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Two-particle excited states entanglement entropy in a one-dimensional ring
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The properties of the entanglement entropy (EE) of two-particle excited states in a one-dimensional ring are
studied. For a clean system we show analytically that as long as the momenta of the two particles are not close,
the EE is twice the value of the EE of any single-particle state. For almost identical momenta the EE is lower
than this value. The introduction of disorder is numerically shown to lead to a decrease in the median EE of a
two-particle excited state, while interactions (which have no effect for the clean case) mitigate the decrease. For
a ring which is of the same size as the localization length, interaction increases the EE of a typical two-particle
excited state above the clean system EE value.
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I. INTRODUCTION

There has been a growing interest in the behavior of
entanglement entropy (EE)1 in different physical fields. In
condensed mater, much of the interest stems from the behavior
of the ground-state EE in the presence of quantum phase
transitions (QPTs).1–4 The EE of a finite region A of a
one-dimensional system grows logarithmically as long as
the region’s size LA is smaller than the correlation length
ξ characterizing the system, while it saturates for LA >

ξ .5–7 This behavior may be used in order to extract ξ , for
example, the ground-state localization length of the Anderson
transition.8

A natural question is what is the behavior of the EE
for the excited states?9 Beyond the growing interest in EE
coming from the quantum information circles, the question of
whether EE is a useful concept in studying the behavior of
excited states is relevant to the condensed-matter community.
Low-lying excited states in the vicinity of a ground-state
quantum critical point (QCP) should be strongly influenced by
the critical point,10 and one expects it to show in the behavior
of the EE of these states. Moreover, the whole concept of
the many-body localization transition11–13 is centered on the
behavior of the excited states. The localization-delocalization
transition occurring at a critical excitation energy should
change the properties of excitations above it which should
be manifested in the properties of the excited states. Although
much effort went into trying to understand the transition using
different properties of the excited states (such as level statistics,
inverse participation ratio, conductance, and correlations),14–20

all these studies were performed for rather small systems, and
many questions remain open. Recently,21 time evolution of
the entanglement of an initial state was studied, and it showed
signs of many-particle delocalization. Thus, EE seems a useful
tool to study the many-body localization transition.

Unlike the ground-state EE for which universal results exist,
the understanding of EE for the excited states is still a work
in progress.22–24 Therefore, it would be useful to consider
a system for which the EE of the excited states is simple
enough to describe analytically, although it exhibits interesting
behavior such as interaction induced delocalization of the
excited states. In this paper we study the EE for such a system,
namely two particles on a ring. The study of two interacting
particle (TIP) in a disordered one-dimensional system has a

long history in the context of the many-particle delocalization
problem. All single-electron states for any amount of disorder
are localized.25 This continues to be true for two-electron
states, however, the localization length becomes longer as the
repulsive interaction becomes stronger.26,27 This interaction-
induced delocalization was confirmed numerically.28–32 It is
important to emphasize that there is no enhancement of the
localization length in the ground state. The delocalization
becomes significant only for higher excitations.

II. CLEAN RING

For a clean ring composed of N sites, the tight-binding
Hamiltonian is given by

H =
N∑

j=1

εj â
†
j âj − t

N∑
j=1

(eiαâ
†
j âj+1 + H.c.), (1)

where for the clean case εj = 0, t = 1 is the hopping matrix
element between neighboring sites, and â

†
j is the creation

operator of a spinless electron at site j on the ring. In
order to break symmetry (we shall see why this is important
further on) a magnetic flux φ threading the ring is introduced,
where α = 2πφ/(φ0N ), and φ0 = hc/e is the quantum flux
unit. The single-electron eigenvalues are ε(k) = −2t cos(p −
α) where p = 2πk/N , and k = 0,±1,±2, . . . ±N/2. The
eigenvectors are given by

|k〉 = (1/
√

N )
N∑

j=1

exp(ıpj )â†
j |∅〉, (2)

where |∅〉 is the vacuum state.
The two-particle eigenvalues are ε(k1,k2) = −2t[cos(p1 −

α) + cos(p2 − α)]. The eigenvector

|k1,k2〉 = (1/N)
N∑

j1>j2=1

A(k1,j1,k2,j2)â†
j1
â
†
j2
|∅〉, (3)

where

A(k1,j1,k2,j2)

= {exp[ı(p1j1 + p2j2)] − exp[ı(p1j2 + p2j1)]}. (4)

Once the eigenvectors of the system are available one can
(in principal) calculate the EE. The entanglement between a
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region A (of length NA) in the system and the rest of the system
(denoted by B) for a given eigenstate |�〉 is measured by the
EE SA/B . This EE is related to the region’s reduced density
matrix ρA/B , defined in the following way:

ρ̂A/B = TrB/A|�〉〈�|, (5)

where the trace is over region B’s or A’s degrees of freedom.
The EE is related to the eigenvalues λi of the reduced density
matrix:

SA/B = −�iλi ln(λi). (6)

One important result of this definition is the symmetry between
the EE of the two regions SA = SB .

Following Cheong and Henley,33 one can write the pure
state |�〉 = ∑

i |iA〉|φB,i〉, where |iA〉 is a complete orthonor-
mal many-body basis of region A, while |φB,i〉 is the state in
region B associated with |iA〉. Please note that |φB,i〉 is not
normalized. Using that notation, the reduced density matrix

ρ̂A =
N∑

i,j=1

|iA〉〈jA|, (7)

or in matrix form

ρA(i,j ) = 〈φB,i |φB,j 〉. (8)

Utilizing the occupation basis in the A region, i.e., |iA〉 =
|ni

1,n
i
2,n

i
3, . . . ,n

i
NA

〉 (where ni
j = 0,1), one can define an

operator, K̂i = ∏NA

s=1[ni
s â

†
s + (1 − ni

s)âs â
†
s ], resulting in

ρA(i,j ) = 〈�|K̂†
i K̂j |�〉. (9)

It is important to note that ρA(i,j ) �= 0 only for states which
have the same number of particles ni

A in region A, where
ni

A = ∑N
s=1 ni

s . Thus, in this basis, the reduced density matrix
is composed of blocks which increases in size with ni

A. Thus
for ni

A = 0, the block size is 1, for ni
A = 1 it is NA, for ni

A = 2
it is NA(NA − 1)/2, etc.

Thus, the task of calculating the EE of a region A at a given
excitation |�〉 is equivalent to calculating the eigenvalues
of the matrix ρA(i,j ). Since the blocks are uncoupled, it is
possible to diagonalize each block with a given number of
particles, ρ(�)

A (i,j ), independently (where � denotes the number
of particles in region A). For a state |�〉, which is the ground
state of a half filled ring at N → ∞, it is possible (in several
different ways) to show that SA = −(1/3) ln(x) + const,1

where x = NA/N . For the excited states the task becomes
more difficult, and no simple and general result for SA exists.9

Here we will calculate the SA for two-particle excitations.
For the sake of completeness lets first consider single

particle state entanglement. In this simple case ρA(i,j ) is
composed of two blocks: ρ

(0)
A (1,1) and ρ

(1)
A (i,j ) (where i,j =

1 · · · NA). Direct evaluation of Eq. (9) for any single-particle
state |�〉 = |k〉 results in ρ

(0)
A (1,1) = 1 − x, while ρ

(1)
A (i,j ) =

(1/N ) exp[−ıp(i − j )]. The latter is a Toeplitz matrix, with
one eigenvalue equal to x and NA − 1 zero eigenvalues. As
expected, the EE for any single-particle eigenstate |k〉 is equal
to

SA = −x ln(x) − (1 − x) ln(1 − x) (10)

and does not depend on |k〉.

A note of caution is needed. Since the eigenvalues for k

and −k are degenerate, any linear combination of |k〉 and |−k〉
are an excited state of Eq. (1). These linear combinations have
different values of the EE, and therefore, strictly speaking, the
EE for degenerate excited states is ill defined. We circumvent
this problem by introducing a degeneracy breaking magnetic
flux φ into Eq. (1). As long as the degeneracy is broken the
EE of any excited state |k1,k2〉 is well defined and does not
depend on φ.

For two-particle states |k1,k2〉, the reduced density matrix
is composed of three blocks: ρ

(0)
A (1,1), ρ

(1)
A (i,j ) (of size NA)

and ρ2
A(i,j ) [size NA(NA − 1)/2]. For the zero-particle block,

ρ0
A(1,1) = 1

N2

N∑
j1>j2>NA

|A(j1,k1,j2,k2)|2 = (1 − x)2 − y2,

(11)

where y = {sin[π (k2 − k1)x]/[π (k2 − k1)]}. Thus the eigen-
value of this block is (1 − x)2 − y2. Using symmetry,
one can immediately deduce the eigenvalues of the two-
particle reduced density matrix, without actually diagonalizing
the NA(NA − 1)/2 matrix. Since SA = SB the contribution to
the EE from ρ

(2)
A (i,j ), must be equal to the contribution from

ρ
(0)
B (1,1). This infers that ρ(2)

A (i,j ) has only one nonzero eigen-
value. Seeing that region B’s length is N − NA, according
to Eq. (11), the nonzero eigenvalue of ρ

(2)
A (i,j ) is equal to

x2 − y2.
The one-particle block density matrix is given by

ρ
(1)
A (i,j ) = 1

N2

N∑
j1>NA

A∗(j1,k1,i,k2)A(j1,k1,j,k2)

= e−ıp1(i−j )

N

(
(1 − x)(1 + e−ı(p2−p1)(i−j ))

+ 1

ıN (p2 − p1)
[e−ı(p2−p1)i(eı(p2−p1)NA − 1)

− eı(p2−p1)j (e−ı(p2−p1)NA − 1)]

)
. (12)

This cumbersome form is substantially simplified when k2 −
k1 is large. In that case the second term in Eq. (12) may be
neglected and the density matrix block has a Toeplitz form,

ρ
(1)
A (i,j ) = 1 − x

N
(e−ıp1(i−j ) + e−ıp2(i−j )), (13)

with NA − 2 zero eigenvalues, and two degenerate eigenvalues
equal to x(1 − x). The second term is negligible also when
x = NA/N ∼ 1/2, and k2 − k1 is even, resulting in the same
eigenvalues. We do not have the general solution, nevertheless,
it can be shown numerically that ρ(1)

A (i,j ) has no more than two
nonzero eigenvalues, which depend only on the difference k2 −
k1. Moreover, since the sum of all eigenvectors of the density
matrix should be 1, the sum of those two eigenvalues should
be 2x(1 − x) + 2y2. For the ground state (and excitations for
which k2 − k1 = 1) the two eigenvalues are well described by
2x(1 − x) + (2 − 1/π )y2 and y2/π .

Thus, the EE of two-particle states composed from two
single-particle states of significantly different wave numbers,
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FIG. 1. (Color online) The EE of a two-particle state |k1,k2〉 of a
clean system as function of region A’s size x = NA/N for a system
of length N = 1000. The heavy lines correspond to the analytic
prediction [dotted for k2 − k1 = 1, Eq. (15), dashed for k2 − k1 � 1,
Eq. (14)]. The thin lines pertain to the numerically calculated EE for
all values of k2 − k1 between 1 and 30, where odd values are depicted
by red curves, and even ones by red curves. It is clear that for k2 − k1

larger than 5 the numerical curves fit Eq. (14) quite well. It is also clear
that all even k2 − k1 reach the same EE value SA(x = 1/2) = ln(4)
once NA = N/2.

which are the majority of the two-particle states, is

SA(k2 − k1 � 1) = −2[(1 − x) ln(1 − x) − x ln(x)]. (14)

This is twice the EE of a single-particle state [Eq. (10)]. Thus,
as long as the two occupied states |k1〉 and |k2〉 are far enough
from each other, the two-particle EE is just the sum of the EE
of each occupied state. In the opposite limit

SA(k2 − k1 = 1)

∼ −[(1 − x)2 − y2] ln[(1 − x)2 − y2] − (x2 − y2)

× ln(x2 − y2) − [y2/π ] ln[y2/π ] − [2x(1 − x)

+ (2 − 1/π )y2] ln[2x(1 − x) + (2 − 1/π )y2]. (15)

The EE curves for other values of k2 − k1 can be calculated
numerically by diagonalizing the NA × NA matrix represent-
ing ρ

(1)
A [the two other eigenvalues for ρ

(0)
A and ρ

(2)
A are given

by Eq. (11)]. The results are depicted in Fig. 1. All the values
of the EE for any value of k2 − k1 fall in between those two
limits, but as can be seen in Fig. 1 they quite quickly fall on
the k2 − k1 � 1 curve. Since there is a large phase space for
k2 − k1 � 1, a typical two-particle excitation corresponds to
the EE described in Eq. (14).

Another interesting behavior that can be gleaned from Fig. 1
is that all two-particle states of even k2 − k1 reach the same
EE value at NA = N/2. This stems from the structure of
ρ

(1)
A (i,j ) [Eq. (12)], where the two last terms are multiplied

by e−i(p2−p1)NA − 1 = e−iπ(k2−k1) − 1 = 0 [since p2 − p1 =
2π (k2 − k1)/N ] returning to the density-matrix block with
a Toeplitz form depicted in Eq. (13), and the corresponding
two degenerate eigenvalues equal to 1/4. Since at NA = N/2,
x = 1/2, and y = 0, the two other block eigenvalues are also
1/4, resulting in SA(k2 − k1 = odd,x = 1/2) = ln(4). Thus

the largest EE in a two-particle clean ring system is equal
to ln(4).

III. INTERACTING CLEAN RING

Incorporating nearest-neighbor electron-electron interac-
tions into the system results in adding an interaction term
given by

Hint = U

N∑
j=1

â
†
j âj â

†
j+1âj+1 (16)

to the Hamiltonian H , depicted in Eq. (1). In a clean system it
is well known that far from half filling the system behaves as a
Luttinger liquid for any value of U .34 For the ground-state
EE of a clean system at half filling (and U < 2, i.e., a
Luttinger liquid) the EE changes only by an overall constant,1,8

while retaining the same logarithmic dependence. Thus, we
expect that the EE of the two-particle states in a clean
system will not be essentially affected by the presence or
absence of electron-electron interactions. Unfortunately, it is
not possible to calculate analytically the two-particle states
of the interacting system. Thus, we must rely on a numerical
solution for the problem.

Exact diagonalization is used to calculate all the eigenvec-
tors of H + Hint, represented by a N (N − 1)/2 matrix. We
have chosen a 100-site system, resulting in a matrix of size
4950. A reduced density matrix ρA of size 1 + NA + NA(NA +
1)/2 is then constructed and diagonalized for each eigenstate,
and the EE is calculated using its eigenvectors according to
Eq. (6). The results are shown in Fig. 2, where the EE of
31 states around the ground state (i.e., the ground state and
1st–30th excitation), and at quarter of the two-particle band
(1222th–1252st excitation) are shown. In both cases the EE
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FIG. 2. (Color online) The EE of 31 states of a clean system as
function of region A’s size NA for a system of length N = 100, in the
absence (U = 0, black line) or presence (U = 1, dotted red line) of
electron-electron interactions. Panel (a) depicts states in the vicinity
of the ground state (the ground state and 1st–30th excitation), panel
(b) shows the excitations around quarter of the two-particle band
(1222th–1252st excitation). The heavy dashed line corresponds to
the analytic prediction for k2 − k1 � 1, Eq. (14). For a clean system
the interaction has no influence on the EE.
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for the noninteracting (U = 0) as well as for the interacting
(U = 1) cases are almost equal (the interacting case is larger
by a minute constant (of order 10−4 which cannot be resolved
at the resolution of the figure). As expected around the ground
state the excitations belong to the low k2 − k1 sector while for
the higher excitations most states correspond to large values
of k2 − k1, i.e., well described by Eq. (14).

IV. INTERACTING DISORDERED RING

When disorder is added to a noninteracting system, all
single-particle states become localized. For the many-particle
states, the behavior is more involved. As long as no interaction
is present, the many-particle states remain localized, both for
the ground state35 as well as for all the excited states. Once
interaction is introduced, the ground state as well as low-lying
excitations remain localized, while above a critical energy the
many-particle excitations are predicted to delocalize.11–13 This
transition, termed the many-body or Fock space localization
transition, stems from the interactions coupling excitations
with a different number of electron-hole couples. This type of
transition is irrelevant for two-particle systems. Nevertheless,
as argued by Shepelynsky and Imry,26,27 interaction between
the pair of particles should enhance the two-particle local-
ization length, compared to the single electron localization
length, as long as the two-particle level spacing is significantly
smaller than the single electron level spacing, i.e., for higher
excitations.

Can we see any signature of the enhanced two-particle
localization length in the EE behavior of the excited states?
First we have to understand the influence of disorder on the
EE. In Ref. 8 it has been shown that for the ground state the
EE saturates on the length scale of ξ , and does not continue
to grow logarithmic as in a clean system. Thus, the EE of
a disordered system is always lower than the EE of a clean
system. One would expect this feature to hold also for excited
states. We check this assumption by calculating the EE using
the excitations of the Hamiltonian given in Eq. (1), where the
disorder is represented by a random on-site energy, εj taken
from a uniform distribution in the range [−W/2,W/2]. For
W = 3, single electron states at the middle of the band are
expected to have a localization length ξ ∼ 10,36 while close
to the band edge the single electron states are supposed to be
much more strongly localized (Lifshitz tails).37

The EE is calculated by exact diagonalization for systems of
size N = 100 as described in the previous section. The results
are presented in Fig. 3, where the median EE in the vicinity
of the ground state (1st–30th excitation), at 1/16 of the band
(294th–324th excitation), at 1/8 of the band (603th–633th
excitation), and at 1/4 of the band (1222th–1252th excitation).
The median EE is taken across the 31 excitations in each
segment and 50 different realizations of disorder. We calculate
the EE in the absence (U = 0) and presence (U = 1, U = 3)
of electron-electron interactions. Around the ground state, the
interactions do not play a significant role, and for all cases
the EE is strongly suppressed compared to typical values
for a clean system. This is expected, since as mentioned, at
the bottom of the band the states are strongly localized, and
therefore the EE is low.
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FIG. 3. (Color online) The median EE of an ensemble of states for
different regions of the band collected from 20 different realizations
of strong disordered (W = 3), as a function of region A’s size NA for
a system of length N = 100. Continuous lines depict the median EE
in the vicinity of the ground state (1st–30th excitation), dotted lines
at a1/16 of the band (294th–324th excitation), dashed lines at a1/8
of the band (603th–633th excitation), and dot-dashed lines at a1/4
of the band (1222th–1252th excitation). Black lines correspond to no
electron-electron interactions, while red lines indicate the presence
of moderate electron-electron interactions (U = 1), and green lines
correspond to stronger interactions (U = 3). The heavy dashed line
corresponds to the maximum EE for a clean system [Eq. (14)]. Error
bars represent a range between the 40th and 60th percentiles.

For the noninteracting case, the EE higher in the band
are less suppressed as the localization length grows. The EE
for high excitations in the interacting case is always larger
than for the corresponding noninteracting states. This is a
clear signature for the effect of interactions on localization
of the two-particle states, which become more entangled
as interaction is present, although there is no significant
difference between U = 1 and U = 3. It is also clear that for
higher excitations (larger localization length) the enhancement
of the EE becomes stronger.

This enhancement could be expected on physical grounds.
As has been shown,26–31 the localization length associated
with an interacting two-particle state is larger than for a
noninteracting state with the same disorder. Thus, one expects
that the EE will also be larger and closer to its clean system
value.

We therefore also investigate the case of weaker disorder,
for which the localization length is of order of the system
size (W = 1, ξ ∼ 100). As can be seen in Fig. 4, for the
noninteracting case a similar pattern to the one observed in
Fig. 3 remains, although the EE is less suppressed by the
weaker disorder. As expected, the enhancement of the EE by
interactions is stronger for the weaker disorder. Surprisingly,
above 1/8 of the band (corresponding to an excitation energy of
t), the EE of the disordered interacting system is significantly
larger than the limit for a clean system [ln(4)]. Although,
extrapolating from the results presented in Fig. 3, increasing
the system size while keeping the disorder fixed will result in a
decrease of the EE below the clean system values once L � ξ .
The increase above the clean system excitation EE may stem
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FIG. 4. (Color online) As in Fig. 3 for weak disordered (W = 1).
For high enough excitation energy, the median EE in the presence of
disorder and interactions exceeds the maximum clean value indicated
by the heavy dashed line [Eq. (14)].

from the fact that as long as the two particles are confined
within a single localization length the particles cannot avoid
each other and spend much time close to each other, leading
to an enhancement of the EE. When the system size is much
larger than the localization length, the two particles can reside
in different regions of the sample, and interactions will not play
an important role. However, this hand-waving picture requires
further study.

At first glance, these results seem to indicate that although
interactions may enhance the EE as long as L < ξ , they
become irrelevant for L � ξ , showing no support for the
many-particle delocalization scenario11–13 which should occur
for L � ξ . This interpretation is wrong, since the many-
particle delocalization scenario deals with a constant density
of particles, and delocalization is predicted only when there
are at least a couple of particles in the range of a single-
particle localization length. Thus the observed two-particle
EE enhancement when the two particles are within a distance
of ξ , as well as the fact that the entanglement increases
significantly when the excitation energy, fits nicely with the
scenario promoted in Ref. 13. Of course, coupling between
states with a different number of electron-hole generation is
crucial for the delocalization scenario, and therefore a full
demonstration of the delocalization transition at a critical

excitation energy has to be performed for a finite electron
density system. Nevertheless, the fact that the two-particle
EE behavior fits nicely with the delocalization scenario is
encouraging. It would be very interesting to see whether
by calculating the EE of excited many-particle states similar
enhancement may be seen.

V. CONCLUSIONS

The properties of the EE of two-particle excited states in
a one-dimensional ring were studied. For a clean system, the
EE depends only on the difference in momentum between the
two particles. If the difference is large the EE corresponds
to the EE of two independent single-particle states, i.e.,
SA = −2[x ln(x) + (1 − x) ln(1 − x)]. On the other hand, if
the momenta are close, the EE of the two-particle state is
reduced compared to this value.

One may extrapolate that for m particles on a N site ring,
as long as the density is low (m/N � 1), the upper limit
of the EE is SA = −m[x ln(x) + (1 − x) ln(1 − x)], which is
also the typical value. This will be valid if the difference
between the momenta of all particles taking part in a particular
many-particle excited state is large. If this is not the case
we expect the EE of the excited state to be lower. Further
investigation of these cases is underway.

We have verified numerically that disorder reduces the EE.
Short-range particle interaction leads to an enhancement of
the excited state EE, which becomes very significant once
the localization length is of order of the system size. For
high excitations the median EE of a many-particle interacting
excitation is not only above the disordered case, but exceeds
the clean system limit. This may be related to the fact that
localization forces the two particles to dynamically spend
more time in the vicinity of each other, although this argument
merits further study. Moreover, the two-particle EE behavior,
particularly the fact that the enhancement is maximal when the
two particles are within a distance of ξ from each other and the
fact that the particles become more entangled as their energy
increases supports the basic scenario of the many-particle
delocalization transition.
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