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Single-phase high-entropy alloys are investigated using the exact muffin-tin orbitals (EMTO) method in
combination with the coherent potential approximation (CPA). Choosing the paramagnetic face-centered-cubic
NiCoFeCr alloy as an example, we compare the CPA results with those obtained using the supercell (SC) method.
For the equilibrium Wigner-Seitz radius and elastic properties, the single-site mean-field approximation turns
out to yield consistent results with the SC approach. Next, we employ the EMTO-CPA method to study the bulk
properties of CuNiCoFeCrTix (x = 0.0–0.5,1.0) and NiCoFeCrTi high-entropy alloys. A detailed comparison
between the theoretical results and the available experimental data demonstrates that ab initio theory can properly
describe the fundamental properties of this important class of engineering alloys. Theory predicts NiCoFeCr and
CuNiCoFeCr to be more isotropic and less ductile than the Ti-containing single-phase alloys (CuNiCoFeCrTix
with x � 0.4 and NiCoFeCrTi).
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I. INTRODUCTION

In the early 2000s, a simple solid solution phase was
discovered in the equimolar multicomponent alloys.1,2 Yeh
et al. named the new type of metals “high-entropy alloys”
(HEAs). These metastable solid solutions are composed of at
least five equimolar or near-equimolar metallic elements and
are stabilized by the mixing entropy � Smix = kB ln n (kB

is the Boltzmann constant and n is the molar fraction of the
equimolar alloy components).1 Due to the unique microstruc-
tures and special properties, such as high strength, good
wear, corrosion resistance, and oxidation, HEAs have attracted
rapidly increasing attention in the scientific community.3–26

In the experimental area, researchers used different tools,
including traditional casting, mechanical alloying, sputtering,
and splat quenching, to obtain the HEAs with different alloying
elements and then to investigate the corresponding microstruc-
ture and mechanical, thermal, and electronic performances.3–18

With the appearance of a large number of different-type HEAs,
one could establish general rules governing the physics of
HEAs. Such empirical assessments were based on the regular
solution theory, and made use of the atomic mismatch, mixing
entropy and enthalpy, electronegativity, and valence electron
concentration.19–23

On the other hand, atomistic simulation methods were
applied to study the features connected to the microstructure
of the HEAs. For instance, del Grosso et al. employed the
Bozzolo-Ferrante-Smith (BFS) method for alloys to inves-
tigate the transition to the high-entropy regime for alloys
with refractory elements.24 Based on ab initio simulations
combined with the supercell technique, it was reported that
the body-centered-cubic (bcc) phase has partial ionic bonding
between Al and other transition metals for the series of
HEAs AlxCryCoNiFe (x = 1,1.5,2,2.5, and 3, y = 1 and 2).25

Zhang et al. used the sublattice model, supported by first-
principles total energy calculations, to explore the possibility
of forming face-centered-cubic (fcc) HEAs of CoFeMnNiM

and CoFeMnNiSmM (M = Cr, Zn, Ru, Rh, Pd, Re, Os, Ir,
and Pt).26

Despite of the single solid solution phase, characteristic to
HEAs, it is particularly difficult to use conventional ab initio
atomistic simulation methods to investigate these systems.
That is because HEAs are chemically and often also magneti-
cally disordered multicomponent extended solid solutions. In
the present work, our primary goal is to assess the performance
of standard alloy theory based on ab initio density functional
theory27,28 in the case of HEAs. To this end, we employ the
exact muffin-tin orbitals (EMTO) method29–34 in combination
with the coherent potential approximation (CPA)35–39 and
investigate the basic bulk properties of a few selected HEAs
based on 3d transition metals (abbreviated here “3d-HEAs”).
Using NiCoFeCr as a four-component model system, first we
establish the accuracy of the single-site mean-field approxima-
tion by comparing the CPA results with those generated by the
supercell technique. In the second step, we extend our study
to CuNiCoFeCr, NiCoFeCrTi, and CuNiCoFeCrTix high-
entropy alloys. Based on the calculated electronic structure,
we give an explanation for the observed magnetic state. We
provide the theoretical predictions for the elastic parameters
and compare the calculated Young’s moduli with the available
experimental data for CuNiCoFeCrTix (x = 0.0–0.5,1.0) and
NiCoFeCrTi. We also discuss the micromechanical properties
of 3d-HEAs using the theoretical elastic moduli.

Today, no consistent notation for the chemical formula of
the HEAs exists. One of the main characteristics of the HEAs
is that all constituents have similar weights, so there are no
solvent matrix and solute atoms. Hence, here we adopt a
generally applicable convention based on the atomic numbers
of the alloy components. According to that, the constituents are
specified in order of their atomic numbers, starting from the left
side with the element having the largest atomic number. With
this convention, it is possible to put the common minor alloying
elements (e.g., Ti or Al) to the end of the chemical formula.
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The rest of the paper is organized as follows. In Sec. II,
we present the theoretical tool and give the most important
details of the numerical calculation. The results are presented
and discussed in Sec. III, and the paper ends with conclusions.

II. METHODOLOGY

The EMTO method is an efficient and accurate method for
solving the Kohn-Sham equations.28 It uses large overlapping
muffin-tin potential spheres which can describe the exact
one-electron potential rather accurately. In the calculation
of total energy, the EMTO method employs the full charge
density (FCD) technique30,33,34 which not only improves
the calculation efficiency but also ensures total energies an
accuracy similar to that of the full-potential methods. Today,
the CPA represents the most efficient alloy theory for the
electronic structure calculations in multicomponent random
solid solutions.35–39 The single-site nature of the CPA limits its
applicability to systems with negligible short-range order and
local lattice relaxation effects. Nevertheless, it turned out that
the EMTO-CPA method can accurately capture the structural
energy differences and trace energy changes related to lattice
distortions in complex alloys.40–45

In the present EMTO calculations, we employed the
Perdew-Burke-Ernzerhof (PBE) exchange-correlation approx-
imation to obtain the charge density and total energy.46

The Kohn-Sham equations were solved within the scalar-
relativistic and soft-core approximations. The Green’s function
was calculated for 16 complex energy points distributed
exponentially on a semicircular contour including the valence
states. The EMTO basis set included s,p,d, and f states. We
used 240 inequivalent k points in the irreducible wedge of the
fcc Brillouin zone. The electrostatic correction to the single-
site CPA was described using the screened impurity model47

with screening parameter 0.6. For all alloy components,
the potential sphere radii were chosen to be equal to the
corresponding average atomic sphere radius. All calculations
were performed for a static lattice, that is, neglecting all
thermal contributions.

The equilibrium volumes (V ) and bulk modulus (B) were
extracted from the equation of state described by a Morse
function48 fitted to the total energy calculated for seven
different volumes around the equilibrium. In this paper, the
equilibrium volume is expressed in terms of average Wigner-
Seitz radius w. In a cubic lattice there are three independent
elastic constants, c11, c12, and c44, which are connected
to the bulk modulus B = (c11 + 2c12)/3 and the tetragonal
shear modulus c′ = (c11 − c12)/2. The elastic anisotropy is
given in terms of Zener ratio AZ = c44/c

′. The two shear
elastic parameters c′ and c44 were computed according to the
standard methodology from Ref. 39. Namely, we used the
following volume conserving orthorhombic and monoclinic
deformations:⎛
⎝

1 + δo 0 0
0 1 − δo 0
0 0 1

1−δ2
o

⎞
⎠ and

⎛
⎝

1 δm 0
δm 1 0
0 0 1

1−δ2
m

⎞
⎠, (1)

which lead to the energy change �E(δo) = 2V c′δ2
o + O(δ4

o)
and �E(δm) = 2V c44δ

2
m + O(δ4

m). Both energies were com-
puted for six distortions, δ = 0.00,0.01, . . . ,0.05. An isotropic

polycrystalline system is described by the bulk modulus B and
the shear modulus G. For a cubic lattice, the polycrystalline
bulk modulus is identical with the single-crystal bulk modulus.
For the shear modulus, we used the arithmetic Hill average
G = (GR + GV)/2 of the Voigt and Reuss bounds given by49

GR = 5(c11 − c12)c44

4c44 + 3(c11 − c12)
and GV = c11 − c12 + 3c44

5
.

(2)

These two bounds may be used to compute the ratio AVR =
(GV − GR)/(GV + GR), which is used as another measure
of the elastic anisotropy. Elastically isotropic materials have
AVR = 0 and AZ = 1. The Young’s modulus E and Poisson
ratio ν are connected to B and G by the relations

E = 9BG

3B + G
and ν = 3B − 2G

2(3B + G)
. (3)

We note that large AVR indicates large uncertainty in the
predicted shear and Young’s moduli and Poisson ration.

Experiments indicate that NiCoFeCr, NiCoFeCrTi, Cu-
NiCoFeCr, and CuNiCoFeCrTi0.5 are paramagnetic (PM)
metals and CuNiCoFeCrTi1.0 is superparamagnetic.5,9,10 For
CuNiCoFeCrTix (x � 1) the magnetic transition temperature
was reported to be below 170 K.5 Here we employed the
disordered local magnetic moment (DLM) picture50–53 to
describe the paramagnetic state of these HEAs. The DLM
model was shown to correctly account for the random
distribution of the local magnetic moments of the PM state
of metals well above the magnetic transition temperature,
where the magnetic moments show negligible short-range
order.43,54–56 According to that model, an alloy component
M of concentration m is presented by its spin-up (↑) and spin-
down (↓) counterparts assumed to be distributed randomly on
the underlying sublattice; i.e., each magnetic alloy component
is treated as Mm → M↑

m/2M↓
m/2. For example, NiCoFeCr is

described as a quasi-eight-component random solid solution,
viz., Fe↑

0.125Fe↓
0.125 Cr ↑

0.125Cr↓0.125 Ni↑0.125Ni↓0.125Co↑
0.125Co↓

0.125.

III. RESULTS

A. Coherent potential approximation versus supercell technique

In order to assess the performance of CPA in the case of
HEAs, we selected NiCoFeCr and set up a simple supercell
(SC) with fcc underlying lattice. To mimic a homogeneous
solid solution, we distributed the four alloying elements so
that they are neighbors to each other within a conventional
fcc unit cell, as shown in Fig. 1. Similar structures for the
HEAs were suggested in Refs. 57 and 58. We notice that in
contrast to the present model structure from Fig. 1, NiCoFeCr
was found to show no tendency for long-range ordering.58

However, taking into account that the long-range order has a
rather small effect on the elastic properties of alloys,59 a direct
comparison between the CPA and the SC results calculated for
the present ordered structure seems to be appropriate.

The results obtained for the supercell from Fig. 1 and
those calculated for the corresponding Ni0.25Co0.25Fe0.25Cr0.25

random solid solution are listed in Table I. The SC equilibrium
Wigner-Seitz radius is 2.601 bohrs, which is rather close to
2.607 bohrs obtained for the solid solution using CPA. The
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FIG. 1. (Color online) The supercell used to model the NiCoFeCr
alloy (Ref. 58).

agreement between the SC (207 GPa) and CPA (208 GPa)
bulk moduli is also excellent. For all theoretical parameters,
we find a good consistency between the CPA and SC results.
In particular, the three cubic elastic constants, c11, c12, and
c44, obtained with the two methods differ on the average
by ∼4%. The somewhat larger relative errors in the Zener
anisotropy (c44/c

′) and the Cauchy pressure (c12 − c44) are still
acceptable, especially if we consider that the present supercell
is the simplest periodic approximant of the four-component
random alloy considered in the CPA calculations. The good
agreement seen for the shear and Young’s modulus, the Poisson
ratio, and the polycrystalline anisotropy ratio indicates that the
CPA is an efficient and accurate method to investigate the bulk
properties of these multicomponent alloys.

B. Equilibrium volume

We compare the present ab initio Wigner-Seitz radii calcu-
lated for NiCoFeCr, CuNiCoFeCr, and NiCoFeCrTi with the
available experimental values measured by x-ray diffraction in
Table II. In general, the two sets of data are in good agreement
with each other, the average relative deviation between theory
and experiment being below 1%. Furthermore, adding the
equimolar Cu to NiCoFeCr increases the radius from 2.607
bohrs to 2.628 bohrs, which is in line with the experimental
observation.

In Table II, we list the PBE-level results from Ref. 39 as well
as some experimental data for the elementary solids in their

TABLE I. Theoretical bulk parameters for fcc NiCoFeCr alloy
calculated using the CPA and SC approximations. Listed are the
equilibrium Wigner-Seitz radius w (bohrs), cubic elastic constants
c11, c12, and c44, and c′ (GPa), the Zener anisotropy AZ, the Cauchy
pressure (c12 − c44) (GPa), the bulk modulus B (GPa), the shear
modulus G (GPa), the Young modulus E (GPa), the Poisson ration
ν, and the polycrystalline elastic anisotropy ratio AVR.

Method c11 c12 c44 c′ AZ (c12 − c44)

CPA 271.0 175.0 189.3 48.0 3.9 −14.3
SC 257.1 183.5 193.9 36.8 5.2 −10.4

w B G E ν AVR

CPA 2.607 207 110 280 0.275 0.21
SC 2.601 208 101 262 0.290 0.29

low-temperature crystallographic phases. It has been found
that density functional theory (PBE level) underestimates
the equilibrium volume of hexagonal-close-packed (hcp) Ti,
antiferromagnetic B2 Cr, ferromagnetic body-centered-cubic
(bcc) Fe, ferromagnetic hcp Co, and fcc Ni, whereas for fcc
Cu a weak underbinding is observed.39 Using the Wigner-
Seitz radii for the alloy constituents, we may estimate the
equilibrium volume of the HEAs via Vegard’s rule. In Table II,
wc stands for the estimated volume based on the quoted
PBE-level theoretical data, and we the one obtained from the
experimental data.

Rather interestingly, we gives an excellent estimate for
the equilibrium radius of NiCoFeCr and CuNiCoFeCr alloys.
However, for NiCoFeCrTi, the experimental value is 2.7%
smaller than the one obtained from the linear mixing of the
radii of the alloy components. Such a large deviation from
Vegard’s rule is somewhat unexpected especially in the mirror
of the other two cases. Most recent experiments10,60 showed
that the as-cast NiCoFeCrTi alloy contains two minor phases in
addition to the main fcc matrix. We speculate that the presence
of the bcc α-Fe-Cr solid solution and the CoTi2 intermetallic
compound might be the reason for the above discrepancy.
Furthermore, comparing wc to we, we observe a systematic
underestimation of the equilibrium volume by the theory.
Similar deviations are found between w(EMTO) and w(Expt.)
for NiCoFeCr and CuNiCoFeCr but not for NiCoFeCrTi.
Therefore, we conclude that the apparent underbinding by the
PBE-level density functional theory in the case of NiCoFeCrTi
is not realistic, and the present experimental volume may
not represent the correct equilibrium volume of a metastable
fcc NiCoFeCrTi solid solution. Assuming a systematic error
in the theoretical equilibrium volume, we estimate that the
true equilibrium Wigner-Seitz radius of fcc NiCoFeCrTi solid
solution should be somewhere around 2.70 bohrs.

The calculated equilibrium radii of NiCoFeCrTix (x =
0.1–0.5,1.0) are shown in Fig. 5 (upper panel) and listed in
Table III as a function of x. It is found that Ti addition gradually
increases the equilibrium volume of CuNiCoFeCr, in line with
the result obtained for NiCoFeCr and NiCoFeCrTi (Table II).

C. Magnetic structure

Figure 2 shows the local magnetic moments (↑ or ↓)
versus the Wigner-Seitz radius for the magnetic sublattices
in paramagnetic CuNiCoFeCr, NiCoFeCr, and NiCoFeCrTi
high-entropy alloys. According to the present calculations, the
local magnetic moments vanish on the Ni, Cu, and Ti sites
for all volumes and thus they are not shown in the figure.
We should note that thermal effects would eventually induce
local magnetic moments on the Ni sites as well at finite
temperature. Such longitudinal spin fluctuations have been
neglected in the present study. For all alloys, Fe possesses
a significant [∼(1.8–2.0)μB ] local magnetic moment around
the equilibrium volume. Cobalt remains nonmagnetic in
NiCoFeCr and NiCoFeCrTi but shows a small (∼0.6μB )
magnetic moment for CuNiCoFeCr.

In order to understand the magnetic state of the present
3d-HEAs, we investigate the electronic structure of the hy-
pothetical nonmagnetic and paramagnetic fcc solid solutions.
The nonmagnetic total density of states (DOS) and partial
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TABLE II. Theoretical (EMTO) and experimental (Expt.) Wigner-Seitz radii (in bohrs) for NiCoFeCr, CuNiCoFeCr, and NiCoFeCrTi
HEAs. For reference, former theoretical (PBE level, wc) and experimental (we) radii for the elementary solids in their ground-state
crystallographic structures (indicated in parentheses) are also listed (Ref. 39). � is the relative difference between w(EMTO) and w(Expt.).
wc and we represent the alloys’ Wigner-Seitz radii as estimated from the quoted wc and we values, respectively, according to Vegard’s rule.

HEAs str. w(EMTO) w(Expt.) � wc we

NiCoFeCr fcc 2.607 2.6329 0.95% 2.623 2.642
CuNiCoFeCr fcc 2.628 2.6435 0.57% 2.636 2.647
NiCoFeCrTi fcc 2.682 2.6507 1.21% 2.706 2.724

Element Ti (hcp) Cr (B2) Fe (bcc) Co (hcp) Ni (fcc) Cu (fcc)
wc 3.04 2.65 2.64 2.60 2.60 2.69
we 3.053 2.684 2.667 2.613 2.602 2.669

density of states (pDOS) for CuNiCoFeCr, NiCoFeCr, and
NiCoFeCrTi are plotted in Fig. 3. All DOS calculations were
done at the proper theoretical equilibrium volume.

We observe that in spite of the compositional disorder, all
alloys have a rather structured DOS with a substantial peak
just below the Fermi level (EF ). This peak is mainly due to
the peaks in the pDOS of Co and Ni and to some extent also
Fe. The size of the total DOS at EF [D(EF )] decreases when
adding Cu or Ti to the host composition. This DOS decrease is
primarily due to the 5% drop in the atomic fractions for Fe, Co,
Cr, and Ni, which cannot be compensated by the relatively low
pDOS of Cu and Ti near EF . In nonmagnetic alloys, the major
peaks in the pDOS are located above the Fermi level for Ti and
Cr and below the Fermi level for Co, Ni, and Cu. This can be
explained by simple band filling arguments considering that
all alloy components experience the same fcc environment.

For all alloys, Fe has a moderate pDOS peak located very
close to the Fermi level. It is found that DFe(EF ) is the largest
among all pDOS at EF , followed by DCo(EF ) and DCr(EF ).
This distinct Fe peak at EF leads to magnetic instability in Fe
sublattice, and in turn to finite spin polarization on Fe atoms.
In Fig. 4, we show the spin-polarized pDOS for Fe↑, Co↑,
and Cr↑. We note that the pDOS for Fe↓, Co↓, and Cr↓ are
identical to those shown in the figure (apart from the sign). As
seen in Fig. 4, the spin-polarized Fe pDOS has two separate
peaks: one above the Fermi level and one below the Fermi

level. These two Fe peaks hybridize with the Cr and Co peaks,
respectively. As a result of the magnetic splitting, the total
D(EF ) drops significantly in all three alloys. In nonmagnetic
CuNiCoFeCr (Fig. 3), we have DFe(EF ) ≈ DCo(EF ) and the
Co peak is close to EF . This explains the appearance of the
local magnetic moments on the Co sites in the paramagnetic
CuNiCoFeCr.

Additional total energy calculations performed for the hy-
pothetical nonmagnetic fcc 3d-HEAs give 2.592 bohrs, 2.610
bohrs, and 2.675 bohrs for the equilibrium Wigner-Seitz radii
of NiCoFeCr, CuNiCoFeCr, and NiCoFeCrTi, respectively.
These values are smaller than those listed in Table II, which
were obtained for the paramagnetic state. Taking into account
the uncertainty associated with the experimental equilibrium
volume of NiCoFeCrTi (Sec. III B), we may conclude that
neglecting the paramagnetism in the present 3d-HEAs worsens
the agreement between theory and experiment for the equation
of state.

D. Cubic elastic constants

The three cubic elastic constants c11, c12, and c44 as well as
the c′, c44/c

′, and (c12 − c44) of NiCoFeCr, CuNiCoFeCrTix ,
and NiCoFeCrTi are listed in Table III. The results for
CuNiCoFeCrTix are also plotted in Fig. 5 as a function of
Ti content. Unfortunately, we could not find any published

TABLE III. Theoretical Wigner-Seitz radius w (bohrs), elastic constants c11, c12, and c44 as well as c′, c44/c
′, and (c12 − c44), elastic moduli

B, G, and E, and Poisson ratio v for paramagnetic fcc NiCoFeCr, CuNiCoFeCrTix (x = 0.0–0.5, 1.0), and NiCoFeCrTi alloys. For reference,
the available experimental Young’s moduli are also listed.

x w c11 c12 c44 c′ AZ (c12 − c44) B G B/G AVR ν E E(Expt.)

NiCoFeCr
2.607 271.0 175.0 189.3 48.0 3.9 −14.3 207 110 1.88 0.21 0.275 280.0

CuNiCoFeCrTix
0 2.628 227.8 154.6 165.3 36.6 4.6 −10.7 179 91 1.97 0.25 0.282 234.0 55.65

0.1 2.635 219.7 152.6 160.2 33.5 4.8 −7.5 175 87 2.01 0.26 0.288 223.1
0.2 2.643 213.6 152.1 155.1 30.5 5.1 −3.0 173 82 2.10 0.28 0.294 213.1
0.3 2.651 209.6 151.9 154.6 28.9 5.3 −2.2 172 80 2.15 0.30 0.298 205.9
0.4 2.655 207.6 151.7 150.8 27.9 5.4 2.0 171 78 2.19 0.31 0.303 200.4
0.5 2.663 198.4 151.0 142.7 23.7 6.0 8.3 169 71 2.38 0.34 0.313 187.1 98.65

1.0 2.694 174.3 148.6 125.0 12.8 9.8 23.6 157 54 2.91 0.48 0.346 145.4 76.55

NiCoFeCrTi
2.682 184.5 170.9 127.0 6.8 18.7 43.9 175 47 3.72 0.67 0.376 130.3 1347
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FIG. 2. (Color online) Local magnetic moments of Fe, Cr, and
Co in paramagnetic fcc NiCoFeCr, CuNiCoFeCr, and NiCoFeCrTi
alloys as a function of the Wigner-Seitz radius. For each alloy, the
vertical (blue) line represents the calculated equilibrium Wigner-Seitz
radius.

experimental data on the single-crystal elastic parameters of
these 3d-HEAs.

As seen from Table III, all 3d-HEAs considered here are
mechanically stable. That is, for all alloys the single-crystal
elastic constants satisfy the c44 > 0,c11 > |c12|, and c11 +
2c12 > 0 dynamical stability conditions.49 Titanium decreases
the tetragonal elastic constant c′ both in NiCoFeCrTi and
CuNiCoFeCrTix , as compared to that of NiCoFeCr. This
indicates that Ti decreases the mechanical stability of the
fcc phase, which is in line with the expectation based on the
effective number of d electrons.

Theory predicts a moderate elastic anisotropy and negative
Cauchy pressure for NiCoFeCr. Negative (c12 − c44) has
been associated with the covalent nature of the metallic
bond and is characteristic of brittle alloys.61 In lack of any

FIG. 3. (Color online) Total (upper panels) and partial (lower
panels) density of states for the nonmagnetic fcc CuNiCoFeCr,
NiCoFeCr, and NiCoFeCrTi alloys. The position of the Fermi level
is marked by vertical dashed lines.

FIG. 4. (Color online) Total (upper panels) and Fe, Co, and Cr
partial (lower panels) density of states for the paramagnetic fcc
CuNiCoFeCr, NiCoFeCr, and NiCoFeCrTi alloys. In the lower panels,
only the Fe↑, Co↑, and Cr↑ partial densities of states are shown. Apart
from the sign (spin up vs spin down) difference, the partial densities of
states for Fe↓, Co↓, and Cr↓ are identical to those shown in the figure.

FIG. 5. (Color online) Elastic constants and equilibrium Wigner-
Seitz radius calculated for paramagnetic fcc CuNiCoFeCr and
CuNiCoFeCrTix (x = 0.1–0.5,1.0) alloys.
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experimental data, we compare the present results calcu-
lated for paramagnetic NiCoFeCr with those obtained for
paramagnetic austenitic stainless steel alloys composed of
∼18% Cr, ∼8% Ni, and balance Fe.62 The three cubic elastic
constants reported for this stainless steel are c11 = 208.6 GPa,
c12 = 143.5 GPa, and c44 = 132.8 GPa, which yield 4.07
for the Zener anisotropy ratio and 10.7 GPa for the Cauchy
pressure. Therefore, compared to the austenitic stainless steels,
the paramagnetic NiCoFeCr is predicted to be less ductile.
Equimolar Cu addition to NiCoFeCr is found to increase
slightly the Cauchy pressure from −14.3 GPa obtained for
NiCoFeCr to −10.7 GPa calculated for CuNiCoFeCr. For
reference, fcc Ir has Cauchy pressure of −13 GPa, and
undergoes both transgranular and intergranular fracture.61

Titanium is found to change the NiCoFeCr host into
a ductile but strongly anisotropic material. Equimolar fcc
NiCoFeCrTi has c44/c

′ = 18.7 and (c12 − c44) = 43.9 GPa.
Such high anisotropy ratio is rather unusual. For comparison,
the Zener anisotropy of paramagnetic body-centered-cubic
(bcc) and fcc Fe was found to be around 8.6 and 3.6,
respectively.54 Considering the change of the Cauchy pressure
upon equimolar doping, we may conclude that although Cu
also improves the ductility of the 3d-HEAs, Ti makes it espe-
cially ductile. Indeed, as seen in the case of CuNiCoFeCrTix ,
Ti can remedy the large negative Cauchy pressure of the
host alloy. It gradually increases the metallic character of
the bonds turning (c12 − c44) positive somewhere between
x = 0.3 and x = 0.4. We find that all elastic parameters of
CuNiCoFeCrTix change monotonously with the amount of
Ti (Fig. 5). According to the present theoretical calculations,
the bulk parameters of single-crystal CuNiCoFeCrTi0.5 HEAs,
which are still believed to be single-phase alloys, are sur-
prisingly close to those reported for the Fe0.74Cr0.18Ni0.08

austenitic stainless steel alloy.62

E. Polycrystalline elastic moduli

The polycrystalline elastic moduli B, G, E, and ν of
NiCoFeCr, CuNiCoFeCrTix , and NiCoFeCrTi are listed in
Table III. The theoretical values for CuNiCoFeCrTix are also
plotted in Fig. 6 as a function of Ti content. The experimental
information on the polycrystalline elastic moduli is also very
limited, the only available data being the Young’s modulus for
NiCoFeCrTi and CuNiCoFeCrTix with x = 0,0.5, and 1.0.5,7

The bulk modulus, shear modulus, and Young’s modulus
follow similar trends as those seen for the single-crystal
elastic parameters. The polycrystalline elastic anisotropy
AVR increases from ∼0.25 in CuNiCoFeCr to ∼0.49 in
CuNiCoFeCrTi. A significant increase of the Poisson ratio
with x is found.

The changes in the B/G ratio correlate reasonably well with
those found for the Cauchy pressure. B/G is often used as an
indicator of the brittle-ductile behavior.63 It was proposed that
a material is ductile when its B/G ratio is greater than 1.75;
otherwise it is in the brittle regime. According to Table III, the
B/G ratios of NiCoFeCr and CuNiCoFeCr are close to the
above critical value, and Ti addition brings both of these fcc
alloys well into the ductile regime. We should note, however,
that based merely on the Pugh criteria,63 all alloys considered
here are predicted to be ductile (i.e., possess B/G > 1.75).

FIG. 6. (Color online) Elastic moduli calculated for paramagnetic
fcc NiCoFeCr and CuNiCoFeCrTix (x = 0.1–0.5,1.0) alloys.

Bulk metallic glasses (BMGs) with Poisson ratio larger
than ∼0.31 were reported to be ductile. In particular, a very
clear onset of plasticity was observed in Fe65Mo14C15B6

bulk amorphous steel doped with lanthanides as the Poissons
ratio approached 0.31–0.32 from below.64 The bulk, shear,
and Young’s moduli of Fe65−xMo14C15B6Erx vary with the
amount of Er within ∼176–196 GPa, ∼73–77 GPa, and
∼192–202 GPa, respectively. These values are relatively close
to those predicted by the present theory for CuNiCoFeCrTix
HEAs (Table III), and thus a direct comparison of the Poisson
ratio of HEAs to that of BMGs may also be appropriate.
Considering the composition dependence of the Poisson ratio
of the present HEAs, we find that ν(x) reaches the critical
value of 0.31 just around x = 0.4, where the Cauchy pressure
becomes positive.

Next we compare the theoretical results with the avail-
able experimental data. It is particularly surprising that for
CuNiCoFeCr, our Young’s modulus of 234 GPa is about
four times larger than 55.6 GPa found in experiment.5 This
alloy shows relatively low anisotropy and thus the uncertainty
associated with the Voigt-Reuss-Hill averaging are expected
to be small. Furthermore, as shown in Fig. 7, the Young’s
modulus of a single-crystal CuNiCoFeCr changes between
102.79 GPa obtained for the 〈001〉 direction and 379.18 GPa
calculated for the 〈111〉 direction. Therefore, even for a highly
textured material, theory would predict the lowest E to be
around 100 GPa, which is still almost double the experimental
value. For the two Ti-containing CuNiCoFeCrTi0.5 and CuNi-
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FIG. 7. (Color online) Theoretical Young’s modulus for
NiCoFeCr, CuNiCoFeCr, CuNiCoFeCrTi, and NiCoFeCrTi alloys
plotted in plane (110) as a function of direction, including the three
main cubic directions.

CoFeCrTi alloys the calculated Young’s moduli differ from the
reported experimental values by ∼90%. On the other hand, the
agreement between theory and experiment is almost perfect
for NiCoFeCrTi. Such good agreement is rather unexpected
since for this alloy we obtained very large anisotropy ratio.
The single-crystal Young’s modulus of NiCoFeCrTi changes
significantly with direction (Fig. 7), the lowest value being
close to 20 GPa (for 〈001〉) and the largest around 307 GPa (for
〈111〉). Moreover, recent experiments show that NiCoFeCrTi
is not even a single fcc phase alloy.60

As one possible reason for the above difference between
theory and experiment, we should mention that all present
calculations were carried out at static conditions (0 K), while
the experimental measurements were performed at room
temperature. In addition, our calculations assumed an ideal
solid solution phase with fcc underlying lattice in contrast to
the real alloys having complex microstructure. For instance,
in CuNiCoFeCr, Cu segregation to the interdendrite region
was observed.4 We should also point out that for some other

HEAs, the experimental values for the Young’s modulus differ
significantly. For example, for NiCoFeCrAlTi0.5 the measured
E varies between 72.68 GPa (Ref. 65) and 177.7 GPa (Ref. 66).
On this ground, the reliability of the measured Young’s mod-
ulus for CoNiCoFeCrTix may also be questionable, especially
given that no important experimental details are given in Ref. 5.

IV. CONCLUSIONS

We employed the EMTO-CPA method to investigate the
electronic structure and basic bulk properties of NiCoFeCr,
CuNiCoFeCr, CuNiCoFeCrTix , and NiCoFeCrTi 3d-HEAs.
In all calculations, it was assumed that the above alloys are
single-phase paramagnetic face-centered-cubic random solid
solutions. The relatively good agreement between the calcu-
lated and measured equilibrium volumes for the NiCoFeCr,
CuNiCoFeCr, and NiCoFeCrTi alloys demonstrates that alloy
theory is able to describe these complex multicomponent
paramagnetic alloys.

We have shown that with increasing Ti amount in
CuNiCoFeCrTix , the equilibrium Wigner-Seitz radius in-
creases and the elastic constants decrease. Titanium is
predicted to increase the elastic anisotropy of the single
phase fcc CuNiCoFeCrTix alloys and turn them more ductile
compared to the other alloys considered here. In particular,
the Ti-free alloys are calculated to have reduced ductility,
as indicated by their negative Cauchy pressure and small
Poisson ratio, whereas their theoretical B/G ratios suggest
a ductile behavior. The obtained large deviation between the
theoretical and experimental Young’s modulus for some of the
present alloys calls for more extensive experimental as well as
theoretical studies on these important category of engineering
materials.
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