
and the impurity near the semiconductor-metal interface, at a
position �rd = (0,d), is given by26

Uc(�r) = e2
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with ρ =
√

x2 + y2, and εs is the dielectric constant at the
semiconductor side of the interface. The dielectric constant
for typical semiconductors of interest is about 10, while
it is infinite in the metal. The dielectric mismatch effects
at the interface give rise to image charges that screen the
potential between the electron and the impurity. In Eq. (2),
the first term describes the attractive interaction between the
electron and its image, the second term is due to the repulsive
interaction between the electron and the donor image (as well
as between the donor and the electron image), and the last
term represents the normal impurity-electron interaction. In
dimensionless units expressed in terms of the Bohr radius aB =
h̄2εs/m⊥e2 and twice the Rydberg energy 2R∗ = h̄2/m⊥a2

B ,
the Hamiltonian of the system transforms to
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where Lz = −i∂/∂ϕ is the z component of the angular
momentum operator, and the dimensionless parameter of mag-
netic field γ = a2

B/a2
H with magnetic length aH = (h̄c/Be)1/2.

We use σ = 1 in this paper. In GaAs, we have aB =
9.89 nm, 2R∗ = 11.6 meV, and εs = 12.9, while for Si with
m⊥ = 0.19m0 we have aB = 3.31 nm, 2R∗ = 36.5 meV, and
εs = 11.9.

In the presence of a magnetic field, we choose the
variational wave function for the ground 1s as well as for
2p− and 2p+ states of the system as

ψ = N z g[ρ,(z − d)]f (z) exp(−δρ2/4)ρ|m| exp(imϕ), (4)

where the factor z guarantees that the wave function satisfies
the boundary condition ψ(z = 0) = 0; m = 0 corresponds
to the ground state and m = −1 (+1) corresponds to the
2p− (2p+) state. The exponential factor f (z) = exp (−βz)
describes the effect of image charges,28 and g[ρ,(z − d)] =
exp[−λ

√
ρ2 + (z − d)2] is responsible for the electron-donor

interaction; λ, β are variational parameters. In the trial
function (4), instead of the magnetic factor exp(−γρ2/4)
(which corresponds to the ground-state function in the absence
of the impurity and interface), we introduced a third variational
parameter δ through the factor exp(−δρ2/4) which is crucial
to describe the large magnetic field behavior. For weak
magnetic fields, better results are obtained using a trial
function with an exponential behavior which takes into account
the magnetic field induced asymmetry, namely, when two
additional variational parameters λ1 and λ2 are included, and
the value of γ is fixed:

ψ = N z exp[−
√

λ2
1ρ

2 + λ2
2(z − d)2] exp(−βz)

× exp(−γρ2/4)ρ|m| exp(imϕ). (5)

The normalization constant is N = √
1/2πA with A =∫ ∞

0 ρ dρ
∫ ∞

0 dz |ψ |2.
Using the trial function given by Eq. (4) with m = 0, we

obtain the following expression for the ground-state energy:
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with μ =
√

ρ2 + (z − d)2, ζ (ρ,z) = g[ρ,(z − d)]2

exp(−δρ2/2), and f1(z) = z exp(−βz).

Now we consider the 2pz and 2s exited states. In the
presence of a weak magnetic field, the trial function for the 2pz

state is chosen as a product of the 1s wave function [Eq. (4)
with m = 0] and adding the factor (z − d),30 i.e., as

ψ = Nz(z − d)g[ρ,(z − d)] exp(−δρ2/4)f (z). (7)

The 2s state wave function, in the region of weak magnetic
fields, is chosen as a product of the 1s wave function and
adding the factor (1 − αr) = [1 − α

√
ρ2 + (z − d)2],

ψ = Nz(1 − αr)g[ρ,(z − d)] exp(−δρ2/4)f (z), (8)

where the value of α is defined from the orthogonalization
condition of the 1s and 2s wave functions.28,30

For intermediate and strong magnetic fields with γ � 1, the
Coulomb interaction of the electron with the donor is expected
to be almost one dimensional, we use the adiabatic approach10

and choose the trial function for the 2pz state as

ψ = N z(z − d) f (z) exp(−δρ2/4), (9)

where the interaction of the electron with the donor as well as
with the images is described now only by one factor f ( z) =
exp (−βz); β and δ are variational parameters.

Similarly, for the 2s state28 in the presence of a strong
magnetic field, we chose the trial function

ψ = N z(1 − αz) f (z) exp(−δρ2/4). (10)

The exponential factor f (z) = exp (−βz) describes the effect
of the image charges28 and is responsible here also for the
electron-donor interaction which for a strong magnetic field is
assumed one dimensional (the validity of this assumption will
be justified further through a comparison with the FEM results
for the probability density).

It is well known that the adiabatic approach for the
ground-state energy is valid for large magnetic fields with
γ > 1, where the magnetic length becomes smaller than the
effective Bohr radius of the impurity electron. Notice that
for excited states with larger extent of the wave function,
the adiabatic approach becomes accurate already in relatively
weak magnetic fields.29

The binding energy is defined as the difference between the
energy of the system in the absence of the Coulomb interaction
and the total energy. For the 1s, 2p−, 2s, and 2pz states, the
binding energy is

Eb,i = γ /2 − Ei, (11)

where γ /2 is the energy of the first Landau level and Ei is the
total energy of the corresponding state. For the 2p+ state, we
have29

Eb,2p+ = 3γ /2 − E2p+ . (12)

III. NUMERICAL RESULTS

The numerical results obtained for the ground-state energy
using the wave function given by Eq. (4) with three variational
parameters (λ,β,δ) as well as the results with the same
function but with δ fixed to the value of γ (i.e., using two
variational parameters λ,β) in the case of equal transverse
and longitudinal effective masses (σ = 1) are shown in Fig. 1
by symbols for distance d = 2aB between the donor and the
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FIG. 1. (Color online) The dependence of the ground-state energy
(in units of 2R∗) as a function of the magnetic field parameter γ =
a2

B/a2
H for the donor position d/aB = 2 with respect to the metal

interface. We compare the results obtained using the three-variational-
parameter trial function (4) (stars) with the results when only two
variational parameters are included (circles) and with the “exact”
FEM result (solid line).

interface. In the same figure, we also show the “numerical
exact” FEM results by solid curve.

For weak magnetic fields (i.e., small γ ) and for d = 2aB ,
the maximum relative error between the exact and varia-
tional energies is about 1.5% (for γ = 0.2). The variational
ground-state energy for γ = 0.2 is E0/2R∗ = −0.3469 using
the wave function (4) where we fixed δ = γ = h̄ωc/2R∗,
while the exact result is E0/2R∗ = −0.3515. The variational
function (5) gives lower energy E0/2R∗ = −0.3481 and the
relative difference with FEM is less than 1%.

For strong magnetic fields, e.g., for γ = 2 (d = 2aB), we
found E/2R∗ = 0.1114, 0.1129, 0.1267 for the exact result,
three-parameter Eq. (4) trial function (i.e., with λ,β,δ), and
when using two parameters λ,β in Eq. (4), respectively. Notice
that now it is important to consider δ as a variational parameter
which reduces the relative error from 10% (when δ = γ ) to
1.5%.

Next we consider the excited states. Figures 2(a) and 2(b)
show the energy of the few lowest states, namely, 2p−, 2p+,
2s, and 2pz for d = 2aB and 10aB , respectively, which can
be labeled by the quantum numbers (n,l,m) (in terms of
hydrogeniclike atoms, which is valid only in weak magnetic
fields). As a result of the cylindrical symmetry, only the
azimuthal quantum number m, i.e., the quantum number of
the angular momentum operator Lz, is well defined. The states
(1,0,0), (2,0,0), (2,1,0), (2,1, − 1), and (2,1,1) correspond to
the 1s, 2s, 2pz, 2p−, and 2p+ hydrogenlike states, respectively.

Figure 2(a) shows the dependence of the excited-state
energies (in units of 2R∗) as a function of the magnetic field
parameter γ = a2

B/a2
H for the donor distance d = 2aB from

the metallic gate for 2p+ state (dotted-dotted-dashed curve),
2p− state (dotted-dashed curve) calculated on the basis of
FEM as well as variationally using the three-parameter wave
function [Eq. (4)] (variational results are indicated by stars).
The FEM results obtained for the 2s state are shown by the
dashed line, and the results obtained variationally using the

FIG. 2. (Color online) The dependence of the few lowest state
energies (in units of 2R∗) on the magnetic field parameter γ =
a2

B/a2
H for the 2p+ state (dotted-dotted-dashed curve), 2p− state

(dotted-dashed curve), 2s (dashed curve), and 2pz (dotted curve)
states calculated by FEM and variationally (symbols). Here, (a) is for
the case d = 2aB and (b) is for d = 10aB .

trial function (10) are presented by stars; the “exact” energy
of the 2pz state is shown as a dotted line, and the variational
results with Eq. (9) are indicated by triangles.

For weak magnetic field with γ = 0.2 and for a donor lo-
cated at d = 2aB using the three- parameter (λ,β,δ) variational
function given by Eq. (4), we obtain energies (in units 2R∗)
E2p− = −0.0302 and E2p+ = 0.1697, while the exact results
for these states are E2p− = −0.031, E2p+ = 0.169 (relative
error is about 2.5% for the 2p− state and less than 1% for 2p+).
The trial function (4) leads to better results in strong magnetic
fields, e.g., the relative error is about 0.2% for γ = 2; we
obtain variationally E2p− = 0.5491 and E2p+=2.5491, while
the exact results are E2p− = 0.5485, E2p+ = 2.5484.

In intermediate and strong magnetic fields, the results
obtained for the 2s state (see Fig. 2) using the trial function (10)
with the one-dimensional factor f (z) (that is responsible also
for the electron-donor interaction) are close to the FEM results
(dashed line) starting from γ = 0.6 with relative error of
about 1%. We found that for the excited states, the adiabatic
approximation, as is noticed in Ref. 29, is accurate for
intermediate and large values of γ . In weak magnetic fields, a
better agreement of the variational results with the FEM ones
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FIG. 3. (Color online) The dependence of the excited-state
energies (in units of 2R∗) for small values of the magnetic field
parameter γ ; FEM results: dotted-dashed line for the 2p− and
dotted-dotted-dashed curve for the 2p+; the 2s state is presented
by dashed line and the 2pz by dotted line. The variational results are
presented by symbols (triangles are for the 2pz state and stars for the
other states). The distance of the donor from the metal-semiconductor
interface is d = 10aB .

for the 2s state is obtained using the trial function (8) with the
three-dimensional hydrogenlike factor g[ρ,(z − d)] as shown
in Fig. 3.

When a magnetic field with γ > 0.8 is applied, we find that
the difference between the variational results [on the basis of
the trial function (9)] and the FEM results for the 2pz state
energy is about 5% (and much larger for the binding energy).
For weak magnetic fields and for large values of d, good results
for the 2pz state are found with the trial function (7) with an
error less than 8% (Fig. 3).

Figure 2(b) shows that for the case of d = 10aB , the lowest
four excited states in the absence of magnetic field are almost
degenerate since the influence of the interface and the metallic
gate is weak for large values of d. The magnetic field lifts the
degeneracy between these four states.

The situation in the case of d = 2aB is quite different due to
the more pronounced screening effect of the metallic gate and
the repulsion of the interface due to the requirement of ψ(z =
0,ρ) = 0. One can see in Fig. 2(a) that the 2s and 2pz states
have noticeably different energies as compared with the 2p±
states even for zero magnetic field, where the latter two states
are still degenerate. The 2p+ and 2p− states start to split from
each other when a magnetic field is applied. When we further
increase the magnetic field, due to the Zeeman energy the
2p− state has a smaller energy than 2s. As expected, for large
values of d the ground state and the four lowest-energy states
tend to the hydrogenic energy levels En = h̄2/(2mea

2
Bn2) with

decreasing magnetic field.
In order to study the magnetic field dependence of the

electron binding energy including the influence of the metallic
interface, we present in Figs. 4(a) and 4(b) the “exact” FEM
numerical results together with the variational ones obtained
using Eqs. (11) and (12), correspondingly, for d = 2aB and
10aB . We found that for both cases, the binding energy
increases with increase of magnetic field and a stronger
dependence is observed for the states with lower energy.

FIG. 4. (Color online) The dependence of the binding energy (in
units of 2R∗) for the ground 1s (solid line) and excited 2p− (2p+)
(dotted-dashed curve), 2s (dashed curve), and 2pz (dotted curve)
states as a function of the magnetic field parameter γ calculated by
FEM, and corresponding variational results are indicated by stars for
1s, 2s, 2p− (2p+) states and by triangles for the 2pz state when (a)
d = 2aB and (b) d = 10aB .

Figure 4(a) shows that the binding energy of the ground state
calculated variationally and by FEM are very close to each
other. The relative error is even less than the corresponding
error calculated for the total energy; for γ = 0.2, d = 2aB the
error is now 1%, and for strong fields (γ = 2) it is much less
than 1%. The binding energy for the 2p− and 2p+ states are
equal to each other (the 2p− state is under the first Landau
level, while the 2p+ state energy tends to the 3γ /2 in strong
magnetic fields with γ � 1). Similarly as for the 1s state, the
relative error for the binding energies of the 2p− (2p+) states is
less than 1%. Good agreement between variational and FEM
results is also obtained for the 2s state binding energy. In
contrast, for the 2pz state, the relative error is much larger
than the corresponding error obtained for the total energy.
The fact that the result of the variational method for 2pz is
rather different from that of the FEM can be explained by the
shallowness of this state, and the variational method gives less
accurate results for the binding energy.

The probability densities of the 2s (bottom four figures)
and 2pz (top four figures) levels in the absence of magnetic
field (γ = 0), in weak (γ = 0.1 and 0.2) and in large
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FIG. 5. (Color online) Probability density of the electron for four
different values of γ = 0, 0.1, 0.2, 2 in the ρ-z plane, where the
top (bottom) four figures correspond to the densities of the 2pz (2s)
energy level for (a) d = 10aB and (b) d = 2aB . The donor positions
are indicated by the white circle. Blue (red) areas represent low (high)
probabilities.

(γ = 2) magnetic field for donor distance d = 10aB and 2aB ,
are shown in Figs. 5(a) and 5(b), respectively. We did not plot
the probability densities of the 2p− (2p+) and 1s levels since
the shapes of the wave functions do not differ significantly.
For a better understanding of the influence of the magnetic
field on the different energy levels, we calculated the effective
radius 〈ρ〉 of the electron and the average distance from the
donor 〈z − d〉. The results for the case of d = 10aB (d = 2aB )
are shown in Fig. 6 (Fig. 7). The change of the shape of the
density probability in Fig. 5 can be explained in the following
manner. In the absence of the interface, the electron probability
density for the 2pz state is prolonged in the z direction, while
the 2s state is spherical. Due to the shape of the 2pz wave
function, the interface and the metallic gate tend to repel
the electron stronger in the 2pz state than in the 2s state. In the
absence of magnetic field, in Fig. 5(a) we see that in the 2pz

state for d = 10aB the left lobe is pushed towards the donor,
while the right one has a much larger extend in the ρ direction.
Correspondingly, in Fig. 6 we have positive values for average
distance 〈z − d〉. Such configuration of the second lobe occurs
due to the fact that the electron prefers to be far away from the
donor image and interact stronger with its image.

For the 2s state (for γ = 0), the maximum of the electron
density is found at the location of the donor, and the outer shell
of the electronic density is shifted to the interface, leading to
a negative value for the average 〈z − d〉 as shown in Fig. 6.

FIG. 6. (Color online) Effective radius 〈ρ〉 of the electron, in the
case of large donor distance d = 10aB , as a function of magnetic
field γ , for five different energy levels: 1s (solid curve), 2s (dashed
curve), 2pz (dotted curve), and 2p− (2p+) (dotted-dashed curve).
Inset: average distance of the electron from the donor 〈z − d〉 for the
same energy levels and donor distance.

This is due to the fact that in this state the electron density
distribution is initially (in the absence of external fields)
spherical symmetric. Correspondingly, the electron can be
bound with its image at large values of ρ and situated between
the donor and the interface.28

With an increase of magnetic field, the left lobe for the
2pz state reconstructs as we see in Fig. 5(a) for γ = 0.2. The
probability densities finally exhibit three extrema, with two
main lobes on the left and right sides of the donor in the z

direction. For the 2s state, a weak magnetic field is enough to
shift the maximum probability from the donor to both sides of
the donor and creates two symmetric lobes around the donor.
One can see in Fig. 5(a) that the electron probability density for
both cases, of the 2s and 2pz states, is strongly squeezed in the
ρ direction by a strong magnetic field, which shows the validity
of the choice of the trial function with the one-dimensional
factor responsible for the electron-donor interaction. Notice
that for the 2s state the electron is squeezed also in the z

direction at γ = 2 (the 2pz state may have similar behavior
for extremely large magnetic field).

This tendency is clearly seen in Fig. 6, where the effective
radius ρ of the electron from the donor for d = 10aB

monotonically decreases with magnetic field for the ground
as well as for the excited states, leading also to a decrease
of the absolute value of the average distances 〈z − d〉. The
average distances for the excited states change more quickly
than for the ground state due to the larger extension of the wave
function of these states, allowing for a larger compressibility
of the excited states.

As shows the inset of Fig. 6, for d = 10aB , in contrast
with 2s, 2p± states, the 2pz state has initially (in the absence
of magnetic field) a positive average distance from the donor.
While all these states become more localized around the donor
with increasing magnetic field, i.e., |〈z − d〉| monotonically
decreases, we observe a change in the sign of 〈z − d〉 for the
2pz state. So, the electron shifts towards the interface, i.e., to
the left side of the donor. The reason is that the 2pz state has
three lobes and it is strongly influenced by the presence of the
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FIG. 7. (Color online) (a) Effective radius 〈ρ〉 of the electron, in
case of small donor distance d = 2aB , as a function of the magnetic
parameter γ , for five different energy levels: 1s (solid line), 2p−
(2p+) (dotted-dashed curve), 2s (dashed curve), 2pz (dotted curve).
Variational results are indicated by stars for 1s, 2s, 2p− (2p+) states
and by triangles for the 2pz state. (b) Average distance of the electron
from the donor 〈z − d〉 for d = 2aB . The marked area is enlarged in
the inset.

metallic interface. A crossing of the 〈z − d〉 curves for the 2s

and 2pz can be observed at the magnetic parameter γ � 0.885.
Notice that the 2s state has a larger 〈ρ〉 value than the 2pz

state for small value of γ . The reason is that the 2s level has
a secondary extremum at the left side of the donor, where the
image of the electron pulls the electron wave function away
from the donor, which results in a smaller Coulomb interaction
with the donor (in comparison with to the 2pz state) and a
worse localization in the radial direction.

Figures 6 and 7 show that the 2p− and 2p+ states have the
same effective radius 〈ρ〉 and 〈z − d〉 for all values of γ as
the angular momentum gives only a different Zeeman energy
in the Hamiltonian. We found that the 1s state which has the
lowest energy always has the smallest effective radius 〈ρ〉.
Moreover, it has a nearly zero average distance 〈z − d〉 from
the donor, which means it is rather symmetric with respect to
the donor in the z direction.

For d = 2aB , as a result of the strong repulsion from the
interface, the electron distribution for the 2s and 2pz states is

strongly shifted to the right side as shown in Fig. 5(b). In the
absence of a magnetic field, both the 2s and 2pz states show
a secondary extremum close to the interface. With increase of
the magnetic field, a new lobe appears in the 2pz state at the
right side of the donor. Similarly as in Fig. 5(a), here the 2s

and 2pz states will finally have, respectively, two and three
lobes. However, the density distribution is more symmetric
with respect to the donor along the z direction for the case
d = 10aB . Notice that for the 2pz state in weak magnetic
fields the largest probability density is in the left lobe, and
in the third, i.e., the new lobe that appears at large magnetic
fields, but is never located in the middle lobe (where the 2s

state is mainly localized at large magnetic field), which is
also the reason why we have a steep increase of 〈z − d〉 in
Fig. 7(b).

Figure 7(b) shows the results for the average electron donor
distance 〈z − d〉 for the different energy levels when d = 2aB .
We notice that all levels have a positive value of 〈z − d〉 as a
result of the repulsion from the interface, and the expectation
value 〈z − d〉 is largest for the 2pz state. In the case of a donor
interface distance d = 2aB , the results of 〈ρ〉 for the energy
levels are shown in Fig. 7(a). In weak magnetic fields, with
the parameter γ of about 0.033, the curve 〈ρ〉 for the 2pz

state crosses the 2p± one. In weaker fields, 〈ρ〉 for the 2pz

becomes larger than for the 2p± state. This can be explained
by the fact that at such small distance d = 2aB , the 2pz state
is almost ionized due to the close presence of the repulsing
interface, and correspondingly the electron is spread out near
the interface. Notice that values of 〈ρ〉 obtained variationally
coincide with the corresponding exact FEM results. We found
that in intermediate and strong magnetic fields, the variational
results for 〈ρ〉 of 2s and 2pz states are very close to the
corresponding magnetic length, which additionally shows the
validity of the adiabatic approach. We obtained good results
for the 〈z − d〉 expectation value for the variational 1s and the
2p± states, while for the 2s one there is no good agreement
with the FEM results. For the 2pz state, the error is even larger
due to the fact that the binding (i.e., the Coulomb interaction)
energy obtained using Eq. (9) is not in good agreement with
the corresponding FEM results (Fig. 4).

As we mentioned before, the probability density increases
with increasing magnetic field [see Fig. 5(b)] in the region
away from the donor (outer lobe), thus we have an increasing
electron-donor distance 〈z − d〉 along the z direction until
the electron is mainly localized in the outer lobe. After that,
a further increase of the magnetic field squeezes the wave
function of the electron in the radial direction, which results
in a decrease of the electron-donor distance 〈z − d〉. However,
this tendency for the state 2pz is more complicated. As we can
see clearly from the inset of Fig. 7(b), 〈z − d〉 for the state 2pz

increases rapidly at first, and after it reaches its first extremum,
〈z − d〉 decreases with increasing γ .

The nonmonotonic peculiar behavior for the average 〈z −
d〉 in the 2pz state when d = 2aB is shown in Fig. 7. This
peculiarity can be explained in the following way. Initially
(in the absence of the interface and the magnetic field), the
2pz state is more extended in the z direction. In this case,
when the donor is located near the interface with d = 2aB ,
due to the presence of the metallic gate, the 2pz state becomes
very shallow. In order to increase the binding energy, the

075313-7



LI, DJOTYAN, HAO, AVETISYAN, AND PEETERS PHYSICAL REVIEW B 87, 075313 (2013)

P
(z

)

FIG. 8. (Color online) Probability of the electron P(z) in the plane
parallel to the interface when d = 2aB (at the distance |z-d| from the
donor) for the energy level 2pz. Here a, b, c, and d correspond to
the points in the inset of Fig. 7(b). Inset: Probability densities of the
electron at these points in the ρ-z plane.

electron in the 2pz state interacts stronger with its image and,
correspondingly, its probability density is spread out along the
interface [in order to be far away from the donor image, see
Fig. 5(b)]. Due to the shallowness of this state, the magnetic
field will have a stronger effect, resulting in an easy squeeze
of the electron closer to the donor image. In the close vicinity
of the interface (d = 2aB ), already the small squeezing of the
wave function in the ρ direction can be critical. This squeezing
leads to a dominant strong repulsion from the donor image
in the z direction and to the abrupt increase of the average
distance 〈z − d〉 for small values of gamma, as we see in
Fig. 5(b). Further increase of the magnetic field does not lead
to a sufficient decrease in the ρ direction (Fig. 7), but leads to
a squeezing in the z direction.

For a better understanding of the electron behavior in the
magnetic field, when the donor is near the interface (d = 2aB),
we calculated the probability P(z) for an electron in the 2pz

state to be at a distance z from the interface:

P(z) =
∫ ∫

Pb(ρ,z′)δ(z − z′)ρ dρ dz′, (13)

where Pb(ρ,z′) is the probability to find the electron at (ρ,z′)
and δ(z − z′) is the Dirac delta function. The results for P(z)
are shown in Fig. 8, where a (red solid curve), b (green dashed
curve), c (blue dotted-dashed curve), and d (black dotted curve)
correspond to points shown in the inset of Fig. 7(b). The inset
of Fig. 8 gives the probability densities of the 2pz state for these
four points. The state has two lobes in the absence of magnetic
field, and when γ changes from a to b, a third lobe appears
and becomes largest at the point c; this can be seen clearly
from the plot of P(z). It only has one peak (two overlapping
peaks but too close to distinguish from each other) which is
located in the region with small z at small magnetic field.
By increasing the magnetic field, another peak appears in the
region with large value of z, and it becomes the larger peak
and moves towards the region with large value of z at point c
where the magnetic field is larger. However, this peak does not
continue to move to the outer region at point d, but slightly
pushed towards the left (this can also be seen in the lowest

figure of the inset of Fig. 8). In that case, the magnetic field
just slightly squeezes the electron wave function in the radial
direction, which may decrease the electron-donor distance and
thus increase the Coulomb interaction between them. As a
result, a slightly decreasing tendency of P(z) becomes possible.
However, when the magnetic field reaches a certain value, the
outer lobe has the largest probability and P(z) can decrease
again until it reaches its second extremum.

IV. CONCLUSIONS

In this paper, we studied, within the effective mass approx-
imation, the lowest-energy states of an electron bound to a
donor which is located near a semiconductor-metal interface
in the presence of a perpendicular magnetic field. We used
a variational approach, which takes all image charges that
result from the metallic interface into account. A numerical
“exact” calculation based on the finite element method was
also presented for comparative purposes.

We proposed trial wave functions that decrease exponen-
tially in a small magnetic field and has a Gaussian behavior
in sufficiently large magnetic field. The variational calculation
leads to a small relative underestimation of the energy when
compared to the “exact numerical” FEM results in both small
and large magnetic fields. The numerical and variational
calculations show a clear different influence of the magnetic
field on the electron energy levels for different values of
donor-interface distance d. We studied the energetics of 1s,
2s, 2pz, 2p−, and 2p+ states as a function of the magnetic
field for different values of d. We found that for large value of
d, the lowest four states are almost degenerate as is the case of
a hydrogenic atom in the absence of a magnetic field while for
small value of d, only the 2p− and 2p+ states are degenerate.

The 1s, 2p−, and 2p+ states have no significant qualitative
changes in the shape of the wave functions when increasing
the magnetic field, except that they become more localized
around the donor. However, the wave functions of the 2s and
2pz states are strongly modified in the presence of a magnetic
field, and these changes are quite different for different values
of the donor-interface distance d due to the effect of the
image potential and the repulsion from the oxide interface. We
show that the average electron-donor distance can be tuned
by an external magnetic field, and that it exhibits peculiar
and interesting behavior for small and large values of the
donor-interface distance.

In the absence of a magnetic field, we found in our
previous works (Refs. 26 and 28) that in the case of a
semiconductor-metal interface, the dielectric mismatch effect
may change the energy of the neutral D0 center considerably.
The screening effect due to the induced image charges in the
metallic gate increases the energy, i.e., makes the D0 center
shallower. In the presence of a magnetic field, the contribution
of the image charges decreases. This occurs due to the fact
that the magnetic field squeezes the electron wave function
closer to the donor. In increasing magnetic field, the image
charges of the donor and the electron approach each other. As
a consequence, the prevailed repulsive electron-donor image
interaction is suppressed by the attractive electron- electron
image interaction and the screening decreases. For d = 2aB ,
in the absence of magnetic field, the ground-state binding
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energy is smaller by about 20% than the corresponding value,
when we ignore image charges. In the magnetic field with
γ = 2 (for d = 2aB), the effect of images becomes 10%.
This is similar for the 2p+ and 2p− states. In the absence
of magnetic field, the image effect strongly reduces (almost by
60%) the binding energy of the shallow28 2s and 2pz states. In a
strong magnetic field (γ = 2), the relative difference between
the binding energies (when the image charges are taken into
account and in their absence) reduces to 50%.

Our findings for the electron wave function, in particular
its analytical expression, and the magnetic field dependence of
its variational parameters will be useful in one-qubit operation
for the calculation of the hyperfine interaction strength and its
tuning in Si quantum computer scheme based on P donors
located close to the interface.19 In the two-qubit operation, the
knowledge of the electron wave function in a perpendicular
magnetic field allows us to find the exchange coupling between
donor electrons at the interface and also to control exchange
value by varying the magnetic field.

Our previous calculations,28 which were performed within
the effective mass approximation, lead in the absence of

magnetic field to a decrease in the donor binding energy with
decreasing donor-interface distance. Now, in this paper, in the
presence of a magnetic field, we obtain a similar behavior for
the binding energies of the ground and excited states near the
interface. These results are opposite to recent experimental
results, where using a STM tip, it was found in Ref. 16 that
the binding energy of Si donors in GaAs increases when the
donor was brought close to the GaAs interface. In Ref. 17,
in particular, it was found that a single Mn atom at the
110 surface produces a highly localized acceptor-level wave
function and that the level occurs deep in the gap due to the
loss of coordination at the surface. A deep acceptor level at
the surface was also found in the experiment of Ref. 31. This
discrepancy must be attributed to the discrete atomic character
of the system near the interface, which was not included in the
present treatment of the problem.
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