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Electronic and optical properties of cadmium fluoride: The role of many-body effects
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Electronic excitations and optical spectra of CdF2 are calculated up to ultraviolet employing state-of-the-art
techniques based on density functional theory and many-body perturbation theory. The GW scheme proposed
by Hedin has been used for the electronic self-energy to calculate single-particle excitation properties as energy
bands and densities of states. For optical properties many-body effects, treated within the Bethe-Salpeter equation
framework, turn out to be crucial. A bound exciton located about 1 eV below the quasiparticle gap is predicted.
Within the present scheme the optical absorption spectra and other optical functions show an excellent agreement
with experimental data. Moreover, we tested different schemes to obtain the best agreement with experimental
data. Among the several schemes, we suggest a self-consistent quasiparticle energy scheme.
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I. INTRODUCTION

Fluorides and fluorite-type crystals have recently attracted
much interest for their intrinsic optical properties and their
potential applications in optoelectronic devices.1 Because
of their peculiar optical properties, possible applications in
ultraviolet (UV) laser optics could be considered. For example,
excimer ArF lasers with an emission wavelength of 193 nm and
KrF lasers with an emission wavelength of 248 nm offer many
applications in medicine: e.g., photoablation of the substantia
propria (or stroma of cornea), and high precision tissue
ablation.2 This comes in addition to the common application
in photolithography of the semiconductor industry.

Here we will consider cadmium fluoride (CdF2) which is
characterized by a large gap energy (of the order of 9 eV)3

and, hence, a high transparency in a wide energy range, while
the more famous calcium fluoride (CaF2) has a direct band
gap at � of 12.1 eV and an indirect band gap estimated around
11.8 eV.1 CdF2 has been chosen as a representative candidate
for a material class which seems to exhibit similar behavior,
as well as numerical problems (e.g., BaF2

4). In particular,
its overall very small values of the dielectric function, the
extended high-energy tail, and the full ionicity (i.e., the weak
band dispersions) may pose critical theoretical and numerical
problems.

By doping, usually with trivalent metal impurities and a
certain thermochemical treatment, CdF2 can be also produced
in the semiconducting state.5 Many dopants, such as Sc and
Y, generate only a shallow donor state, but In or Ga related
defects exhibit a bistable behavior. In addition to the shallow
state these impurity centers also possess a deep state.6–8

Application of UV and visible light at low temperatures
results in disappearance of the absorption peak corresponding
to the deep electronic state and an infrared absorption band
associated with the occupation of the metastable shallow state.
In other words, the electrons occupying the deep state are lifted
due to photoexcitation to the shallow state. At low temperatures
the electrons cannot be trapped back to the deep states due to a
barrier induced by different atomic configurations for shallow
and deep states. The change in the electronic occupation

causes a large difference in the local refractive index, which
can be used as a means for holographic writing at nanoscale
spatial resolution.9 A general observation is that the formation
energies of most defects are found to be very low.10 This
suggests that the fluorite structure in CdF2 often contains
high defect concentrations in agreement to what is found
experimentally.5 It is also essential that CdF2 crystals of quite
large size can be obtained at a relatively low cost.3

Optical properties of CdF2 have been experimentally deter-
mined by different spectroscopic techniques since the seventies
of the previous century11,12 in the fundamental absorption
region and in the core-level excitation range. In the same
decade reflection spectra of CdF2 have been determined in
comparison with those of SrF2,12 while UPS and XPS spectra
of CdF2 and SrF2 have appeared in the literature in 1980.13

Also β-PbF2 and CdF2 mixed crystal absorption coefficients
have been reported by spectrophotometry measurements.14

Various theoretical methods have been applied to study
either the ground state or the excited states of the fluorite
compounds. The energy bands and reflectance spectra of
CaF2 and CdF2 have been determined within a combined
tight-binding and pseudopotential method.15 Mixed crystals
of CaF2, SrF2, CdF2, β-PbF2 have been studied with respect
to their electronic energy bands and density of states (DOS)
within the linear muffin-tin orbital (LMTO) method.16 Linear
and nonlinear optical properties of the cubic insulators CaF2,
SrF2, CdF2, BaF2, and other compounds have been determined
by first-principles orthogonalized linear combination of atomic
orbitals (OLCAO).17 Point defect studies in CdF2 have
been performed within the plane-wave pseudopotential (PW-
PP) method.10 With respect to one-particle and two-particle
electronic properties and energy band gaps, state-of-the-art
techniques have been applied until now only to CaF2. In
fact, electronic band structures of CaF2 have been determined
within a GW approximation, using a PW-PP scheme.18 On the
other hand the imaginary part Imε(ω) of the dielectric function
has been calculated for CaF2 after an iterative procedure
using an effective Hamiltonian,19 within a PW-PP scheme
considering a screened interaction for electron-hole (e-h)
coupling, and using localized orbitals.20
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In this paper the electronic excitations and optical
spectra of CdF2 are calculated up to 40 eV employing
state-of-the-art techniques based on density functional theory
(DFT) and many-body perturbation theory (MBPT). We use
the GW scheme proposed by Hedin21 for the exchange-
correlation (XC) self-energy, employing a Heyd-Scuseria-
Ernzerhof (HSE)22 hybrid functional as the starting point
for the electronic quasiparticle structure to calculate single-
particle excitation properties as the energy bands and the DOS.
The DOS near the gap region and the energy-band structure are
compared with existing data from literature; we show and dis-
cuss the comparison with them. The role of many-body effects
turns out to be fundamental for these single-particle properties.
Moreover, we demonstrate that a simple one-shot GW (G0W0)
is not sufficient to obtain the correct band gaps. For optical
properties excitonic effects, treated within the Bethe-Salpeter
equation (BSE)23 framework, are crucial to allow a reasonable
comparison with existing experimental spectra as well. We dis-
cuss the electronic excitation structure and the optical spectra
including the existence of bound excitons, and compare with
available experiments.3 One of our goals is to provide a wide
scenario of the one- and two-particle properties of this material
treated within first-principles techniques. However, as consid-
ered later on, a very extended high-energy tail and overall
rather small values of the dielectric function require inclusion
of an unusually large number of bands or band pairs in the GW
and BSE schemes. In regard to this last point, we suggest a the-
oretical framework and a simulative protocol able to give so-
lutions with appreciable agreements with the available exper-
imental measures, saving at the same time the computational
demands.

II. GROUND-STATE PROPERTIES AND
COMPUTATIONAL DETAILS

All the calculations have been performed using density
functional theory24 as implemented in the plane-wave basis
code VASP.25,26 The projector augmented wave (PAW)27,28

method is applied to generate pseudopotentials and wave
functions in the spheres around the cores. In standard use,
VASP performs a fully relativistic calculation for the core
electrons and treats valence electrons in a scalar relativistic
approximation.25,26,29,30 The effect of spin-orbit coupling on
the energy bands has been considered extensively in Ref. 31,
where the spin-orbit effect, in the case of CdF2, slightly
decreases the gaps by about 0.05 eV only. Thus spin-orbit
effects will be neglected in the present paper.

We performed the calculations using different XC func-
tionals. The local density approximation (LDA) has been
used for the XC energy, as given by Ceperley and Alder,
and parametrized by Perdew and Zunger.32,33 In addi-
tion, the generalized-gradient approximation (GGA) in the
parametrization of Perdew, Burke, and Ernzerhof (PBE) is
used.34 Moreover, we considered also a revised version of the
PBE functional which gives better results in solids which we
shall refer to as PBEsol35 from now on.

The lattice structure of CdF2, as well as of all the other
fluorides, is a cubic one with the space group Fm3m, with
three ions per unit cell, i.e., one cation Cd placed in the origin
and two anions F situated at ±( 1

4a, 1
4a, 1

4a).36 In the crystal

TABLE I. Structural data for CdF2 are given: lattice constant
a◦, bulk modulus B◦ and its pressure derivative B ′

◦ = dB◦/dP , and
cohesive energy Ecoh. Three local and semilocal XC functionals
are used, as discussed in the text. Previous theoretical results and
experimental references are reported in column “OTheory” and in
column “Expt.”, respectively.

LDA PBE PBEsol OTheory Expt.

a◦ (Å) 5.30 5.49 5.39 5.3916 5.36–5.3939

B◦ (GPa) 126.7 93.8 108.5 123.016 114.639

B ′
◦ 4.76 4.88 4.85 4.8516

Ecoh (eV) −12.07 −9.55 −10.39

the F (−) ions form a simple cubic sublattice surrounded by
a face-centered cubic lattice of Cd (++) cations. All fluorides
with cations belonging to the II and IIB groups are stable in
this crystallographic structure.31

Besides the Cd(5s) and F(2s,2p) valence states also the
shallow Cd(4s, 4p, 4d) core states are treated as valence
electrons. Inclusion of the Cd 4d states is important because
they appear in between the F(2s) and F(2p) bands. Inclusion
of the strongly bound Cd(4s,4p) states (about 100 or
60 eV below the valence band maximum) is not an absolute
must but helps a lot to construct s and p pseudopotentials
with excellent scattering properties up to very high energies
which are needed for a proper treatment of a large number of
unoccupied bands in the calculation of the dielectric function.
The wave functions are expanded in a plane-wave basis set
with a cutoff energy of 950 eV. The DFT/HSE calculations for
this cutoff value are fully converged. For GW/BSE calculations
the error bar has been estimated at about 0.1 eV. The
face-centered cubic (fcc) Brillouin zone (BZ) is sampled by
�-point centered meshes with 16 × 16 × 16 Monkhorst-Pack
k points37 (converging within a few meV). The minimum of the
total energy with respect to the volume is obtained by fitting to
the Vinet equation of state.38 For the calculation of the cohesive
energies Ecoh, we have subtracted the spin-polarized ground-
state energies of the free atoms. Comparing experimental
measurements16 with results calculated with different XC
functionals (see Table I), the best results are obtained within
the PBEsol scheme. Therefore we have decided to use from
now on the PBEsol lattice constant of 5.39 Å consistently
for all calculations (ground-state and one- and two-particle
excitations). This is an important point since band structure
test calculations on DFT level for different lattice constants
show that the gap value changes by about + 0.1 eV (−0.1 eV)
when going from the PBEsol to the LDA (PBE) lattice
constant.

III. QUASIPARTICLE EXCITATIONS

The Kohn-Sham (KS) eigenvalues of the DFT scheme can-
not be interpreted as energies of single-particle/quasiparticle
(QP) electronic excitations and, therefore, cannot be compared
with the band structure and the DOS from experiments. We
apply the many-body perturbation theory within Hedin’s GW
approximation for the electronic self-energy operator.21 It can
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be demonstrated that one has to solve the QP equation:23,40–42

{
− h̄2

2mo

∇2
r + νH (r) + νext(r)

}
�

QP
k (r)

+
∫

d3r′�
(
r,r′; εQP

k

)
�

QP
k (r′) = ε

QP
k �

QP
k (r). (1)

Equation (1) has a similar structure as the KS equation of
DFT. The fundamental difference is that the XC potential
of DFT is replaced by the non-Hermitian, nonlocal energy-
dependent self-energy operator � resulting in QP eigenvalues
ε

QP
k and QP wave functions �

QP
k . Due to the fact that the

Hamiltonian is non-Hermitian, QP eigenvalues are usually
complex numbers. The real part describes resonance energies
(excitation energies) and the imaginary part defines the
lifetime of excited states. Equation (1) should be solved
self-consistently; however, the most common GW approach
avoids this procedure. Since empirically one often finds that
QP wave functions are similar to the KS DFT-LDA ones,40

it is natural to take them as a starting point for a GW
calculation and, hence, to calculate QP corrections in the
sense of a perturbation treated within first-order perturbation
theory.23,40,41 The following equation,

ε
QP
k = εk + 〈ϕk|�

(
ε

QP
k

) − νXC |ϕk〉, (2)

is used in conjunction with the random phase approximation
(RPA) dielectric function to calculate the screened Coulomb
interaction W0 and the DFT Green’s function G0. This
approach called G0W0 usually works very well and gives very
good results for the GW eigenvalues (band gaps, bandwidths,
and band dispersions).40,41 Another GW treatment of the
QP band structure is based on the so-called generalized KS
schemes (gKS).43,44 The gKS methods have in common that
nonlocal exchange-correlation potentials involving partial or
screened exact exchange are inserted into the KS equations
combined with (semi)local DFT potentials. From the view-
point of band structure calculations these gKS schemes can be
also considered as oversimplified GW schemes. Hence, they
can be considered as an improved starting point (eigenvalues,
wave functions) for G0W0 calculations. While results are
similar for many systems, gKS schemes as a G0W0 starting
point can provide much improved results for those cases where
DFT-LDA or -GGA fails drastically (wrong band ordering,
extreme gap underestimates). Since the experimental gap
is almost three times as large as the DFT-PBEsol one (a
gap correction of about 5 eV is necessary to arrive at the
experimental values) a gKS starting point (still leaving a
3-eV gap error) can be considered as an improvement also
for fluorides. In the present work QP bands of CdF2 are
determined by an iterative solution of the QP equations given
in Eq. (2) with the XC self-energy in the GW approximation.
The iteration starts with the gKS equations, with a self-energy
derived from the nonlocal HSE03 hybrid functional (zeroth
order).22 Subsequently, the GW corrections are calculated in
first-order perturbation theory, i.e., within the one-shot G0W0.
Thereby, the full frequency dependence of the RPA dielectric
function entering the screened Coulomb interaction (W0) is
taken into account sampled on a frequency grid with 128 points

TABLE II. QP energies for the fundamental gaps of CdF2,
between lowest CB and highest VB at high symmetry points, are
computed with several approximations and compared with available
experiments.

Data in eV HF PBEsol HSE03 G0W0 scQP-GW Expt.

� − � 16.02 3.41 5.50 7.64 8.58 8.449,8.713

W − � 15.30 2.91 4.91 6.90 7.83 7.849

up to h̄ω ≈ 350 eV, i.e., no plasmon pole models42 or model
dielectric functions41 have been involved. We present here QP
eigenvalues calculated in the G0W0 approach on top of the
HSE03 ground-state electronic structures.

The strategy to calculate QP corrections then follows: The
band structure and DOS have been calculated first with the
PBEsol GGA, then a HSE03 calculation is performed, and
finally we apply the G0W0 scheme on top of HSE03. Even after
this step, the QP energies are of the order of 1 eV smaller than
the experimental ones. For comparison we made also Hartree-
Fock (HF) calculations, which show as expected deviations in
the opposite direction (i.e., an unrealistic overestimate of the
gaps).40,45 As the last step, in order to open that gap further, we
performed a “self-consistent quasiparticle energy” calculation
within the GW approximation (namely, scQP-GW) which is
a kind of “iterated G0W0” just updating the eigenvalues only
but keeping the HSE03 wave functions fixed. This procedure
gives almost perfect gaps with respect to experiment.46,47

The main outcomes of the present paragraph are reported in
Table II and in Figs. 1 and 2. More details are also discussed in
Ref. 48. The QP values for the fundamental gaps � − � (direct)
and W − � (indirect) obtained within different approximations
are also reported in Table II. It is clear from Table II and from
Figs. 1 and 2 that after the computational procedure adopted
here an excellent agreement has been obtained with available
experiments.13,49 The other point is that for CdF2, G0W0 is
not sufficient and a self-consistent procedure, GW based, has
to be considered in addition. Referring to Fig. 1 the main
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FIG. 1. (Color online) Energy bands of CdF2 calculated within
the G0W0 (light lines) and the scQP-GW (dark lines) schemes. On the
right panel of the figure, the DOS are reported for valence bands (VB)
and conduction bands (CB). Notice the magnification factor used for
the conduction bands.

075203-3
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FIG. 2. (Color online) Density of states around the gap region
calculated within different approximations: HF, PBEsol, HSE03,
G0W0, and scQP-GW. Notice the magnification factor (five) used
for the conduction bands.

discrepancies between the different GW methods appear in
the conduction bands. This point is also clear from the DOS
which are nearly overlapping for the VB energy region, as
shown in Figs. 1 and 2.

Therefore, the electronic structure of CdF2, within the
PBEsol, G0W0, and scQP-GW schemes, shows an indirect gap
at W − � of 7.83 eV (expt. 7.8 eV49) and a larger direct gap
at � of 8.58 eV (expt. 8.4−8.7 eV).13,49 The best accordance
with experiments is found within the scQP-GW scheme with
a high level of accuracy. In Fig. 2 we present the calculated
DOS within different schemes. As is clear from this figure the
VB regions after the HSE03 and PBEsol methods seem very
similar while discrepancies arise for the CB region between
the results after the two methods (higher value of the gap after
the HSE03 scheme).

Similarities for the VB regions appear also between the
result after the G0W0 and scQP-GW schemes. The latter
method does operate a further opening of the gap. In the
upper part of Fig. 2, the HF DOS is reported. It determines
a (too) large overestimate of the band gaps (about 16 eV at
�) and valence bands are only partially (the shallow ones)
similar to those calculated after the other methods. This HF
band-gap overestimate resembles a similar behavior taking
place in other systems.40,45 Notice that the d electrons of Cd
play an important role. Indeed, they are present inside the
valence bands in the energy range displayed in Fig. 1, and give
rise to flat bands/sharp peaks near −5 eV, due to the localized
character of these states. Localization of CB states is much
weaker, and hence their dispersion is much stronger. Therefore,
the average height of the DOS is smaller in comparison
with the VB states. It is interesting to report in detail the
energy band gaps calculated within the two different GW
schemes proposed in the present publication, namely G0W0

and scQP-GW. As it is clear from Table III a nearly rigid shift of
about 1 eV appears going from G0W0 to scQP-GW transition
energies. Therefore, with respect to CdF2, considering Fig. 1
and Table III, the action of the self-consistency upon the
eigenvalues operates a kind of “second-order scissor operator

TABLE III. Transition energies between lowest CB and highest
VB at high symmetric points, and valence bandwidth within the two
GW schemes. All data are expressed in eV.

Direct band gaps G0W0 scQP-GW

L → L 12.11 13.08
� → � 7.64 8.58
X → X 12.57 13.62
W → W 12.28 13.66
K → K 12.65 13.44

Indirect band gaps
W → � 6.90 7.83
W → X 12.50 13.55
W → L 11.56 12.54
W → K 12.47 13.44

VB width (F 2s-F 2p) 22.47 22.99

rule” on the conduction bands to obtain good accordance
with experiments. The valence bandwidths after the two
approximations of XC, respectively, G0W0 and scQP-GW,
agree within 0.5 eV. Thereby, the scQP-GW value of 22.99
eV corresponds excellently to an experimental estimate of 23
eV reported by Raisin.13

IV. TWO-PARTICLE PROPERTIES AND
DIELECTRIC FUNCTION

The treatment of excitons and resulting optical spectra, i.e.,
the full excitonic problem, requires to set up and diagonalize an
electron-hole Hamiltonian Ĥ. Within Hedin’s GW scheme and
a restriction to static screening this two-particle Hamiltonian
reads for singlet excitations in matrix form as23,50

Ĥ (vck,v′c′k′)
= [

εQP
c (k) − εQP

v (k)
]
δvv′δcc′δkk′

−
∫

d3r
∫

d3r′ϕ∗
ck(r)ϕc′k′(r)W (r,r′)ϕvk(r′)ϕ∗

v′k′(r′)

+ 2
∫

d3r
∫

d3r′ϕ∗
ck(r)ϕvk(r)v̄(r,r′)ϕc′k′(r′)ϕ∗

v′k′(r′),

(3)

where matrix elements between KS or gKS wave functions of
CB states and VB states occur. Contributions to Eq. (3) which
destroy particle number conservation have been omitted. The
first term describes the noninteracting quasielectron quasihole
pairs. The second term accounts for the screened electron-hole
Coulomb attraction with the statically screened Coulomb
potential W (r,r′). The third contribution, governed by the
nonsingular part of the bare Coulomb interaction v̄(r,r′),
represents the electron-hole exchange or crystal local-field
effects.23,51 The QP eigenvalues entering the first term and
W (r,r′) entering the second term have been directly extracted
from the scQP-GW results. After diagonalization of the
exciton matrix, or, more precisely, solving the homogeneous
BSE or stationary two-particle Schrödinger equation with
the eigenvalues E� and the eigenfunctions A�(vck) of the
pair states �, frequency-dependent macroscopic dielectric
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function including excitonic effects can be written as

εαα(ω) = δαα + 16πe2h̄2

V

∑
�

∣∣∣∣∣
∑
cvk

〈ck|vα|vk〉
εc(k) − εv(k)

A�(vck)

∣∣∣∣∣
2

×
[

1

E� − h̄(ω + iγ )
+ 1

E� + h̄(ω + iγ )

]
, (4)

where vα is the corresponding Cartesian component of the
single-particle velocity operator and γ is the pair damping
constant. The crystal volume is given by V. The details of the
standard scheme using the direct diagonalization of Eq. (4)
have been discussed elsewhere.18,23,50,51

Since the rank of the Hamilton matrix in Eq. (4) is extremely
large (it is given by the number of valence bands times the
number of conduction bands times the number of k points)
a straightforward diagonalization of this matrix is often not
possible due to high CPU but also memory requirements.

Therefore, we mainly refer to a numerically efficient
scheme46 to solve the Bethe-Salpeter equation, which has
been successfully applied by Bechstedt and coworkers on
several systems. This method is based on the calculation of
the time evolution of the exciton state by Fourier transform
on the time domain. This scheme delivers optical spectra
directly but no exciton eigenvalues and eigenfunctions.46

The calculation of the ω-dependent polarizability can be
considered as an initial-value problem.46 This means that it
can be written as a Fourier representation within an integral of
time-dependent elements. The time evolution of these elements
is driven by the pair Hamiltonian [see Eq. (3)] and it is
operatively performed by using a central-difference method,
which requires one matrix-vector multiplication per time step.
The time integration can be truncated due to exponential decay
factors and it determines a scheme nearly independent from
the dimension N (number of pair states) of the system. Two
further advantages come from the matrix-vector multiplication
scheme, i.e., an O(N2) dependence on operations count and
the possibility to effectively distribute the multiplications on
several processors of a parallel computer.46 Applications of
this method to the calculation of the ω-dependent dielectric
function of bulk and surface systems have been successfully
performed with good comparison either with experimental
results and with outcomes of the matrix diagonalization
scheme. Moreover, a further speed-up of the calculations
could be obtained combining this method with the use of
a model dielectric function,41,46,52 which, however, has not
been employed in the current calculations which involve no
models at all. This scheme has the big advantage that it never
requires the explicit diagonalization of the Hamilton matrix,
because it needs only to evaluate the Hamilton exciton matrix
times the current wave function for every time step. Massive
CPU-time saving and improved scaling of the computational
work with respect to system size result. On the other hand, we
should admit that the lack of eigenvalues and eigenfunctions
limits the detailed knowledge of excitons, e.g., their real-space
representation.53

The investigation of the fine structure of optical absorption
spectra, especially near the absorption edge and for low energy
optical transitions, requires finer k-point samplings than those

necessary for the ground-state calculations. Due to the large
number of bands and high cutoffs involved we have, however,
to restrict ourselves to a rather limited number of k points.
For the GW and BSE calculations, we apply a �-centered
8 × 8 × 8 mesh. Furthermore, a sufficiently large number
of conduction bands has to be included in the calculations
to describe the electron-hole pair interaction properly. The
number of empty states is limited by introducing a cutoff
energy for the electron-hole single-particle transitions (without
QP corrections) that contribute to the excitonic Hamiltonian
of Eq. (3). This transition energy cutoff was chosen to be
60 eV, corresponding to up to 50 unoccupied bands. A rank
of the excitonic Hamiltonian matrix of the order of 210 000
results from this setup. In addition, for the calculation of
the full frequency-dependent dielectric function, screened
exchange integrals, and four-orbit integrals in the GW and
BSE schemes, one may introduce a lower plane-wave cutoff
than for ground-state calculations without spoiling accuracy
too much. In our case we use a cutoff of 475 eV.

The matrix elements of the excitonic Hamiltonian have
been evaluated by means of HSE03 wave functions. Since
the HSE03 + G0W0 QP eigenvalues still leads to a gap
underestimate (see Table II), HSE03 + scQPGW eigenvalues
are employed instead of HSE03+G0W0 eigenvalues on the
main diagonal of the Hamiltonian. It has been carefully
checked that no change of band ordering occurs when going
from PBEsol to HSE03.

In Fig. 3, we report the principal result of the present
calculations: the imaginary part of the dielectric function
Imε(ω) determined within the BSE approach by using the
method of Schmidt et al..46 The real part has been obtained
by a Kramers-Kronig (KK) transform afterwards. Also the
experimental results after Bourdillon12 are reported, which
are obtained with the synchrotron radiation technique. The
agreement both in the positions and intensities of the peaks
between theory and experiment should be stressed for the
imaginary part of the dielectric function (e.g., the first main
three peaks are located at 7.7, 13.1, and 15.1 eV, respectively).
As shown in the top panel of Fig. 3, the good agreement
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FIG. 3. (Color online) Imaginary and real part of the dielectric
function calculated within the BSE scheme in comparison with
experimental results after Ref. 12.
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turns out for the full energy spectrum from near UV up to
40 eV, either below and above the QP direct gap. The first
structure is a � exciton, while the second and the third peaks
are excitons which may originate from X, L, or W transitions
between valence and conduction bands. Since we calculated
the spectra directly by the method of Schmidt, we have no
access to excitonic eigenvalues or eigenfunctions and can just
speculate on the basis of single-QP eigenvalues.

However, on the basis of the experimental spectra of
Bourdillon12 as shown in Fig. 3, the value of ε∞ is seemingly
about 1.8, which is in large discrepancy to our value of 2.5.
However, one should mention that the data of Bourdillon
have been extracted indirectly from reflection spectra and that
there exist other values for ε∞ from more direct methods.
Most probably, the best directly measured value is about
2.4,54 and it is also indirectly confirmed by Krukowska55

from measurements of the refraction index at visible optical
frequencies, obtaining a value slightly larger than 2.4, i.e.,
about 2.46–2.5. Furthermore, by using the Lyddane-Sachs-
Teller (LST) relation56 the consistency of our result could also
be indirectly confirmed from measurements of ε0 (which yield
values of 7.7, 7.8, and 8.3–8.5 at 0 K, 80 K, and 300 K,
respectively)57 together with phonon data,39,58 which lead
toward values in the range of 2.3–2.5 for ε∞. Hence all these
values from direct measurements are in excellent agreement
with our computed value. Furthermore the real part of the
dielectric function Reε(ω), as shown in the second panel of
Fig. 3, is in close agreement with the experimental data after
Ref. 12.

In Fig. 4, we show the imaginary part of the dielectric
function Imε(ω) within the different approximations proposed
here, starting from the DFT reference which is the PBEsol
one. Going from this approximation to the gKS HSE03 one
an opening of the gap results. Both GW schemes further
enlarge the gap energies. Finally the BSE results are disposed
which reproduce the experiment at best in terms of oscillator
strengths, peak positions, and onset behavior.

Im
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ω
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 scQP-GW 
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FIG. 4. (Color online) Imaginary part of the macroscopic
dielectric function calculated within different approximations,
namely PBEsol, HSE03, G0W0, scQP-GW, and BSE. Notice that
each graph has been shifted by 20 units along the y axis.
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FIG. 5. (Color online) Real and imaginary part of the refractive
index (n,k) as a function of energy in comparison with measured
spectra (after Ref. 12).

V. OPTICAL AND LOSS FUNCTIONS

In Fig. 5, the imaginary and real part of the refractive index
in comparison with experiment after Ref. 3 are shown. A fair
agreement results with respect to the three main peaks at 7.8,
13.2, and 15.2 eV and to the high-energy region 20–40 eV.

The reflectivity function R is show in Fig. 6 in comparison
with an experimental spectrum.12 The positions of the main
peaks of the theoretical curve (namely, occurring at 7.8 eV,
13.2 eV, and 15.2 eV) reproduce the corresponding ones of the
measurement, except for the fourth peak (at 18.0 eV) which
is overestimated in intensity and it should be compared with
the shoulder around 17 eV as obtained in the experimental
spectrum. Furthermore, the energy region above 16 eV is
only in qualitative agreement with experiment. Regarding
the first three peak positions of the reflectivity R, our results
compare well with the experimental values after Berger and
coworkers.11 Albert et al.15 assign these peaks to �V

15 → �C
1 ,

XV
2′ → XC

3 , and XV
5′ → XC

3 excitons. The first excitonic peak
at 7.7 eV is consistent with the results of 7.6 eV given by
Orlowski,49 Raisin,13 and by Forman59 and coworkers.
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FIG. 6. Calculated reflectance spectrum within BSE and experi-
ments after Ref. 12 as a function of energy.
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FIG. 7. Electronic energy loss function after present calculation
versus experiments (Ref. 3).

We focus on the fact that in our computations a natu-
ral/instrumental broadening of 0.2 eV has been applied in all
the curves. Within our scheme, “our experimental curve” is
the imaginary part of the dielectric function, Imε(ω) (the first
outcome of the computational code). All the other functions
are derived from this calculation. Thus, an important method-
ological point is the following: From each optical function
produced here one can return to the original dielectric function
which was the output of the code we used (“our reference
result”). Moreover the comparison with the experimental result
for Imε(ω) is anyway excellent (see Fig. 3). If one operates a
broadening to fit at best an optical function with respect to a
particular experiment, the reverse operation [to generate again
the Imε(ω) in agreement with experiment] is not guaranteed.

In Fig. 7, we present the energy loss function after the
present BSE calculation and experiment in a wide energy
range.3 Also for the onset region and the main three structures
below 20 eV the agreement is very close in positions and, a
little less, in the oscillator strengths. For energies larger than
20 eV, a slight blue-shift of the peak positions is obtained
with respect to the experimental ones. Furthermore, some
differences with respect to the energy loss function −Imε−1

of other semiconductor/insulator systems could be considered.
Indeed, these systems generally show a broad single structure
around the plasmon frequency ωp (e.g., as in the cases of
cubic GaAs and Si),60 unlike our theoretical curve (as shown
in Fig. 7), while a structure of well-separated peaks appears in
the spectrum of CdF2. A single broad structure would appear
around the energy of 34.6 eV, if all the valence electrons
had contributed to a single plasmonlike excitation. Instead
of this hypothetic structure, only two sharp peaks (located at
7.9 and 13.4 eV, respectively) could be ascribed to excitonic
effects. Analyzing the positions of the peaks above 15 eV, it
seems that they occur around the energies for which the real
part of the dielectric function (see Fig. 3) shows its minima;
i.e., around 19 eV, 25 eV, 30 eV, and 37 eV. In particular,
one could suggest that due to the distinct separation of the
valence states, in the case of CdF2 the plasmon excitations
take place but divided in well-defined energy windows. One
could argue that the electrons remain at disposal for collective
plasmonlike excitations as far as the corresponding energies
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FIG. 8. Absorption coefficient after present calculation vs exper-
iment (Ref. 3).

are larger than the relative binding energies. Nevertheless,
this hypothesis is correct for the F(2p), Cd(4d), and F(2s)
valence electrons but it is no more true for the Cd(4p) and
Cd(4s) electrons. In fact, considering the contribution of the
F(2p) electrons one obtains a plasmon frequency of 20.53 eV.
The contribution of F(2p) plus Cd(4d) electrons gives a plas-
mon energy of 27.81 eV. Finally, a plasmon energy of 30.23 eV
is obtained including the F(2s) electrons. These values are not
so far away from the energies of the first three above-mentioned
peaks of loss function. On the other hand, the Cd(4p) and
Cd(4s) electrons lead to the following values for collective
plasmonlike excitations: 32.53 eV [Cd(4p) included] and
34.57 eV [Cd(4p) and Cd(4s) included]. These energies are
much smaller than the corresponding binding energies of
about −62 eV for Cd(4p) and −102 eV for Cd(4s) electrons.
Therefore, a plasmonlike mechanism, involving Cd(4p) and
Cd(4s) electrons, could not explain the structures in the
high-energy spectrum of Fig. 7. It is interesting to note that the
electron energy loss function of the rock salt rs-CdO, similarly
to the present case, shows no evidence of a single pronounced
plasma resonance coming from s, p, or d electrons.61

In Fig. 8, the absorption coefficient α is shown in com-
parison with available experimental data.3 Considering the
first part of the α function, the main four sharp peaks (at
7.8 eV, 13.2 eV, 15.2 eV, and 18.0 eV) compare well with
experimental data. These facts can be ascribed to the four
structures of the imaginary part of the dielectric function,
taking in consideration that the absorption coefficient is di-
rectly proportional to the product of Imε(ω) and the frequency,
divided by the refractive index which shows a decreasing
behavior in this energy range. The three broader structures
in α at higher energies, between 20 and 40 eV, could be also
posed in correspondence with three structures present in this
energy range in the Imε(ω) curve. For these structures a slight
overestimate of around 0.5–1.0 eV occurs with respect to the
experimental counterpart.

VI. CONCLUSIONS

Electronic excitations and optical properties of CdF2 are
calculated within parameter-free schemes with state-of-the-art
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techniques. The QP corrections within the GW approximation
for the electronic self-energy of the order of 5 eV result.
The CdF2 turns out to be an indirect gap insulator with a
minimum gap of 7.8 eV and a direct gap at � of 8.6 eV in
good accordance with experiments. The QP spectrum of CdF2

shows similarities to the CaF2 spectrum (i.e., direct gap of
12.1 eV and indirect gap of 11.8 eV). The Bethe-Salpeter
scheme used for the optical absorption confirms the existence
of an exciton located about 1.0 eV below the QP gap. The
BSE spectrum for the imaginary part of the dielectric function
shows an excellent accordance with experiment.

With respect to one-particle excitations we used the
GW perturbative scheme for the electronic self-energy and
calculated the energy bands and the DOS. The electronic
density of states at the gap region for CdF2 and the energy-band
structure have been compared with existing data in literature.
The role of many-body effects turns out to be important in
these one-particle properties by the large opening of the energy
gaps. We show, moreover, that for the optical properties,
many-body effects, treated within the BSE scheme, are
fundamental to obtain a reasonable comparison with existing

experimental spectra. BSE imaginary part spectrum shows
large differences in the shape which could not be recovered by
any one-particle (GW/HSE) modified scheme at least in this
material.

Finally, the existence of an exciton located 1 eV below the
quasiparticle gap for this compound has been discussed.
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