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Bose-Hubbard model on a kagome lattice with sextic ring-exchange terms
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High-order ring-exchange interactions are crucial for the study of quantum fluctuations on many highly frus-
trated systems. A versatile and efficient quantum Monte Carlo method, which can handle finite and essentially zero
temperature and canonical and grand-canonical ensembles, has long been sought. In this paper, we present an exact
quantum Monte Carlo study of a model of hard-core bosons with sixth-order ring-exchange interactions on a two-
dimensional kagome lattice. By using the stochastic Green function algorithm with global space-time update, we
show that the system becomes unstable in the limit of large ring-exchange interactions. It undergoes a phase separa-
tion at all fillings, except at 1

3 and 2
3 fillings for which the superfluid density vanishes and an unusual mixed valence

bond and charge density ordered solid is formed. This explains the universal features seen in previous studies on
various different models, such as the transverse-field Ising models, on a kagome lattice near the classical limit.
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Interest in ring-exchange interactions in quantum many-
body systems has a long history originating from the study
of quantum solids, a typical example being solid helium-3.1,2

Recently, the study of ring-exchange interactions has resurged
with boson and spin models.3–8 In particular, multiple particle
exchange has been suggested as a possible candidate to induce
a normal “Bose metal” or “Bose liquid” phase at zero tempera-
ture, in which there are no broken symmetries associated with
superfluidity or charge density wave phases.8–11 Studies on a
square lattice with four-site ring-exchange plaquettes suggest
that ordered phases always dominate.4–7 However, these results
still leave the possibility that a Bose liquid or spin-liquid phase
may exist in certain frustrated lattices.3,12

Here, we explore a frustrated kagome lattice built from
corner-sharing triangles in two dimensions. The most im-
portant characteristic of highly frustrated quantum systems
is their ground-state degeneracy in the classical limit.13,14 In
such systems, the classical ground-state manifold, which is
given by the least frustrated Ising spin configurations, results
in local constraints in each unit. One of the prominent problems
in frustrated quantum magnetism is whether quantum fluctua-
tions partially alleviate the classical ground-state degeneracy
via the order-by-disorder mechanism or by forming a quantum
spin liquid driven by quantum fluctuations.14–16 A natural route
to study this problem is to construct an effective theory for
the low-energy quantum fluctuations which is confined to the
Hilbert space of the degenerate classical ground-state mani-
fold. From the strong-coupling perturbation theory, the leading
term for the quantum fluctuations involves multiple-spin loop
flips which form the ring-exchange term. For kagome and
pyrochlore lattices, the smallest ring-exchange term appears at
the sixth order.9,11,17 Therefore, the study of quantum fluctua-
tions on some of the most important highly frustrated lattices
naturally involves effective models with multiple-spin ring
exchange.

Recently, those ring-exchange models have been formu-
lated in terms of gauge theories.9,10,18 The gauge theory
formulation is essentially the manifestation of the constraint
for the projected Hilbert space within the classical degenerate
manifold, and the effective gauge theory is, in turn, studied

by a duality mapping. Various phases have been proposed for
different models based on this type of calculation.

It is extremely important to have a systematic unbiased
numerical method to test the various proposals for exotic
ordered valence bond and disordered spin-liquid phases.
However, numerical studies on those models have proved to
be rather difficult. There are some recent studies using the
world-line and the stochastic series expansion algorithms with
loop-update schemes on four-site ring-exchange models.4–7

For these models, ring-exchange interactions are described by
a term that performs a correlated hopping of two particles
in opposite directions, with no contribution to the winding.
Thus, one can expect the superfluidity to be destroyed when
this term is dominant. However, instead of the proposed Bose
liquid phase, these exact studies have found charge density
waves, valence bond solids, or phase separation.

The model we consider in this work consists of hard-core
bosons on a two-dimensional kagome lattice (Fig. 1). The
underlying Bravais lattice is spanned by the basis vectors
(�a1,�a2) with lengths chosen as unity, and the kagome lattice is
obtained by duplicating a set of three sites S1( 1

2 ,0), S2(0, 1
2 ),

S3( 1
2 , 1

2 ) (gray symbols). The reciprocal lattice is spanned by
the vectors (�b1,�b2), each with length 4π/

√
3.

The Hamiltonian takes the form (we use periodic boundary
conditions)

Ĥ = − t
∑

〈i,j〉
(a†

i aj + H.c.) − K
∑

� (a†
1a

†
3a

†
5a6a4a2 + H.c.),

(1)

where a
†
i and ai are the creation and annihilation operators of

a hard-core boson on site i. These operators satisfy fermionic
anticommutation rules when acting on the same site, a2

i = 0,
a
†2
i = 0, {ai ,a

†
i } = 1, and bosonic commutation rules when

acting on different sites, [ai ,aj ] = 0, [a†
i ,a

†
j ] = 0, [ai ,a

†
j ] = 0.

The usual kinetic term allows the particles to hop between
near-neighboring sites i and j . A sextic ring-exchange term
allows three particles to perform a correlated hopping within
the same hexagon, with the

∑� over all hexagons. We study
the model as a function of filling factor and K/t .
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FIG. 1. (Color online) The kagome lattice and the effect of
the different terms in the Hamiltonian. Each site is shared by two
hexagons, so the total number of sites is three times the number of
hexagons (for a periodic lattice). The usual kinetic term t allows the
particles to hop between near-neighboring sites. The ring-exchange
term K performs a correlated hopping of three particles within the
same hexagon. This process is possible only if the hexagon contains
exactly three non-near-neighboring particles. The figure also shows
our convention for the labels of the sites of a given hexagon.

This model can be mapped to the U(1) lattice gauge theory
with a softened hard-core constraint, which plays a crucial
role in the study of quantum fluctuations in some highly
frustrated models.9,11 Notably, similar models can possibly
be realized in optical lattices with dipolar bosons.19 Since
the sextic ring-exchange term couples six different sites at a
time, an analytical treatment of the Hamiltonian (1) is rather
complicated.9,11 On the other hand, most current quantum
Monte Carlo (QMC) methods used on a square lattice4–7 need
to decompose the Hamiltonian as a sum of two-site coupling
terms, which is not possible in our case. These methods need
such a decomposition because they use a loop update that
consists of building a closed path in space and imaginary time,
and raising or lowering the occupation number of the sites
that are visited. By construction, these loops can update only
one or two sites at a time, and are therefore suitable only
for one- or two-site coupling terms. In brief, the treatment of
fourth-order ring-exchange terms in previous studies required
some special developments4,7 that are not easy to generalize
to sixth or higher order.

However, the stochastic Green function (SGF)
algorithm20,21 with global space-time update22 does not make
use of such loop updates, instead, it performs a direct
sampling of the partition function by distributing Hamiltonian
terms randomly in space and imaginary time. No particular
decomposition of the Hamiltonian is required. Therefore, the
update procedure is totally independent of the structure of
the Hamiltonian, and can be applied to any n-site coupling
term with efficiency. In this work, we use the SGF algorithm
and perform simulations of systems with sizes up to 18 × 18
hexagons (972 sites).

While the SGF algorithm is designed to work in the
canonical ensemble (CE), an extension22 allows us to simulate
the grand-canonical ensemble (GCE). In the following,
we take advantage of this flexibility. We find it convenient to
use the GCE for studying the stability of the system. However,
it is much easier to use the CE on parameter regions where the
system is stable only at specific densities. This is, to the best
of our knowledge, an unbiased QMC method that allows the
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FIG. 2. (Color online) Comparison between an exact diagonal-
ization and the SGF algorithm for the energy E and the superfluid
density ρs .

simulation of sixth-order coupling terms in both the CE and
GCE at both finite and essentially zero temperatures. For
the GCE, we add the usual term −μN̂ to the Hamiltonian
(1), where μ is the chemical potential and N̂ is the total
particle-number operator. In the CE, μ is not a control
parameter, but it is measured at zero temperature as
μ(N ) = E(N + 1) − E(N ), where E = 〈Ĥ〉 and N is the
controlled number of particles.

In the following, we show that the model contains valence
bond solids at densities ρ = 1

3 and 2
3 when the ring-exchange

term is dominant. For our study, we will consider the superfluid
density

ρs =
〈
Ŵ 2

1 + Ŵ 2
2

〉

4tβ
, (2)

where β is the inverse temperature and Ŵ1 and Ŵ2 are the
winding numbers measured in the two directions �a1 and �a2.
We also consider the structure factor S(�k) = 〈|ñ(�k)|2〉, with

ñ(�k) = 1

3L2

∑

p

(n̂p − ρ)e−i�k·�rp , (3)

where L is the linear system size (counting hexagons), ρ is the
density, n̂p = a

†
pap is the number operator on site p, and �rp is

the position of site p. Note that the subtraction of ρ in (3) is
meant to get rid of the lattice Bragg peaks. In order to study
the ground-state properties, we systematically use the inverse
temperature β = 2L/t .

We start by illustrating in Fig. 2 the exactness of the SGF
results by comparing them with an exact diagonalization on
a lattice with 2 × 2 hexagons (12 sites) and six particles. The
figure shows an excellent agreement for the energy E and the
superfluid density ρs .

It is useful to analyze first the stability of the system. This is
easily done by looking at the total density ρ as a function of the
chemical potential μ. The slope of this function is proportional
to the compressibility of the system, so an instability of
the system results either in a negative slope in the CE or a
discontinuity of the total density in the GCE. We first discuss
the small-K region, and search for any phase transition as we
increase the value of K . Figure 3 shows results for K = 5t and
a system with 4 × 4 hexagons (48 sites) in the CE and 12 × 12
hexagons (432 sites) in the GCE. The agreement between
the two curves reveals that finite-size effects are sufficiently
small to ensure the equivalence of the two ensembles. For this
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FIG. 3. (Color online) The total density ρ as a function of the
chemical potential μ for K = 5t . Results for a lattice with 4 × 4
hexagons in the canonical ensemble and 12 × 12 hexagons in the
grand-canonical ensemble are shown. The agreement between the
two curves reveals that finite-size effects are sufficiently small to
ensure the equivalence of the two ensembles.

strength of the ring-exchange interactions, the slope of the
curve remains positive and finite at all fillings, so there is no
instability.

The situation changes as K increases. Figure 4 shows the
total energy E as a function of the density ρ in the CE for
K/t = 10 and 25. We show only data for ρ � 1

2 since the
data for ρ > 1

2 can be deducted by particle-hole symmetry.
The cyan dotted line serves as a guide to indicate that the
curvature of the K/t = 10 curve is positive for ρ ∈ [ 1

3 ; 2
3 ],

while the orange dotted lines emphasize regions with negative
curvatures. Systems for which the energy has a negative second
derivative with respect to the density are thermodynamically
unstable and undergo a phase separation. We also note the
presence of a kink at ρ = 1

3 for both curves, which indicates
a gapped phase. We conclude that for K/t = 10, the system
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FIG. 4. (Color online) The energy as a function of the density
for K/t = 10 and 25 in the CE. The insets show for comparison the
density as a function of the chemical potential in the GCE, with a
numerical hysteresis. See text for details.
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FIG. 5. (Color online) The superfluid density ρs as a function of
K/t for ρ = 1

3 . The superfluid density is completely destroyed at the
critical value Kc ≈ 9t .

is compressible for ρ ∈ ] 1
3 ; 2

3 [ and in a solid phase for ρ =
1
3 and 2

3 , while it is unstable for all other densities. For
K/t = 25, the system is unstable for all densities, except
for ρ = 1

3 and 2
3 for which the phase is solid. The insets

correspond to GCE results that are in agreement and which, in
addition to showing “jumps” over the “forbidden” densities,
show the existence of a “numerical hysteresis,” depending
on if the initial state is empty (ascendant hysteresis) or full
(descendant hysteresis). This phenomenon is observed in many
Monte Carlo studies,23,24 including the four-site ring-exchange
model.6 For these parameters, the grand-canonical algorithm
is no longer able to sample all contributing states, which is an
indication that the system undergoes a spontaneous symmetry
breaking in the thermodynamic limit. This also supports the
importance of the ability of the SGF algorithm to work in the
canonical ensemble.

Since only the fillings ρ = 1
3 and 2

3 are stable in the large-K
limit, it is convenient to analyze how the superfluid density ρs

is destroyed as a function of K/t by working in the CE. We
show in Fig. 5 results for ρ = 1

3 only, the case with ρ = 2
3

being identical because of the particle-hole symmetry. There
exists a critical value of the ring-exchange interaction Kc ≈ 9t

where the superfluid density vanishes. We show results for
6 × 6 hexagons (108 sites) and 12 × 12 hexagons (432 sites)
to illustrate that finite-size effects are small.

FIG. 6. (Color online) Two possible ordering patterns for ρ = 1
3

(left) and ρ = 2
3 (right). The circles inside the hexagons represent

three resonating particles. The red dots represent localized particles.
We note that both orderings have threefold degeneracy. These two
uniform ordering patterns are only formed for ρ = 1

3 and 2
3 . Other

fillings are unstable towards phase separation.
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FIG. 7. (Color online) The structure factor S(�k) for 18 × 18
hexagons (972 sites), ρ = 1

3 and K = 0 (left panel), K = 5t (middle
panel), and K = 15t (right panel). The black regions correspond to
the locations of the lattice Bragg peaks. As K increases, peaks with
maximum intensity develop at �k = 2

3
�b1 + 1

3
�b2 and symmetry-related

momenta.

For t � K , the model is in the free hard-core limit, thus
the superfluid phase prevails against solid or valence bond
ordering. In the opposite t 	 K limit, we expect the ground
state to be formed by configurations that maximize the number
of resonating hexagons. Because a resonance can occur only
if the hexagon contains exactly three non-first-neighboring
particles, it is not possible to have two resonating neighboring
hexagons at first order in K . This suggests that a phase with
a maximum number of resonating hexagons can be formed at
ρ = 1

3 by having all resonating hexagons surrounded by empty
hexagons (Fig. 6 left), or at ρ = 2

3 by having all resonating
hexagons surrounded by hexagons that contain three localized
particles on the vertices of the triangles that are not shared
with the resonating hexagons (Fig. 6 right). These phases can
be understood as a form of valence bond solid in which each
valence bond now involves six sites, in contrast with the usual
two-site singlets. We note that the phase has been suggested
in kagome lattice on other models, such as the transverse-field
Ising model.11,25

This scenario is confirmed by looking at the structure factor.
Figure 7 shows S(�k) for 18 × 18 hexagons (972 sites) with

ρ = 1
3 , K = 0, K = 5t , and K = 15t . For K = 0 (left panel),

only lattice Bragg peaks arise and correspond to the minima
of the intensity (black and blue). For K = 5t (middle panel),
high-intensity regions (red and yellow) appear in the center of
triangles formed by the Bragg peaks. In the insulating phase
K = 15t (right panel), the high-intensity regions become
localized at �kmax = ( 2

3 , 1
3 ) in the (�b1,�b2) basis (and symmetry-

related momenta), and form a honeycomb lattice. Since �kmax

is parallel to �a1 and ||�kmax|| = 4π
3 , the insulating phase has

features that appear with a spatial frequency of 2
3 in the �a1

direction, in agreement with Fig. 6.
To conclude, we study hard-core bosons on a kagome lattice

with a sextic ring-exchange term using the stochastic Green
function algorithm.20–22 We find that the system becomes
unstable towards phase separation as the ring-exchange in-
teraction increases, except for densities ρ = 1

3 and 2
3 where

the superfluid is destroyed. Here, we observe an unusual
valence bond solid phase with resonances involving six sites
simultaneously. The hysteresis obtained in the quantum Monte
Carlo indicates that the phase transition between the superfluid
and the valence bond solid at ρ = 1

3 and 2
3 is first order.

Models with higher-order ring-exchange played an important
role in the search of spin-liquid phases due to their relation
with the gauge theory deconfined phase. This work showcases
the power of the stochastic Green function algorithm to study
models with higher-order ring-exchange interactions which
have hitherto been very challenging for other Monte Carlo
methods.
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