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Pomeranchuk-nematic instability in the presence of a weak magnetic field
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We analyze a two-dimensional Pomeranchuk-nematic instability, trigger by the Landau parameter F2 < 0, in
the presence of a small magnetic field. Using Landau Fermi-liquid theory in the isotropic phase, we analyze the
collective modes near the quantum critical point F2 = −1,ωc = 0 (where ωc is the cyclotron frequency). We focus
on the effects of parity symmetry breaking on the Fermi-surface deformation. We show that the linear response
approximation of the Landau-Silin equation is not sufficient to study the critical regime and it is necessary to
compute corrections at least of order ω2

c . Identifying the slowest oscillation mode in the disordered phase, we
compute the phase diagram for the isotropic/nematic phase transition in terms of F2 and ωc.
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I. INTRODUCTION

The isotropic-nematic quantum phase transition was pro-
posed as a possible mechanism to explain the anisotropic be-
havior of several strongly correlated systems. Some interesting
examples are quantum Hall liquids, high-Tc superconductors,
and heavy fermions systems. An interesting review can be
found in Ref. 1.

This transition can be understood as an instability of a
Fermi surface under the influence of a strongly attractive two-
body potential in the forward-scattering channel, with d-wave
symmetry (or, equivalently, with angular momentum � = 2).
From the point of view of the Landau Fermi-liquid theory, it
is triggered by a Pomeranchuk instability produced by a large
negative value of the Landau parameter F2 in the charged
sector. As a consequence of the transition, the Fermi surface
is deformed, getting an ellipsoidal component. The Goldstone
modes, related to rotational symmetry breaking, are dissipative
overdamped excitations, characterized by the dynamical expo-
nent z = 3. The order parameter theory was developed using
different techniques: mean field theory,2 multidimensional
bosonization.3,4 and Landau Fermi-liquid theory.5 While the
collective bosonic excitations are reasonably well understood,
the fate of the fermionic spectrum is still under debate.4,6,7

From an experimental point of view, the study of Fermi-
surface deformations can be performed by means of at least
two independent techniques: angle-resolved photoemission
spectroscopy8 and the observation of quantum oscillations,9

for instance, the de Haas–van Alphen effect. The use of the
latter resides in the ability to reconstruct Fermi-surface shapes
from the information contained in quantum oscillations of
different observables when an externally applied magnetic
field is varied.

The application of a strong magnetic field suppresses any
Pomeranchuk instability since it opens a gap in the spectrum
due to Landau-level quantization. However, for small magnetic
fields, the Landau levels form a dense set near the Fermi energy
and strong attractive interactions mix all levels in a nontrivial
way. Experimentally, nematic instability has been observed in
the bilayer ruthenate compound Sr3Ru2O7 at finite magnetic
field,10 which suggests that a metamagnetic quantum critical
point can be reached by changing the direction of the applied
magnetic field.9,11,12 Therefore, it is important to understand

the critical behavior when the quantum critical point is reached
by lowering the magnetic field.

With this motivation, we present a study of a two-
dimensional Pomeranchuk-nematic instability in the presence
of a small magnetic field, applied perpendicular to the
two-dimensional fermionic system. We have considered an
isotropic and homogeneous charged Fermi liquid subject to a
small magnetic field kBT � h̄ωc � εF , where ωc = eB/m�

is the cyclotron frequency and εF is the Fermi energy of the
system. We have focused on a simplified model where only
the attractive two-body d-wave interaction is present. Using a
semiclassical approach, we have studied collective excitations
of the fermionic system using the Landau-Silin equation.13,14

Studying the oscillatory slowest mode, we can compute the
transition line where the isotropic phase gets unstable. The
main result is presented in Fig. 1, where we depict the
phase diagram for the nematic-Pomeranchuk instability. In
this figure, the horizontal axis is the usual Landau control
parameter α = 1 + F2, while the vertical axis is the adimen-
sional magnetic field (ωc/εF )2. We observe a maximum value
of the magnetic field above which no Pomeranchuk instability
is possible. Moreover, we have observed a reentrant behavior
of the isotropic phase for greater values of the interaction
parameter. We have also analyzed the behavior of collective
modes near the quantum critical point (F2 → −1,ωc → 0).
Since the magnetic field breaks parity symmetry, the collective
mode dynamics mixes symmetric as well as antisymmetric
modes. Then the Fermi-surface deformation is not an ellipsoid
but has a definite parity given by the direction of the magnetic
field and the momentum q of the periodic perturbation.

The paper is structured as follows. In Sec. II we briefly
review the Landau theory of charged Fermi liquids and the
Landau-Silin equation to describe the collective modes of a
Fermi liquid subject to an external magnetic field. In Sec. III
we set up our model and deduce the phase diagram of Fig. 1.
In Sec. IV we show the collective modes near the nematic
quantum critical point. Finally, we discuss our results and we
point out possible future developments in Sec. V.

II. SEMICLASSICAL APPROXIMATION

Following the standard Fermi-liquid approach,15 we start
by writing down the energy functional for a two-dimensional
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FIG. 1. (Color online) Phase diagram for the Pomeranchuk
instability � = 2 in the presence of a small magnetic field. The
external part of the transition curve represents an isotropic Fermi
liquid, while the inner part is an anisotropic liquid phase. The
adimensional control parameters are α = 1 + F2 and ωc/εF , where
ωc = eB

m� is the cyclotron frequency and εF = vF pF is the Fermi
energy. We have plotted Eq. (30) by setting the interaction range
κpF = 10.

system of spinless quasiparticles of effective mass m�, in
an electromagnetic field defined by the vector potential A =
A(r,t),

E[n] =
∑

p

(p + eA)2

2m�
n(p,r) +

∑
p,p′

∫
dr dr′

× fp+eA;p′+eA(r − r′)n(p,r)n(p′,r) + O(n3), (1)

where n(p,r) is the phase-space density at momentum p and
position r, e is the quasiparticle charge, and fp+eA;p′+eA(r −
r′) is the Landau amplitude characterizing finite-range two-
particle interactions. The Landau interaction function should
depend on the electromagnetic vector potential to guarantee
gauge invariance.

In order to compute a semiclassical evolution equation, we
define the effective single-particle Hamiltonian

Heff(p,r) = δE[n]

δn(p,r)
, (2)

which generates the following time evolution equation:

∂n(p,r,t)
∂t

= {Heff,n(p,r,t)}PB + Icoll[n(p,r,t)], (3)

where {· · ·}PB are Poisson brackets associated with the
conjugate variables r and p and the effects of quasiparticle
scattering are included in the collision integral Icoll[n(p,r,t)].
By means of Hamilton’s equations of motion dr/dt =
∇pHeff(p,r,t) and dp/dt = −∇rHeff(p,r,t) and using Eqs. (2)
and (3), the so-called Landau-Silin kinetic equation is

obtained:14,15

∂n(p,r,t)
∂t

+ v(p,r,t) · ∇rn(p,r,t) −
(
F(p,r,t)

+
∑

p′

∫
dr′fp+eA;p′+eA(r − r′)∇r′n(p′,r′,t)

)

·∇pn(p,r,t) = Icoll[n(p,r,t)], (4)

where F(p,r,t) = e[E(r,t) + v(p,r,t) × B(r,t)] is the
Lorentz force and v(p,r,t) = ∇pHeff is the quasiparticle
velocity, including interactions. The Landau-Silin transport
equation (4) resembles the conventional classical Boltzmann
equation. However, the effective Lorentz force F(k,r,t)
depends self-consistently on the quasiparticle distribution
function n(p,r,t). This evolution equation is the cornerstone
of the present work.

In this paper we study the effect of an external magnetic
field B, applied perpendicular to the plane of the system.
We assume that the cyclotron energy h̄ωc = h̄eB/m� � εF .
For simplicity throughout the paper we choose h̄ ≡ 1. In
general, the scattering mechanisms described by the collision
integral can be studied by applying the relaxation-time τ

approximation. We consider that the typical collective mode
frequencies are greater than the collision quasiparticle fre-
quency. Of course, this is not true at criticality. However,
to determine the position of the transition line, it is enough
to consider Icoll → 0. To set up the kinetic equation of the
Fermi-surface collectives modes, let us consider a constant
isotropic equilibrium distribution n0

p and a small perturbation
δn such that n(p,r,t) = n0

p + δn(p,r,t). For these conditions,
the linear expansion of Eq. (4) in δn provides the transport
equation

∂δn

∂t
+ v0

p · ∇rδn̄ − e
[
v0

p × B
] · ∇pδn̄ = 0, (5)

where

δn̄(p,r,t) = δn(p,r,t) −
(

∂n0

∂ε0

)

×
∑

p′

∫
dr′fp+eA;p′+eA(r − r′)δn(p′,r′,t) (6)

is the deviation from local equilibrium.
It is important to point out that although Eq. (5) is linear in

δnp, it is highly nonlinear in the magnetic field since it enters
the definition of the Landau interaction [Eq. (6)]. Usually, to
compute collective plasma modes in charged Fermi liquids this
last contribution is neglected, resulting in a true linear response
theory.16 However, as we will show, this approximation is not
consistent with the study of Pomeranchuk instabilities.

At low temperatures kBT � εF the electron dynamics is
confined to a small region around the Fermi surface. Then it
is more convenient to define δn(p,r,t) = −(∂n0

p/∂εp)νp(r,t),
where νp(r,t) measures local Fermi-surface deformation.
Finally, Fourier transforming in the space variable r, the kinetic
equation (5) becomes

∂νp(q,t)

∂t
+ [

iv0
F · q − e

(
v0

F × B
) · ∇p

]
× [νp(q,t) + δεp(q,t)] = 0, (7)
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where v0
F is the Fermi velocity and the expression

δεp(q,t) = 1

V 2

∑
p′

(
∂n0

p′

∂εp′

) ∫
dr dr′ eiq·r

× fp+eA,p′+eA(r − r′)νp′ (r′,t) (8)

describes the combined effect of interactions and magnetic
field, with V being the space volume.

Equations (7) and (8) are the starting point of our analysis.
They describe the dynamics of Fermi-surface deformations,
given an initial condition ν in(q,0), representing a small density
fluctuation with wave vector q. In the following section we set
up our model and study the Pomeranchuk instability in the
nematic channel.

III. POMERANCHUK-NEMATIC INSTABILITY

For simplicity we consider a two-dimensional circular
Fermi surface. The interaction Landau function depends
essentially on the angle between two Fermi momenta and can
be expanded in Landau parameters as

fp+eA,p′+eA(r − r′) → fpF ,p
′
F
(r) =

∑
�

f�(r)ei�ϕ, (9)

where cos ϕ = pF · p′
F /p2

F . Moreover, we can expand the
deformation of the Fermi surface in Fourier coefficients

νp(q,t) =
∑

�

ν�(q,t)ei�θ , (10)

where cos θ = pF · q/pF q.
To study the Pomeranchuk-nematic instability it is sufficient

to consider a simplified model defined by f2(r) �= 0, while
f�(r) = 0 for all � �= 2. The presence of other interaction
channels does not modify our results qualitatively, provided
they are all stable.4,5 We will consider a short-range but
nonlocal interaction f2(r), whose Fourier transform is given
by

f̃2(q) = f2

1 + |F2|(κq)2
, (11)

where F2 = N (0)f2 is the usual adimensional Landau pa-
rameter with angular momentum � = 2 [N (0) is the density
of states at the Fermi surface] and κ defines an effective
interaction range ξ = √|F2|κ . Our approach is valid provided
p−1

F � ξ � q−1, i.e., when the interaction range is much
larger than the interparticle distance, however shorter than
the typical scale of long-range perturbations.

In the absence of a magnetic field, the collective dynamics
of the Fermi surface, given by Eq. (7) with A = 0, reduces to

∂ν�(q,t)

∂t
+ ivF q

2
[α�−1ν�−1(q,t) + α�+1ν�+1(q,t)] = 0,

(12)
where we have defined α� = 1 + F� and F� are adimensional
Landau parameters. In our model α2 ≡ α = 1 + F2 and α� = 1
for all � �= 2.

We can gain more physical insight by defining symmetric
and antisymmetric variables

ν±
� (q,t) = 1

2 [ν�(q,t) ± ν−�(q,t)] (13)

in terms of which the Fermi-surface deformations are
parametrized as

ν(q,θ,t) =
∞∑

�=0

ν+
� (q,t) cos(�θ ) +

∞∑
�=1

ν−
� (q,t) sin(�θ ).

(14)
Eliminating in Eq. (12) odd components in favor of even ones,
we obtain the coupled oscillator equations5

∂2ν±
� (q,t)

∂t2
+

(vF q

2

)2
[A�ν

±
� (q,t)

+C�−1ν
±
�−2(q,t) + C�+1ν

±
�+2(q,t)] = 0, (15)

with the adimensional coefficients

A� = α�(α�−1 + α�+1), C� = α�+1
√

α�α�−1. (16)

It is clear from Eq. (15) that the even and odd components of
� are decoupled. The same happens with the symmetric and
antisymmetric components. The physical reason for that is
parity invariance. Hence the ν+

2 mode is coupled with the even
symmetric modes ν0,ν

+
4 ,ν+

6 , . . .. Near F2 = −1 or α ∼ 0, the
ν+

2 mode oscillates with frequency

ω2 =
√

2α

(
vF q

2

)
, (17)

while all the other modes essentially oscillate with ω� ∼
vF q/

√
2. Then, near α = 0, ω2 � ω� with � �= 2 showing that,

in time scales τ 
 (vF q)−1, ν+
2 is a very slow mode, while

all other rapid modes can be averaged to zero. Therefore,
when α → 0, the Fermi surface has an essentially elliptic
form during long periods of time. This is the onset of the
Pomeranchuk-nematic instability.

When a magnetic field is applied, parity and time-reversal
symmetry are broken. Then the symmetric and antisymmetric
modes are no longer decoupled. In linear response theory, we
can ignore the contribution of the magnetic field in Eq. (8);
then Eq. (7) can be simplify to

∂ν�

∂t
+ ivF q

2
[α�−1ν�−1 + α�+1ν�+1] + i�α�ωcν� = 0, (18)

where we have defined the cyclotron frequency ωc = eB/m�.
Thus the linear response correction to Eq. (12) is proportional
to α�(ωc/vF q), where α� = 1 + F�. Since α� ∼ 1 for stable
modes (� �= 2), this equation is suitable to study collective
modes of the Fermi liquid in small magnetic fields. However,
near the Pomeranchuk instability (α2 ≡ α ∼ 0), (ωc/vF q)2 is
of the same order of α(ωc/vF q) and cannot be ignored. To see
this more clearly, we can compute the oscillation frequency of
ν+

2 , using Eq. (18), obtaining

ω2 ∼
√

2α

(
vF q

2

){
1 + 4α

(
ωc

vF q

)2

+ · · ·
}
, (19)

where the ellipsis denotes terms of order α2(ωc/vF q)4. Clearly,
for small α � 1, the frequency is approximately given by
Eq. (17) without changing the behavior of the quantum critical
point α = 0.

Therefore, to study the transition line ωc(α), we need to
consider quadratic corrections in the magnetic field. To do
this, we expand the Landau function f2 in Eq. (8), keeping
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linear terms in the vector potential A,

fp+eA,p′+eA(r − r′)

= f2(r − r′)
(p · p′)2

p4
F

+ 2e
f2(r − r′)

p4
F

(p · p′)

× [A(r) · (p + p′)]. (20)

With this expression, Eq. (8) reduces to

δεp(q,t) = δε0
p(q,t) + δεA

p (q,t), (21)

where the first term has no contribution from the magnetic
field and is given by

δε0
p(q,t) = −i|f2|

∑
p′

(
∂n0

p′

∂εp′

)(
p · p′

p2
F

)2

νp′ (q,t), (22)

while the second term is linear in ωc,

δεA
p (q,t) = −2i

(
ωc

vF pF

)
(κpF )2F 2

2

p4
F N (0)

∑
p′

(
∂n0

p′

∂εp′

)

× (p · p′)[(p + p′) × q]νp′(q,t), (23)

where we have chosen the symmetric gauge A = (1/2)r × B.
This term depends on the interaction range (κpF )2; then, for
ultralocal interactions (κ = 0), it makes no contribution. In
contrast, the vectorial structure of Eq. (23) filters only contri-
butions to the modes ν±1,ν±2. Therefore, Fourier transforming
in p we find for these modes

∂ν1

∂t
+ i

(
vF q

2

){[
1 − 2(1 − α)2

(
ωc

vF q

)2

(κq)2

]
ν0

+
[
α − 2(1 − α)2

(
ωc

vF q

)2

(κq)2

]
ν2

}
+ iωcν1 = 0 (24)

and

∂ν2

∂t
+ i

(
vF q

2

){
1 − 4(1 − α)2

(
ωc

vF q

)2

(κq)2

}
ν1

+ i

(
vF q

2

)
ν3 + 2iαωcν2 = 0. (25)

The equations for the modes ν−1 and ν−2 are easily obtained
from Eqs. (24) and (25) by changing � → −� and ωc →
−ωc. The dynamical equations for the rest of the modes
are simply given by Eq. (18). Then, building symmetric and
antisymmetric mode combinations and deriving the evolution
equations to get a second-order system, we get, for ν+

2 ,

∂2ν+
2

∂t2
+ �2ν+

2 +
(

vF q

2

)2

(ν0 + ν+
4 )

+
(

vF q

2

)
ωc(2ν−

1 + 3ν−
3 ) = 0, (26)

with

�2 = 2α

(
vF q

2

)2[
1 + 8α

(
ωc

vF q

)2]
+

(
κq

2

)2

(1 − α)2ω2
c .

(27)
As we have anticipated, the magnetic field mixes symmetric
and antisymmetric modes. The first contribution to the fre-
quency in Eq. (27) comes from the linear response theory,

while the last term, proportional to the interaction range
κq � 1, is the first “correction” coming from Eq. (23).

Near the transition line � → 0, ν0 and ν+
4 are very rapid

and stable modes, while the coupling with the antisymmetric
modes are very weak. Thus they do not modify the transition
qualitatively. In the following section we study these couplings
in more detail. Therefore, ν+

2 is unstable when � = 0, leading
to the condition(

ωc

vF pF

)2

= −1

8

(
q

pF

)2
α

α2 + (1 − α)2( κq

4 )2
. (28)

Near the quantum critical point, we can expand this expression
in powers of α,(

ωc

vF pF

)2

= −2

(
1

κpF

)2

α + O(α2), (29)

obtaining a linear critical region governed by the interaction
range κpF . Corrections of order α2 depend on q. Thus,
differently from the usual Pomeranchuk transition, small
perturbations with different values of q will contribute to the
instability at different values of α. In contrast, the momentum
perturbation is limited to the range r−1

c < q < κ−1. It is simple
to show that the extremal line, necessary to built up the
complete phase diagram, is reached at q = 1/κ . Therefore,
the transition line is given by(

ωc

vF pF

)2

= −2

(
1

κpF

)2
α

16α2 + (1 − α)2
, (30)

where the only free parameter is the interaction range κpF > 1.
We depict Eq. (30) in Fig. 1. As expected, a magnetic field
strongly reduces the phase space for Pomeranchuk instabili-
ties. For small values of the magnetic field, the quantum critical
point is shifted to greater attractive values of the interaction
α < 0 or F2 < −1. Indeed, we observe a maximum value of
the magnetic field(

ωc

vF pF

)2

max

∼ 0.2

(
1

κpF

)2

(31)

reached at αmax ∼ −1/4, above which no Pomeranchuk
instability is possible. Moreover, we observe a reentrant
behavior of the disordered isotropic phase for greater values
of the attractive interaction.

It is important to note a clear difference with the case of the
usual Pomeranchuk instability. At zero magnetic field, below
the critical point α = 0, the isotropic Fermi liquid is unstable
under nonhomogeneous density perturbations characterized by
a wave vector q. Indeed, any value of q, no matter how small,
will produce the phase transition. However, in the presence
of a magnetic field, there is another length scale given by the
cyclotron radius rc = vF /ωc. This scale introduces an infrared
cutoff for the relevant fluctuations that could trigger the phase
transition. In other words, in the region below the transition line
in Fig. 1, the isotropic Fermi liquid is unstable under density
fluctuations in a typical length scale κ < q−1 < rc. In practice,
κ is a microscopic length and rc is very large, therefore the
above restriction is not severe.

In contrast, for q−1 
 rc there is no possible Pomeranchuk
transition. This result is quite clear. In the regime q−1 
 rc,
the semiclassical approach is no longer valid. It is necessary
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to treat the complete quantum problem, where the system
is gapped due to Landau-level quantization. This is the
quantum Hall regime in which there is no Pomeranchuk
instability. From an experimental point of view, fluctuations,
in particular the wave vector q, are very difficult to control.
However, any random inhomogeneous density fluctuation will
contain components of r−1

c < q < κ−1 that, even with a very
small amplitude, will trigger the anisotropic/isotropic phase
transition. In contrast, it is always possible to imagine (at least
from a theoretical point of view) that one could induce a small
density fluctuation by applying a modulated test field with a
definite wave vector q.

IV. COLLECTIVE MODES NEAR THE QUANTUM
CRITICAL POINT

We would like to analyze the behavior of the stable
oscillation modes of the Fermi surface near the quantum

critical point (α = 0,ωc = 0). We are interested in the regime
α � 1 and ωc � vF q � vF pF .

We will focus on the unstable model ν+
2 . This mode is

directly coupled with ν0, ν+
4 , ν−

1 , and ν−
3 through Eq. (26). The

symmetric modes ν0 and ν+
4 are stable modes and oscillate very

rapidly near the quantum critical point. Therefore, if we are
interested in time scales larger than (vF q)−1, we can average
them to zero. The antisymmetric modes ν−

1 and ν−
3 couple

with ν+
2 through a magnetic field ωc as a manifestation of

parity symmetry breaking. Then, dismissing the symmetric
couplings ν0 and ν+

4 , the remaining system (ν+
2 ,ν−

1 ,ν−
3 ) is a

closed one. Defining the column vector ν = (ν+
2 ,ν−

1 ,ν−
3 ), the

collective modes satisfy

∂2ν(q,t)

∂t2
+ M · ν(q,t) = 0, (32)

where the matrix M takes the following form near the quantum
critical point:

M =

⎛
⎜⎜⎜⎜⎜⎝

2
(

vF q

2

)2
α + ω2

c ( κq

2 )2
(

vF q

2

)
ωc 3

(
vF q

2

)
ωc

( 2ωc

vF q

)[(
vF q

2

)2
α + (ωcκq

2 )2
] (

vF q

2

)2
α + ω2

c (1 + ( κq

2 )2)
(

vF q

2

)2
α + (ωcκq

2 )2

5αωc

(
vF q

2

)
α
(

vF q

2

)2 (
vF q

2

)2

⎞
⎟⎟⎟⎟⎟⎠ . (33)

It is instructive to analyze two different paths when
approaching the quantum critical point. In the case of zero
applied magnetic field (ωc = 0,α → 0), the antisymmetric
modes completely decouple from the symmetric ones, due
to parity symmetry. Then the ν+

2 frequency coincides with
Eq. (17). However, when approaching the quantum critical
point lowering the magnetic field (α = 0,ωc → 0), the matrix
Mc = limα→0 M takes the form

Mc =

⎛
⎜⎜⎜⎜⎝

ω2
c ( κq

2 )2
(

vF q

2

)
ωc 3

(
vF q

2

)
ωc( 2ωc

vF q

)
(ωcκq

2 )2 ω2
c [1 + ( κq

2 )2] (ωcκq

2 )2

0 0
(

vF q

2

)2

⎞
⎟⎟⎟⎟⎠ . (34)

In order to find the normal modes, we diagonalize Mc,
obtaining the eigenvalues

λ1 =
(κq

2

)4
ω2

c , λ2 = ω2
c , λ3 =

(vF q

2

)2
, (35)

with the corresponding eigenvector matrix

A =

⎛
⎜⎜⎜⎜⎝

1 2( ωc

vF q
)( κq

2 )2 0

−2( ωc

vF q
)( κq

2 )2 1 0

0 0 1

⎞
⎟⎟⎟⎟⎠ . (36)

Thus it is clear from Eq. (36) that the mode ν−
3 decouples for

α = 0 and it is a rapid mode, oscillating with frequency vF q/2.
In contrast, the modes ν+

2 and ν−
1 are slow modes, coupled

by the small quantities ωc/vF q � 1 and (κq/2)2 � 1. The

former is related to the cyclotron frequency, which should be
smaller than the frequency of a typical perturbation (vF q)−1,
while the latter is related to the interaction range, which should
be much smaller than the typical length of the Fermi-surface
perturbation q−1.

Therefore, very near the Pomeranchuk instability (α =
0,ωc � vF q), the Fermi surface fluctuates, following the
equation

δkF = νi
2

{
cos(2θ ) + 2

(
ωc

vF q

)(
κq

2

)2

sin θ

}

× cos

[(
κq

2

)2

ωct + ϕ1

]

+ νi
−1

{
sin(θ ) − 2

(
ωc

vF q

)(
κq

2

)2

cos(2θ )

}
× cos[ωct + ϕ2]

+ νi
−3 sin(3θ ) cos

[(
vF q

2

)
t + ϕ3

]
, (37)

where νi
2,ν

i
−1,ν

i
−3 and ϕ1,ϕ2,ϕ3 are the initial amplitudes and

phases, respectively.
We see that there are two slow modes that oscillate with fre-

quencies proportional to ωc. The slowest mode [λ1 in Eq. (35)]
is related to ν+

2 and it is responsible for the Pomeranchuk
instability when ωc → 0. In contrast, the mode associated
with the eigenvalue λ2 is related to the antisymmetric mode
ν−

1 . However, this mode is not unstable at the quantum critical
point since, when ωc → 0, not only its frequency goes to
zero, but also its velocity ∂ν−

1 /∂t → 0, implying a constant
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FIG. 2. (Color online) Snapshot of the Fermi-surface deforma-
tion, near the quantum critical point α = 0,ωc = 0. The dash line is
the actual Fermi surface, where we have normalized pF = 1. The
dash-dotted line is the elliptic deformation without magnetic field
ωc = 0. The continuous line is the deformation in the presence of a
small magnetic field. The vector q is aligned with the px axis; then
the parity symmetry breaking in the py axis is evident.

mode at the quantum critical point, decoupled from any other
symmetric mode.

In Fig. 2 we show a snapshot of the Fermi surface near
the Pomeranchuk instability, where we have chosen the initial
conditions νi

2 = 0.2 and νi
−1 = νi

−3 = 0. The circular dash line
is the actual isotropic Fermi surface. The dash-dotted line
shows an ellipse, which indicates the usual deformation with
nematic symmetry in the absence of a magnetic field, while
the continuous line is the deformation of the Fermi surface
in the presence of a magnetic field. As expected, we observe
a parity breaking in the axis q × B (in this case in py since
we have chosen q pointing in the px direction). This is a tiny
effect proportional to (ωc/vF q)(κq/2)2 � 1. In the figure we
have artificially amplified this parameter in order to make the
effect of the magnetic field visible.

We have redone all the calculations of this section consid-
ering also the couplings with the symmetric modes ν0 and ν+

4 .
In this case, it is not possible to analytically solve the resulting
9 × 9 linear system. However, making a numerical analysis,
we did not find any relevant deviation from the simplified
calculation shown. This confirms in some way that the stable
rapid modes do not participate in the instability process very
near the quantum critical point.

V. CONCLUSION

We have analyzed the behavior of a two-dimensional
Fermi liquid subject to an external magnetic field, near a
Pomeranchuk instability triggered by the Landau parameter
F2 in the charged sector. We have considered a simple model
in which the only interaction is given by the Landau parameter
F2. The presence of other interactions does not modify the

results qualitatively, provided they are all stable, i.e., distant
from any other Pomeranchuk instability.

We have studied the Fermi-surface stability, approaching
the critical region from the isotropic phase, where the Lan-
dau theory of Fermi liquids can be used safely. We have
studied collective modes using the semiclassical Landau-
Silin equation. Usually, this equation is studied in the linear
response approximation to analyze plasma modes in charged
Fermi liquids. However, near a Pomeranchuk instability this
approximation is not sufficient. The reason is that the quantum
critical point is controlled by two parameters α = 1 + F2

and ωc/vF pF . The leading-order correction in the magnetic
field is proportional to α(ωc/vF pF ). Thus, near the quantum
critical point (α = 0,ωc = 0), corrections proportional to α2

and (ωc/vF pF )2 are of the same order and cannot be neglected.
Therefore, we need to go to quadratic order in the magnetic
field to consistently treat the neighborhood of the quantum
critical point.

There are essentially three scales in the theory: the shortest
distance scale given by the inverse of the Fermi momentum
p−1

F , an interaction range scale κ , and the longest distance
scale given by the cyclotron radius rc = vF /ωc. We have
found that the isotropic Fermi system could be unstable
under inhomogeneous density fluctuations of typical length
scale q−1 provided the inequality p−1

F < κ � q−1 � rc is
satisfied.

Identifying the slowest collective mode, it is possible to
compute the transition line given in Fig. 1. The transition
is completely governed by the interaction range κpF . We
observe an upper limit value for the magnetic field ωc/vF pF ∼
1/κpF over which the Pomeranchuk instability is completely
suppressed. For smaller values of the magnetic field, we
observe that the instability is shift to stronger values of
the attractive interaction. Moreover, a reentrant behavior of
the isotropic phase is observed for even stronger attractive
interactions. Reentrant behavior has posed challenges to
microscopic theoretical physics in a variety of condensed
matter systems.17–24 This phenomenon is characterized by
the reappearance of a less ordered phase, following a more
ordered one, as a control parameter (for example, temperature,
pressure, chemical doping, and magnetic field) is varied. It
appears that the reentrance phenomenon also occurs, as we
report in this paper, in the phase diagram for the Pomeranchuk
instability � = 2 in the presence of a small magnetic field.
Basically, the reentrant phenomenon can be produced by the
increase of entropy due to disorder or the presence of additional
degrees of freedom.

We have also studied collective mode couplings near the
critical region. We have identified the ν+

2 mode as the mainly
unstable mode when the quantum critical point is approached.
The main contribution to the Fermi-surface deformation has
elliptic (nematic) symmetry. However, the magnetic field
couples this mode with the antisymmetric ones ν−

1 and ν−
3 . The

antisymmetric ν−
3 is a rapid mode oscillating with frequency

vF q/2 and does not participate in the instability process. In
contrast, ν−

1 is a slow mode, however quicker than ν+
2 , since

it oscillates with the cyclotron frequency ωc. Even though its
frequency goes to zero at the quantum critical point, it does
not represent a real Pomeranchuk instability since, on the one
hand, its coupling with ν+

2 also goes to zero with the magnetic
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field and, on the other hand, not only its frequency but also its
velocity goes to zero as ωc → 0. However, it has an important
effect on the Fermi-surface deformation of the unstable mode
since its coupling is a direct consequence of parity breaking,
producing a contribution that breaks nematic symmetry as
shown in Fig. 2. In fact, near the quantum critical point the
slowest mode is invariant under the combined transformation
θ → θ + π,ωc → −ωc.

In order to have a complete picture of the isotropic-nematic
phase transition under the influence of a magnetic field, it is
necessary to study the ordered phase. To do that in the context
of the Landau theory of Fermi liquids, it is necessary to go
beyond the linear approximation in δnp and study the collision

integral Icoll in the Landau-Silin equation (4). Conversely, it
is possible to face this problem with other approaches, for
instance, nonperturbative calculations on specific fermionic
models.

ACKNOWLEDGMENTS

The Brazilian agencies, Fundação de Amparo à Pesquisa
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