
PHYSICAL REVIEW B 87, 075312 (2013)

Powerful and efficient energy harvester with resonant-tunneling quantum dots
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We propose a nanoscale heat engine that utilizes the physics of resonant tunneling in quantum dots in order to
transfer electrons only at specific energies. The nanoengine converts heat into electrical current in a multiterminal
geometry which permits one to separate current and heat flows. By putting two quantum dots in series with a
hot cavity, electrons that enter one lead are forced to gain a prescribed energy in order to exit the opposite lead,
transporting a single electron charge. This condition yields an ideally efficient heat engine. The energy gain is a
property of the composite system rather than of the individual dots. It is therefore tunable to optimize the power
while keeping a much larger level spacing for the individual quantum dots. Despite the simplicity of the physical
model, the optimized rectified current and power is larger than any other candidate nanoengine. The ability to
scale the power by putting many such engines into a two-dimensional layered structure gives a paradigmatic
system for harvesting thermal energy at the nanoscale. We demonstrate that the high power and efficiency of the
layered structure persists even if the quantum dots exhibit some randomness.
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I. INTRODUCTION

Energy harvesting is the process by which energy is
taken from the environment and transformed to provide
power for electronics.1 Specifically, thermoelectrics can play
a crucial role in future developments of alternative sources
of energy. Unfortunately, present thermoelectric engines have
low efficiency.2 Therefore, an important task in condensed
matter physics is to find new ways to harvest ambient
thermal energy, particularly at the smallest length scales
where electronics operate. Utilizing the physics of mesosopic
electron transport for converting heat to electrical power is
surprisingly a relatively recent endeavor. While the general
relationships between electrical and heat currents and their
responses to applied voltages and temperature differences
have been understood since the work of Onsager,3 the
investigation of thermoelectric properties, and in particular
the design of nanoengines, has taken the form of several fairly
recent concrete proposals. In 1993, Hicks and Dresselhaus
investigated the thermoelectric properties of a mesoscopic
one-dimensional wire.4 Mahan and Sofo subsequently showed
that the best energy filters are also the best thermoelectrics.5

This suggests the use of quantum dots with discrete energy
levels to investigate thermodynamic questions.6,7 The Seebeck
effect—the appearance of a voltage when there is a temperature
difference across a sample—was investigated for a single
quantum dot with a resonant level by Nakpathomkun et al.8

Resonant levels were also used as energy filters to make a
related heat engine from an adiabatically rocked ratchet.9

Humphrey et al. note their model can be generalized to a static,
periodic ratchet, which is a quantum version of the model with
state-dependent diffusion.10 References 8,9 show that a single
resonant level is an ideal heat engine, and investigate power
and efficiency in that system which has similarities to the
present work.

Coulomb-blockaded dots can be ideally efficient converters
of heat to work, both in the two-terminal11 and three-
terminal12 cases; however, since transport occurs through

multiple tunneling processes, the net current and power are
very small. In light of the small currents and power produced
by Coulomb-blockaded quantum dots, open cavities with
large transmission that weakly changes with incident electron
energy have been considered.13 While this system produces
more rectified current than Coulomb-blockaded quantum dots,
simply increasing the number of quantum channels does not
help because the energy dependence of transmissions in typical
mesoscopic conductors is a single-channel effect even for
a many-channel conductor. Hence, the rectified current and
power drop as channel number is increased unless special
engineering of the contacts is made. Consequently, we should
optimize the rectified current and electrical power for a
strongly nonlinear system, operating in the single-channel
limit. We do this here with the physics of resonant tunneling
through barriers connected to the hot energy source. We show
this achieves the maximum current a single channel can give,
which we conjecture is the optimal configuration. Importantly,
in our model the energy source is separate from the electrical
circuit, as is required for energy harvesting. Therefore no
charge is extracted from it and the optimal configuration is
independent of the parameters of the energy source. This is
different from single quantum dot proposals8,9,11 where the
leads are held at different temperatures, and the amount of
transferred heat depends on the lead chemical potentials.

Resonant tunneling is a quantum mechanical effect, where
constructive interference permits an electron tunneling through
two barriers to have unit transmission. This is only true if the
electron has a particular energy equal to the bound state in
the quantum dot, or within a range of surrounding energies,
whose width is the inverse lifetime of the resonant state.14

Electrons with any other energy are effectively forbidden from
transmitting across the quantum dot. In this way, a resonant
tunneling barrier acts like an energy filter: only those electrons
that match the resonant condition are permitted to pass. We
assume for simplicity the resonant tunnel barrier (or the dot)
is symmetrically coupled.
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The geometry we consider is related to one that has
already been fabricated experimentally, but considered for a
different purpose, based on the theoretical proposal of Edwards
et al.15,16 Prance et al. performed experiments on this system in
its dual role as an electronic refrigerator.17 They demonstrated
that applying bias to the system results in cooling a large 6 μm2

cavity from 280 mK to below 190 mK. We are primarily
interested in cavities made as small as possible while still
having good thermal contact with the heat source. This further
miniaturization permits many engines to be put in parallel and
give a large output power.

The paper is organized as follows. In Sec. II we describe
the transport through our device; the results of analytical and
numerical calculations are presented in Sec. III. Section IV
investigates the scaling of the simple system consisting of two
quantum dots up to a layered structure with many channels
contributing at the same energies, and discusses the robustness
of the proposed structure to fluctuations in the fabrication
process. The conclusions are presented in Sec. V.

II. MODEL

The model we consider (shown in Fig. 1) consists of a
cavity connected to two quantum dots, each with a resonant
level of width γ and energy EL,R . We consider the situation
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FIG. 1. (Color online) Nanoscale heat engine created from a hot
cavity connected to cold reservoirs via resonant tunneling quantum
dots, each containing a single relevant energy level at energy EL,R .
The cavity is kept hot through coupling to an energy reservoir at
temperature TC (not shown) which is considered larger than the
reservoir temperature TR. Thermal broadening of the Fermi functions
in the three regions (source, cavity, and drain) is shown by the light
shading. (a) Rectification configuration. In the absence of bias (short
circuit), electrons enter the cavity via the left lead, gain energy
�E = ER − EL from the cavity, and exit through the right lead,
transferring an electrical charge e through the system. (b) Carnot
efficient stopping (open circuit) configuration.

where the widths are equal, while the energy levels are
different (these are controlled by gate voltages). The energy
difference �E = ER − EL is an important energy scale of
our composite system, which we refer to as the energy gain.
It is distinct from the level spacing δ in the individual dots
as well as from the level width. The nanocavity the dots are
connected to is considered to be in equilibrium with a heat
reservoir of temperature TC that is hotter than the left and right
electron reservoirs, having chemical potentials μL,R and equal
temperatures TR. We assume strong electron-electron and
electron-phonon interactions relax the electron energies as they
enter and leave the cavity, so the cavity’s occupation function
may be described with a Fermi function, f (E − μ,T ) =
1/(1 + exp[(E − μ)/kBT ]) completely characterized by a
cavity chemical potential μC and temperature TC, with kB

being the Boltzmann constant. This process of inelastic energy
mixing is assumed to occur on a faster time scale than the dwell
time of an electron in the cavity. Thermal energy flows from
the coupled hot bath into the cavity as a heat current, and
keeps the temperature different from that of the electron
reservoirs. The nature of the heat reservoir is not specified
in this model, but refers quite generically to any heat source
we wish to harvest energy from. Our setup should be contrasted
with the more widely studied two-terminal configurations in
which electric and heat currents flow in parallel. Our model
permits a separate heat circuit to the central reservoir and a
separate (transverse) electrical circuit.

The chemical potential of the cavity and its temperature
(or equivalently, the incoming heat current) are constrained by
conservation of global charge and energy. These constraints
are given by the simple equations IL + IR = 0 and JL + JR +
J = 0 in the steady state, where IL,R is electrical current in
the left or right contact, and JL,R the energy current. Energy
current is seemingly not conserved because of the heat current
J flowing from the hot reservoir.

The currents Ij , j = L,R, are given by the well
known formulas Ij = (2e/h)

∫
dE Tj (E)[fj − fC] and Jj =

(2/h)
∫

dE Tj (E)E[fj − fC], where Tj (E) is the transmis-
sion function of each contact for each incident electron energy
E. In our quantum dot geometry, the resonant levels give rise
to a transmission function of Lorentzian shape,14

Tj (E) = �1�2

(E − Ej )2 + (
�1+�2

2

)2 , (1)

where �1,2 are the tunnel rates (multiplied by Planck’s constant
h) of the two barriers of the resonant quantum dot(s). Here we
assume symmetric coupling for simplicity, �1 = �2 = γ , so
γ is the width of the level, or inverse lifetime of an electron in
the dot. Note that the Lorentzian energy dependence applies
if the level width γ is small compared to the level spacing
δ in the individual quantum dots. A crucial advantage of our
setup which we will exploit later on is that it permits the use
of small dots with a level spacing that is large compared to
temperature, but with the energy gain and level width of each
dot on the order of the temperature.

In the limit where the width of the level is smaller than
the thermal energy in the cavity/dot system, γ � kBTC,kBTR,
the transmission will pick out only the energies EL or ER

in the above energy integral expressions for the currents giving
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simple equations. Consequently, we have these equations for
the conservation laws for charge and energy:

0 = fL − fCL + fR − fCR, (2a)

0 = Jh/(2γ ) + EL[fL − fCL] + ER[fR − fCR], (2b)

where fL = f (EL − μL,TR), fR = f (ER − μR,TR), fCL =
f (EL − μC,TC), and fCR = f (ER − μC,TC). From these two
equations, we can solve for (say) the quantity fCR − fR =
Jh/(2γ�E). This quantity is proportional to the electrical
current through the left lead IL = −IR ≡ I , the net current
flowing through the system.

A solution of Eqs. (2a) and (2b) to linear order in the devi-
ation of the cavity’s temperature and chemical potential from
the electronic reservoirs indicates that the maximal power of
the heat engine will be produced when the chemical potentials
of the reservoirs are symmetrically placed in relation to the
average of the resonant levels, μR,L = ±μ/2 + (EL + ER)/2.
For this special case, an exact solution is possible because the
constant solution μC = (EL + ER)/2 for the cavity chemical
potential satisfies the charge conservation condition (2a) for
all temperatures.

III. RESULTS

A. Limit of small level width

We now describe the physics of this nanoengine. We
first focus on the regime γ � kBTR,kBTC, which can be
analyzed analytically and will afterwards discuss the regime
γ ∼ kBTR,kBTC which we numerically find to yield the largest
current and power. Physically, if an electron comes in the
left lead at energy EL and exits the right lead with energy
ER > EL, it must gain precisely that energy difference �E =
ER − EL. Thus, in the steady state, any incoming heat current
J must be associated with an electrical current I , with a
conversion factor of the energy gain, �E, to the quantum
of charge, e,

I = eJ

�E
. (3)

This results holds regardless of what bias is applied or what
the temperature is.

The efficiency of our heat engine, η, is defined as the ratio
of the harvested electrical power P = |(μL − μR)I |/e to the
heat current from the hot reservoir, J . For our system it takes
a particularly simple form,

η = |μL − μR|
�E

. (4)

In order to proceed further, we must find the chemical
potential of the cavity and its temperature given in terms of
the incoming heat current and chemical potentials and temper-
ature of the electron reservoirs. These are found by employing
the principle of conservation of global charge and energy; see
Eqs. (2a) and (2b).

Rather than considering the cavity temperature TC as a
function of the heat current J we are harvesting, we can turn
our perspective around, and keep the cavity temperature TC

fixed from being in thermal equilibrium with the hot energy
source. With this insight, we can express the heat current
J in terms of the hot cavity temperature and other system

parameters. We find in the limit where γ � kBTR,kBTC,�E,

J = 2γ�E

h
[f (�E/2,TC) − f (�E/2 − μ/2,TR)], (5)

which satisfies charge and energy current conservation. In
Eq. (5), h is Planck’s constant.

Importantly, without bias there is a rectified electrical
current given by

I = eJ/�E ≈ eγ�E

4h
[(kBTR)−1 − (kBTC)−1], (6)

in the limit where kBTR,kBTC � �E. This current is driven
solely by the fixed temperature difference between the systems.
We note both the heat and electrical current are proportional
to γ , the energy width of the resonant level. Consequently, the
currents and power produced in this system will tend to be
small since we have assumed that γ is the smallest energy
scale. It is also clear that both are controlled by the size
of �E, so increasing this energy gain will improve power
until it exceeds the temperature. Later we will generalize these
results by numerically optimizing the power produced in this
nanoengine.

In order to harvest power from this rectifier, a load should be
placed across it. Equivalently, we could apply a bias V = μ/e

to this system tending to reduce the rectified current. At a
particular value, μstop, the rectified current vanishes, giving the
maximum load or voltage one could apply to extract electrical
power at fixed temperatures TR,TC. This value is found when
J and I vanish, given by Eq. (5):

μstop = �E

(
1 − TR

TC

)
. (7)

Consequently, the voltage applied must not be larger than
μstop/e, and therefore from Eq. (4) the efficiency is bounded
by η � 1 − TR

TC
= ηC. At the stopping voltage, the thermody-

namic efficiency attains its theoretical maximum, the Carnot
efficiency, ηC, showing this system is an ideal nanoscale heat
engine. Naturally, at this point [see Fig. 1(b)] the system is
reversible with no entropy production. Also interesting is the
efficiency at the bias point where power is maximum. For
temperature larger than �E or eV = μ, we can approximate
the Fermi functions to find P ≈ (γ /4hkBTR)μ(μstop − μ),
resulting in a parabola as a function of μ, with maximum
power

Pmax ≈ γ�E2η2
C

16hkBTR

, (8)

and efficiency ηmaxP = ηC/2 which is in agreement with
general thermodynamic bounds for systems with time-reversal
symmetry.18–20

B. Optimization

One can go beyond this limit for the efficiency by solving
the conservation laws numerically. We optimize the total power
produced by the heat engine by varying the resonance width γ ,
as well as the energy gain �E and applied bias V = μ/e, given
fixed temperatures TR,TC. These results are plotted in Fig. 2,
where we define the average temperature T = (TC + TR)/2,
and its difference, �T = TC − TR. In Fig. 2(a), we see that
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FIG. 2. (a) Scaled maximum power as a function of energy gain
�E for �T = T and level width γ and μR optimized to give
maximum power. (b) Scaled maximum power as a function of �T/T

for optimized values of ER = �E/2, γ , and μR . (c) Efficiency at
maximum power for the values of ER = �E/2, γ , and μR chosen to
maximize power. (d) The optimized values are plotted versus �T/T .
Here, ER = �E/2, μR = μ/2.

for �E < kBT the power increases as �E2, as indicated in
Eq. (8), but then levels off and decays exponentially, attaining
its maximum around �E = 6kBT . Similarly, the choice γ =
kBT gives optimal power. We emphasize that �E and the
level width are two essentially independent energy scales in
our system. As a matter of fact the energy gain �E ≈ 6kBT is
almost an order of magnitude larger than the level width γ ≈
kBT . These considerations suggest an experimental strategy
for maximizing the power of such a device: Measure what the
resonant level widths are, and tune the reservoir temperatures
and energy gain (with the help of gate voltages), to it.

From Fig. 2(b) we also see that the efficiency at maximum
power drops from half the Carnot efficiency to about 0.2ηC

when the parameters are optimized. However, we note that
when γ is kept small, in the nonlinear regime the efficiency
can exceed the bound ηmaxP � ηC/2 found in the linear regime.
This small drop in efficiency is more than compensated by
the extra power we obtain. Importantly, according to Fig. 2,
the power reaches a maximum of Pmax ∼ 0.4(kB�T )2/h, or
about 0.1 pW at �T = 1 K, a two order of magnitude increase
from a weakly nonlinear cavity.13 This jump in power can be
attributed to the highly efficient conversion of thermal energy
into electrical energy by optimizing both the level width and
energy level difference. Compared to a heat engine based on
resonant tunneling through a single quantum dot in a strictly
two-terminal geometry,8 our three-terminal energy harvester
gains a factor of 2 in power while achieving the same efficiency.
To give some perspective on this output, if a 1 cm2 square array
of these nanoengines were fabricated, each occupying an area
of 100 nm2, they would produce a power of 0.1 W, operating
at �T = 1 K.

In Fig. 3, the heat current J is plotted versus temperature
difference and applied bias. There we find that when system
parameters are optimized to give maximum power, the system
can be operated in the mode of a heat engine (HE) or a refriger-
ator (R). However, in contrast to the case where the levels are
narrow compared to the other energy scales [and consequently
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FIG. 3. (Color online) Scaled heat current J/[2(kBT )2/h] leaving
(blue) or entering (red) the central cavity vs temperature difference (x
axis) and applied bias (y axis) divided by average temperature. The
plot is for system parameters optimized for maximal power output,
an energy gain of �E ≈ 6kBT and level width γ ≈ kBT . The green
line is the J = 0 curve for γ → 0 while the black curve is the J = 0
line for the optimized γ . The system can work as a heat engine
(HE) in the blue region for �T > 0,μR = μ/2 > 0 (configuration
shown in the inset labeled HE), or as a refrigerator (R) in the blue
region for �T < 0,μR = μ/2 < 0 (configuration shown in the inset
labeled R).

the cavity can cool to arbitrarily low temperatures in principle;
see green solid line, Eq. (7)], for this choice of parameters the
cavity will only cool to the temperature where the J = 0 curve
(solid black line) bends back.

C. Scaling

In reality, there will be other quantum dot resonant levels
the electron can occupy that are higher up in energy. We
have assumed that the cavity temperature and applied bias
are sufficiently small so transport through these levels can be
neglected. Our model is quite general, so it may be applied to
both semiconductor dots in two-dimensional electron gases23

as well as three-dimensional metallic dots.24 This latter case
is quite interesting since one can fabricate an entire plane of
repeated nanoengines in parallel in order to scale the power.25

Furthering this idea, for such a repeated array of cavities and
quantum dots, one can connect all the cavities to make a single
engine, see Fig. 4. The two boundary layers consist of planes
of quantum dots, so electrons can only penetrate through them.
These layers sandwich a hot interior region and separate it from
the left and right cold exterior contacts. This is equivalent to
taking a large cavity with two leads and scaling the power
by adding more quantum dots (rather than trying to add
more channels to a single contact). Interestingly, the layered
structure can help to reduce phononic leakage heat currents
that would otherwise reduce the efficiency of the system:
Phonons scatter efficiently at interfaces, and the random dot
arrangement will further reduce phonon related heat losses.
The sandwich engine fabricated with self-assembled quantum
dots tolerates variations in width and fluctuations in energy
levels, as we will see in the next section.
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FIG. 4. (Color online) Self-assembled dot engine: A cold bottom
electrode (dark blue) is covered with a layer of quantum dots
(orange) embedded in an insulating matrix (transparent blue). The
quantum dot layer is covered by the hot central region shown in
dark red. On top of it, there is another quantum dot layer. The
whole structure is terminated by a cold top electrode (dark blue).
Importantly, the positions of the quantum dots in the two layers
do not have to match each other. Thus, the device can be realized
using self-assembled quantum dots. The latter can have charging
energies and single-particle level spacings of the order of 10 meV
(Refs. 21 and 22), thereby allowing the nanoengine to operate at
room temperature.

IV. ROBUSTNESS OF THE LAYERED QUANTUM DOT
ENGINE TO FABRICATION FLUCTUATIONS

Here, we further investigate the self-assembled quantum dot
layered engine, and what some of its theoretical characteristics
are under realistic fabrication conditions. The basic operating
configuration for the engine is shown in Fig. 5. Heat flows
from the hot energy source we wish to harvest energy from into
the engine, and is converted into electrical power, along with
residual thermal energy, dumped into the cold temperature
bath. The electrical current is carried by the cold thermal
bath, where it powers a load and then completes the electrical

FIG. 5. (Color online) Schematic of the system operation config-
uration. Heat enters the engine from the pink hot region, indicated by
the red chevrons. The engine itself is signified by the yellow sandwich
with black holes indicating the position of the resonant tunneling
quantum dots. The position of the holes can be disordered, similar to
a slice of Swiss cheese. Electrical current is generated perpendicular
to the layers, indicated with the blue arrows flowing in the light blue
cold region.

circuit on the opposite cold terminal. The flow of heat out of
the hot energy source will consequently tend to cool the hot
source. The energy harvesting application we primarily have
in mind is taking heat away from computer chips and running
other devices on the chip itself. In electrical chips, thermal
energy is an abundant and free resource. Indeed, heat is not
only free, it is a nuisance preventing further improvements on
chip technology. The fact that the proposed heat engine not
only harvests the thermal energy, converting some of it into
electrical power, but also cools the hot source is therefore a
side benefit to the proposal of including nanoscale heat engines
as part of an emerging chip technology.

In the actual fabrication of a resonant tunneling nanoengine,
as long as there are only a few dots, the precise placement of the
resonant levels can be controlled by gate voltages in order to
maximize the power generated by the engine. However, as soon
as we consider self-assembled quantum dots with charging
energies and single-particle level spacings of the order of
10 meV,21,22 thereby allowing the nanoengine to operate at
room temperature, this kind of control is out of the question.
To make such an engine, there are several possible fabrication
techniques that could be employed using layers of quantum
dots and wells to have the resonant energy levels lower than
the Fermi energy on one side of the heat source, and higher on
the other side. However, in all of these fabrication methods, the
growth of quantum dots does not occur at a perfectly regular
rate, so it is natural to expect there will be variation of the
resonant energy level from dot to dot. We must then check
whether this fact will degrade the performance of the engine,
and if so by how much.

To answer this question, we consider the energy-resolved
current arising from a number of electrons passing through N

quantum dots on the left and then the right layer. The total
current coming from the left slice is given by

I tot
L = 2e

h

∫
dETeff,L[f (E − μL,TR) − f (E − μC,TC)],

(9)

Teff,L =
N∑

i=1

Ti(E,Ei),

with similar equations for the total right current, as well
as the energy currents. Here, Ti(E,Ei) is the transmission
probability of quantum dot i, which has a resonant energy
level Ei and a width γi , Ti(E,Ei) = γ 2

i /[(E − Ei)2 + γ 2
i ] for

symmetrically coupled quantum dots. Since neither the left
nor cavity Fermi functions depend on the level placement, the
sum over the quantum dots can be done to give an effective
transmission function Teff,L for the whole left slice. We can
make further progress by assuming the fabrication process can
be described as a Gaussian random one, where the energy
level Ei is a random variable with an average of EL and
a standard deviation of σ . For simplicity, we only consider
random variation in Ei , but there will also be variation in
γi we ignore for the present. With this model, the effective
transmission will have the average value

〈Teff,L〉 = N〈Ti(E,Ē)〉P = N

∫
dĒ T (E − Ē)PG(Ē,σ ),

(10)
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FIG. 6. The power per nanoengine is plotted vs the width
of Gaussian random distribution of energy levels. The power is
normalized to the maximum power a single nanoengine can give
(for optimized parameters), while the distribution width is plotted
in units of �E, the average energy gain between left and right
dots. (a) The power is plotted for different level widths of the dots,
where γopt = 1.02 kBT . (b) The power is plotted for different applied
voltages, where μR,opt = 0.7 kBT .

where PG is the Gaussian distribution described above.
Thus, we see the effective transmission function is simply
a convolution of the Lorentzian transmission function and
the Gaussian distribution, known as a Voigt profile. This
leads to further broadening of the Lorentzian width. With
these considerations, the conservation laws for charge and
energy retain the same basic form as described in Eqs. (2a)
and (2b), but with N times the Voigt profile playing the
role of the energy-dependent transmission for the left and
right leads. We have numerically solved these equations and
plotted the maximum power per nanoengine versus the width
of the Gaussian distribution in Fig. 6. The parameters are
chosen so as to optimize the engine’s performance without
any randomness in the level position. As the randomness
of the level position is increased, the power begins to
drop as expected. However, even when the scatter of the
energy levels is 10% of �E, the power only drops to
90% of its maximum, showing that this engine is robust to
these kinds of fluctuations in fabrication. Notice that if the
level width is less than the optimal amount, some disorder
in the level energy can actually improve performance in
comparison to a cleanly optimized level width. This is
because of the additional broadening in energy space the level
disorder provides. Another interesting effect is shown in Fig. 7,
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FIG. 7. (Color online) The power per nanoengine is plotted vs the
right chemical potential and the average energy gain, �E, in units of
the optimal power, Pmax. The level width is taken to be a suboptimal
value, γ = 0.8kBT , and the width of Gaussian random distribution is
fixed at σ = 0.2kBT . The subscript “opt” refers to the parameter that
is optimized for maximal power in the clean case.

where the value of γ is not optimal together with a given
amount of disorder in the energy level positions. The figure
demonstrates that, even in this experimentally realistic case,
a change of the voltage and relative level spacing can yield
results which are nearly as good as the optimal case.

V. CONCLUSIONS

In this paper, we have opened a route to highly efficient
solid-state energy harvesting. Our work shows that the most
efficient structure is found with energy filters that have
transmission probabilities close to 1 in a configuration where
the level structure of spatially separated quantum dots can
be independently adjusted to give the desired energy gain.
This yields a high-power heat engine with no moving parts.
We show that nanoscale quantum dots can be employed in a
parallel configuration that delivers substantial power.
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