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We show that for multiorbital quantum impurity models the noncrossing approximation and one-crossing
approximation versions of the self-consistent hybridization expansions violate the sum rules relating the
coefficients of the high-frequency expansion of the self-energy and the product of the self-energy and Green’s
function to thermodynamic expectation values. Comparison of noncrossing/one-crossing results to numerically
exact quantum Monte Carlo calculations shows that the consistency with sum rules provides a useful estimate of
the reliability of the approximations. The sum rule violations are more pronounced, and therefore the quality of the
noncrossing/one-crossing approximation is poorer, in situations with multiple orbitals and away from particle-hole
symmetry but becomes less severe as the correlation strength increases. The one-crossing approximation is
markedly superior to the noncrossing approximation.
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I. INTRODUCTION

Electronic structure calculations of complex materials pose
a highly nontrivial task: The interplay between charge, spin,
orbital, and lattice degrees of freedom can lead to striking
many-body correlations challenging common band-structure
approaches.1 An important step towards a successful theoreti-
cal description of materials with strong electronic correlations
was taken with the development of dynamical mean-field
theory (DMFT).2–4 DMFT provides a theoretical framework
to account for correlations resulting from strong local interac-
tions between electrons, by mapping the full problem onto a
quantum impurity model with a self-consistently determined
bath.

However, the solution of the quantum impurity model
required in the DMFT method remains challenging. The
state-of-the-art methods to solve quantum impurity models
make use of a stochastic sampling of diagrams in an imaginary-
time expansion of the partition function.5–7 These “contin-
uous time quantum Monte Carlo” (CT-QMC) approaches
are numerically exact and are widely used as “impurity
solvers” for DMFT calculations. However, these methods are
computationally intensive (so that surveys of wide ranges
of parameter space are often prohibitively expensive), are
formulated on the Matsubara axis (so analytical continuation is
required for real-frequency spectral information), and in many
physically relevant cases suffer from a severe “fermion sign
problem.” This sign problem is severe if large clusters or many
orbitals are simulated and may occur even in the single-site
DMFT approximation, for multiorbital situations in which the
local Green’s function is “nondiagonal,” i.e., does not have a
frequency-independent eigenbasis. The latter situation occurs
generically in situations of low point symmetry, for example
in the case of Co on Cu.8

In these situations, it is desirable to have a more eco-
nomical way to solve the quantum impurity model by using
approximations which give reasonably accurate results while
keeping the computational cost at a minimum. Self-consistent

resummations of diagrams in the hybridization expansion are
popular approximations because they are based on the solution
of integral equations rather than quantum field theories and
the computational cost scales polynomially in the system
size.9 Among various schemes, the noncrossing (NCA) and
the one-crossing approximations (OCA) are frequently used in
DMFT calculations.10–16 These approaches may be formulated
on the imaginary15,17 or on the real frequency axis using either
Feynman’s perturbation theory in a slave-boson representation
with subsequent projection18,19 or a perturbation theory based
on contour integrals of ionic resolvents.9,20 Keldysh-contour
formulations also have been studied.16,21–23 The ability to
formulate the problem directly on the real axis or the Keldysh
contour has the additional and very considerable advantage
that analytical continuation is not necessary.

The NCA/OCA and related approximations are obtained
from summations of complete families of dressed skeleton
diagrams and are therefore conserving approximations (�
derivable).9,10,24 This guarantees the equivalence of alter-
native representations of the partition function obtained by
integrating thermodynamic derivatives—a property which
assures that thermodynamic relations are conserved within
a given approximation. On the other hand, it is known that
� derivability does not guarantee that sum rules (which
connect frequency sums of dynamical quantities to equal-time
correlation functions) and Fermi liquid relations (which con-
nect thermodynamic derivatives or zero-frequency correlation
functions and thermodynamic derivatives) are satisfied.9 These
have to be tested on a case-by-case basis.

In the present article, we investigate the degree to which
self-consistently resummed approximations such as the NCA
and OCA respect sum rules relating the high-frequency
expansion of the impurity Green’s function G(iωn) [and
self-energy �(iωn)] to thermodynamic expectation values of
commutators of operators with the Hamiltonian and to sum
rules relating the Matsubara axis sum of the product of the
Green’s function and self-energy to the expectation value of

075124-11098-0121/2013/87(7)/075124(11) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.87.075124
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the potential energy. A comparison of NCA/OCA calculations
to the results of numerically exact quantum Monte Carlo
calculations shows that the degree of sum rule violation offers
a straightforward and robust estimate of the quality of the
approximation in the systems we tested. We also observe that
the sum rule violation means that it is not possible to use sum
rule techniques to estimate the high-frequency tails needed
for Fourier transformation.25,26 Although this paper presents
explicit results only for the NCA and OCA we observe that
more involved conserving approximations19,20,27 can also be
discussed within the framework developed here.

The quality of the NCA and related approximations was
investigated previously but with a focus on the Fermi liquid
properties.28–32 It was found that although the NCA gives
qualitatively correct results for temperatures higher than the
Kondo temperature, it develops a spurious nonanalyticity at the
Fermi energy at low temperatures.28,29 To recover the correct
Fermi liquid behavior, a considerably larger class of diagrams
must be considered, as is the case in the conserving T -matrix
approximation.30,31 However, the application to dynamical
mean-field theory changes the focus from the details of the
low-frequency Fermi liquid behavior to the quality of the
approximation at generic frequencies. There is thus a need for
simple, robust estimators of the approximation quality. One
of our aims in this paper is to show that sum rule violations
provide such an estimator.

The results of this paper are based on the imaginary-time
formulation of the NCA/OCA for quantum impurity models
with multiple orbitals. In Sec. II we first review the formalism
before we present in Sec. III the above-mentioned sum rules
and discuss the degree to which they are respected in the NCA
and OCA. In Sec. IV, we directly benchmark the NCA/OCA
against CT-QMC. From these tests, we conclude in Sec. V
that the performance of the NCA/OCA is less satisfactory
in situations with multiple orbitals and away from particle-
hole symmetry. However, as expected, these approximations
become better in situations where the hybridization is small
compared to the interaction energy. Moreover, for the instances
we have studied, the OCA provides a substantial improvement
over the NCA.

II. FORMALISM

A. Overview

This section presents the formalism for the self-consistent
resummation of the hybridization expansion in imaginary time,
generalizing the scheme given in Ref. 17 to the multiorbital
case. We use a matrix notation which makes the formalism
independent of the details of the impurity model.

B. General impurity model

We study impurity models of the form

H = Himp + Hbath + Hhyb, (1)

where Himp describes the (interacting) impurity electrons and
Hbath the noninteracting bath electrons, and Hhyb specifies
the hybridization between the impurity and bath degrees of

freedom. The mixing term has the general form

Hhyb =
∑
p,a

(V a
p c†pda + H.c.). (2)

Here, d
(†)
a denotes the annihilation (creation) operators for

the impurity electrons in spin-orbital a. c
(†)
p describe the bath

degrees of freedom which follow

Hbath =
∑

p

εpc†pcp. (3)

In general, p is a combined index including both the momen-
tum and the internal quantum numbers such as spin. We expect
that Himp is of the general form

Himp =
∑
ab

Eabd
†
adb + Hint. (4)

At this stage in the discussion we will not need to specify the
interaction part Hint.

We shall be interested in the imaginary-time d-electron
Green’s function

Gab(τ ) = −〈Tτ da(τ )d†
b(0)〉, (5)

whose Fourier transform may be expressed in terms of the
hybridization function matrix � and self-energy matrix � as

G(iωn) = [iωn1 − E − �(iωn) − �(iωn)]−1. (6)

The matrix E specifies the single-particle levels of the impurity
and is given in Eq. (4).

The hybridization function

�ab(τ ) = − 1

Nbath

∑
p

V a
p

∗
V b

p 〈Tτ cp(τ )c†p(0)〉 (7)

arises from integrating out the bath electrons. In terms of the
bath dispersion εp, it has the explicit representation7

�ab(τ ) = 1

Nbath

∑
p

V a
p

∗V b
p

eεpβ + 1
×

{−e−εp(τ−β), 0 < τ < β;

e−εpτ , −β < τ < 0,

which has the property that its Fourier transform �(ω) vanishes
as |ω| → ∞. The self-energy expresses the effect of the
interaction terms Hint on the d-electron dynamics.

C. Hybridization expansion

The starting point for the approximations discussed in
this paper is the hybridization expansion of the partition
function.6,7,33 It uses the interaction representation with respect
to the hybridization Hhyb:

Z = Tr[e−βH0T e− ∫ β

0 dτV (τ )]

=
∞∑

k=0

∫ β

0
τ1 . . .

∫ β

τk−1

dτkTr[e−βH0eτkH0 (−V )

. . . e−(τ2−τ1)H0 (−V )e−τ1H0 ], (8)

where V = Hhyb and H0 = Himp + Hbath. Only even powers of
this expansion with equal number of creation and annihilation
operators contribute. After separating the bath and impurity
operators one can integrate out the contribution from the bath
degrees of freedom. Using Wick’s theorem the contributions of
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FIG. 1. (a) The Dyson equation for the self-consistent local
propagator R(τ ). (b) The self-energy S(τ ) of the local propagator
in the NCA and OCA.

the bath electrons can be written in terms of the hybridization
function defined in Eq. (7).

Collecting terms of the same order in �ab(τ ), the expansion
of the partition function takes the final form6,17

Z = Zbath

∑
k

∫ ∫ ∫
dτ1 . . . dτ ′

k

∑
j1...jk

∑
j ′

1...j
′
k

Tr
[
Tτ e

−βHimp

×djk
(τk)d†

j ′
k
(τ ′

k) . . . dj1 (τ1)d†
j ′

1
(τ ′

1)
]
det �, (9)

where � is a k × k matrix with entries �lm = �jljm
(τl − τ ′

m). It
is possible to use a Monte Carlo algorithm to evaluate the series
stochastically, thereby computing observables such as the
Green’s function numerically exactly.6,7,33 It is also possible
to provide an approximate evaluation by resumming particular
subsets of terms in a self-consistent manner. Two well-known
examples are the noncrossing (NCA) and one-crossing (OCA)
approximations.

D. The noncrossing approximation (NCA)

The noncrossing approximation (NCA) is a resummation of
all the terms in Eq. (9) which have noncrossing hybridization
lines. It can be obtained by considering the k = 0,1 terms in
Eq. (9) but with a dressed propagator of the local eigenstates,
R(τ ). R(τ ) is a N × N matrix, where N is the dimension of
the local Hilbert space. It fulfills the following Dyson equation
in imaginary time [see Fig. 1(a)]:

R(τ ) = R0(τ )+
∫ τ

0
dτ2

∫ τ2

0
dτ1R(τ − τ2)S(τ2 − τ1)R0(τ1).

(10)

Here, the bare propagator R0(τ ) is given by

R0(τ ) = e−τHimp . (11)

By construction, R(τ ) is only defined for 0 < τ < β. The
N × N matrix S(τ ) corresponds to the “self-energy” of the
local propagator R(τ ). In the NCA, it is given by S(τ ) = S0(τ ),
where

S0(τ ) =
∑
ab

[daR(τ )d†
b�ba(−τ ) − d†

aR(τ )db�ab(τ )]. (12)

The creation and annihilation operators d
(†)
a in Eq. (12) should

be interpreted as their corresponding matrix representations in
the local Hilbert space. Equation (12) has the diagrammatic
representation shown in the first line of Fig. 1(b). It has to be
solved self-consistently together with Eq. (10); in practice this
is typically done by iteration.

Once a self-consistent solution is found, physical quantities
are calculated from R(τ ). For example, the partition function
is given by

Z = Tr[R(β)]. (13)

Furthermore, static (thermodynamic) expectation values are
readily computed,

〈O〉NCA = 1

Z
Tr[R(β)O], (14)

where O is an arbitrary local operator.
Dynamical (imaginary time) quantities are calculated in a

similar way. The most important dynamical quantity for the
following discussion is the physical single-particle Green’s
function of the impurity site:

Gab(τ2 − τ1) = −〈Tτ da(τ2)d†
b(τ1)〉. (15)

Within NCA, it is obtained as

Gab(τ ) =
{

−Tr[R(β − τ )daR(τ )d†
b]/Z, 0 < τ < β;

Tr[R(β + τ )d†
bR(−τ )da]/Z, −β < τ < 0.

(16)

The noncrossing approximation is a conserving
approximation.9 In particular, there exists a Luttinger-Ward
functional �[R,�] from which the local eigenstate self-energy
S(τ ) and the impurity Green’s function G(τ ) are obtained by
a functional derivative:

Snm(τ ) = δ�[R,�]

δRmn(β − τ )
, (17)

Gab(τ ) = 1

Z

δ�[R,�]

δ�ba(β − τ )
. (18)

In the NCA, the Luttinger-Ward functional is �[R,�] =
�0[R,�], where19

�0[R,�]=−
∑
a,b

∫ β

0
dτTr[R(β − τ )daR(τ )d†

b]�ba(β − τ ).

(19)

Using �0[R,�] in Eqs. (17) and (18) one recovers Eq. (12) for
the self-energy and Eq. (16) for the impurity Green’s function
in the NCA.

E. The one-crossing approximation (OCA)

The NCA was originally developed for the infinite-U
single-orbital Anderson model where the approximation works
well.9 For finite U , the NCA shows severe problems because it
neglects exchange contributions.19,20 There are many different
schemes which improve on the NCA by including diagrams
with crossing hybridization lines.27 We will discuss the
simplest such generalization and will refer to it as the one-
crossing approximation (OCA).15,16 Other names used in the
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literature for the same approximation include “enhanced NCA”
(ENCA),27,34,35 “finite U NCA” (UNCA),19 or “first-order
one-crossing approximation” (1st-order OCA).17

The OCA is obtained from the expansion Eq. (9) by addi-
tionally including the k = 2 terms with crossing hybridization
lines. Again, the approximation is made self-consistent by
taking a dressed propagator R(τ ) which fulfills the Dyson
equation Eq. (10), in analogy to the NCA. However, as
illustrated in Fig. 1(b), the OCA includes additional exchange
diagrams for the self-energy, S(τ ) = S0(τ ) + S1(τ ). The OCA
is also a conserving approximation. The Luttinger-Ward

functional is obtained from the NCA functional by adding
an additional contribution, �[R,�] = �0[R,�] + �1[R,�],
where3

�1[R,�] = −
∑
αβγ δ

∫ β

0
dτ3

∫ τ3

0
dτ2

∫ τ2

0
dτ1Tr[R(β − τ3)d†

δ

×R(τ3 − τ2)dγ R(τ2 − τ1)dβR(τ1)d†
α]

×�αγ (β − τ2)�δβ(τ3 − τ1). (20)

S1(τ ) can now be obtained from Eq. (17) by replacing �[R,�]
with �1[R,�]. The explicit expression for S1(τ ) is given by

S1(τ ) = −
∑
abcd

∫ τ

0
dτ2

∫ τ2

0
dτ1[d†

dR(τ − τ2)d†
cR(τ2 − τ1)dbR(τ1)da�ca(τ2)�db(τ − τ1)

+ ddR(τ − τ2)d†
cR(τ2 − τ1)d†

bR(τ1)da�ca(τ2)�bd (β − τ + τ1)

+ d
†
dR(τ − τ2)dcR(τ2 − τ1)dbR(τ1)d†

a�ac(β − τ2)�db(τ − τ1)

+ ddR(τ − τ2)dcR(τ2 − τ1)d†
bR(τ1)d†

a�ac(β − τ2)�bd (β − τ + τ1)]. (21)

Similarly, the impurity Green’s function G(τ ) acquires an additional contribution to Eq. (16). The full expression is

Gab(τ ) = −Tr[R(β − τ )daR(τ )d†
b]/Z −

∑
cd

∫ τ

0
dτ1

∫ β

τ

dτ2Tr[R(β − τ2)dcR(τ2 − τ )daR(τ − τ1)d†
dR(τ1)d†

b�dc(β − τ2 + τ1)]/Z

−
∑
cd

∫ τ

0
dτ1

∫ β

τ

dτ2Tr[R(β − τ2)d†
cR(τ2 − τ )daR(τ − τ1)ddR(τ1)d†

b�cd (τ2 − τ1)]/Z, (22)

which can be obtained from �[R,�] by the functional
derivative Eq. (18).

III. SUM RULES

A. Overview

In the following, we study the degree to which the
NCA/OCA respects sum rules. In Sec. III B we test the
degree to which the NCA and OCA respect the relations,
known from the exact theory, between the coefficients of
the high-frequency expansion of G(iωn) and independently
known thermodynamic expectation values. In Sec. III C we
investigate the sum rule for the potential energy. We present
general arguments showing that neither the NCA nor the OCA
fulfills the sum rules. In Sec. III D, we present numerical results
for these sum rule violations.

B. High-frequency expansion

The high-frequency expansion of the impurity Green’s
function in Matsubara frequency space is given by (here we
omit the matrix indices of G, etc., for ease of writing)

G(iωn) =
∫ β

0
dτG(τ )eiωnτ =

∑
k�1

ck

(iωn)k
. (23)

Note that (c1)ab = δab, which insures that the single-
particle spectral function is normalized to 1. The self-
energy and hybridization function have similar high-frequency

expansions:

�(iωn) =
∑
k�0

�k

(iωn)k
(24)

and

�(iωn) =
∑
k�1

�k

(iωn)k
. (25)

Note that the moments �k are known a priori and that the
hybridization function is defined so that �k=0 = 0. �k=0 gives
the Hartree shift of the levels of the impurity model specified
by the matrix E. Use of the Kramers-Kronig relation implied
by the causality of the self-energy implies

�k=1 =
∫

dω

π
Im �ret(ω) (26)

so that �k=1 contains information about the interaction-
induced dynamics.

Comparison of Eqs. (6) and (23) shows that

c2 = E + �0, (27)

c3 = (E + �0)2 + �1 + �1. (28)

A relation between the moments ck in the high-frequency
expansion of G and the discontinuities in the derivatives of the
Green’s function at τ = 0 follows from repeated integration
by parts of Eq. (5):

ck = (−1)k[G(k−1)(0+) − G(k−1)(0−)] (29)
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(here G(k) denotes the kth derivative of G). The time derivatives
may also be obtained by expanding the Heisenberg equation
of motion O(τ ) = e−HτOeHτ for small times25,26

G
(k)
ab (0+) − G

(k)
ab (0−) = −〈{[H,[H, . . . [H︸ ︷︷ ︸

k times

,da] . . . ]],d†
b}〉.

(30)

Detailed expressions for the commutators for general models
are available in the literature (see, e.g., Refs. 36,37).

Equation (30) via Eqs. (29) and (23) provides an exact
relation between the moments in the high-frequency expansion
to the equal-time expectation value of k-fold commutators
of the exact Hamiltonian with fermion operators. In an
approximate solution of the impurity problem, the left and
right sides of Eq. (30) are in general not equal. Therefore,
comparing both sides order by order provides a test for the
quality of an approximation. Within the NCA/OCA, we find
that the relation (30) is in general violated for k > 1. Below
we explicitly discuss the first three terms in the high-frequency
expansion.

1. k = 1

To determine the zeroth order we compute the discontinuity
of the Green’s function at τ = 0. Within NCA/OCA, one
obtains

Gab(0+) = −Tr[R(β)dad
†
b]/Z,

Gab(0−) = Tr[R(β)d†
bda]/Z,

which results in(
c

NCA/OCA
1

)
ab

= 〈{da,d
†
b}〉NCA/OCA = δab. (31)

Here, 〈. . . 〉NCA/OCA denotes the thermodynamic expectation
value within the NCA or OCA, as given by Eq. (14). Equation
(31) is consistent with the relations Eq. (30) and guarantees,
e.g., that the single-particle spectral function is correctly
normalized.

2. k = 2

For the next-higher term we first consider the NCA.
Evaluating the first derivative of Eq. (16) at τ = 0± we obtain(

cNCA
2

)
ab

= 1

Z
{Tr[R′(β)dad

†
b] − Tr[R′(β)d†

bda]

+ Tr[R(β)d†
bR

′(0)da] − Tr[R(β)daR
′(0)d†

b]}.
The above expression can be further simplified by using
R′(0) = −Himp and Eq. (10) to obtain R′(β). After some
algebra, one finds the following form:(

cNCA
2

)
ab

= −〈{[H,da],d†
b}〉NCA + ε0

ab, (32)

where for consistency the commutator should be evaluated
within the NCA approximation as indicated by the subscript
NCA.

In deriving Eq. (32) we used the fact that for the impurity
model Eq. (1), the k = 1 anticommutator is independent of the
hybridization and the bath degrees of freedom:

{[Himp,da],d†
b} = {[H,da],d†

b}. (33)

This allowed us to replace Himp by the full Hamiltonian H

in Eq. (32). The second term appearing in Eq. (32) is the
l = 0 member of a family of expressions given by the general
formula

εl
ab = 1

Z

∫ β

0
dτ {Tr[R(β − τ )Sl(τ )dad

†
b]

− Tr[Sl(τ )R(β − τ )d†
bda]} (34)

for S0,1(τ ) given by Eq. (12) and Eq. (21). Comparison of
Eq. (32) to Eq. (30) makes it clear that a nonzero ε0

ab indicates
that in the NCA the high-frequency tail of the Green’s function
is not given by the general commutator expression evaluated
within the same theory. Because ε0

ab involves an integral over
S0(τ ), it is proportional to V 2 for small V [see Eq. (12)].
We find that except for the particle-hole symmetric limit, ε0

ab

is indeed nonzero, which reflects the fact that the impurity
Green’s function in the NCA is exact only in zeroth order in
the hybridization strength.

A similar evaluation for the OCA Green’s function
[Eq. (22)] yields an analogous result:(

cOCA
2

)
ab

= −〈{[H,da],d†
b}〉OCA + ε1

ab, (35)

with the error ε1
ab now given by Eq. (34) with l = 1. ε1

ab

involves an integral over the exchange contributions S1(τ )
of the self-energy which is proportional to V 4 for small V

[see Eq. (21)] instead of V 2 in the NCA. The inconsistency in
the OCA is therefore considerably smaller than in the NCA at
small V (i.e., large U ).

3. k = 3

The k = 3 term in the high-frequency expansion of the
impurity Green function is given by

(c3)ab = 〈{[H,[H,da]],d†
b}〉. (36)

Algebra similar to that for the k = 2 term, but too lengthy
to reproduce here, shows that the k = 3 and all the higher
frequency moments of the Green’s function suffer from sum
rule violations similar to those for the k = 2 term.

The failure of the NCA/OCA to reproduce the relation
between the high-frequency tails of the Green’s function
and the commutators means that the relations between the
high-frequency components of the self-energy and expectation
values of commutators are similarly in error. This is in
particular true for the first two moments, the Hartree shift �0

and the 1/ωn term �1, which can be obtained from Eqs. (27)
and (28). By comparing the NCA/OCA to numerically exact
CT-QMC data, we will later argue (see Secs. III D3 and IV as
well as Figs. 7, 8, 10, and 11) that the sum rule violation for
�1 is a good diagnostic for the quality of the approximation at
general frequencies.

C. Potential energy sum rule

A related error appears in the sum rule for the potential
energy. On the one hand, the NCA/OCA allows us to directly
compute the static expectation value

Ẽstat
pot = 〈Hint〉, (37)
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where Hint = Himp − ∑
ab Eabd

†
adb denotes the local interac-

tion Hamiltonian. On the other hand, the potential energy can
also be obtained from a sum rule if the impurity Green’s
function and the self-energy are known by evaluating the
following expression:2,38

Ẽsum
pot = 1

2β

∑
n

Tr[�(iωn)G(iωn)]eiωn0+
. (38)

Here, Tr denotes the trace over the spin and orbital degrees
of freedom. We find that within NCA/OCA, Ẽstat

pot �= Ẽsum
pot in

general. As we show in the following, the difference between
the two expressions has an origin similar to that of the
inconsistency in the high-frequency expansion. Indeed, the
basis for Eq. (37) is the relation

Re{Tr[G′(0−)]} = −1

2

∑
a

(〈[H,d†
a]da〉 + 〈d†

a[da,H ]〉)

= −〈Hhyb〉 − Tr[Eρ] − 2〈Hint〉. (39)

In the last line we introduced ρab = 〈d†
adb〉. Equation (39) is

an exact relation which can be derived from the definition
of the imaginary-time Green’s function (or the equation of
motion), similar to Eq. (30). Writing the left-hand side in
frequency space, using the Dyson Eq. (6) for the impurity
Green’s function and the relations

ρab = 〈d†
adb〉 = 1

β

∑
n

Gab(iωn)eiωn0+
, (40)

Ehyb = 〈Hhyb〉 = Tr
1

β

∑
n

�(iωn)G(iωn)eiωn0+
, (41)

one can solve Eq. (39) for 〈Hint〉 which yields the expression
Eq. (37). As we have shown in the previous section, the
first derivative of G(τ ) at τ = 0± is not simply obtained
from thermodynamic expectation values within NCA/OCA.
Hence, the relation Eq. (39) is in general (except for vanishing
hybridization) not satisfied within these approximations and
therefore also Ẽstat

pot �= Ẽsum
pot .

Because the NCA and OCA preserve particle-hole sym-
metry, it is convenient to bring the expressions Eqs. (37) and
(38) into a form which respects this symmetry (if present). For
simplicity, we assume Eab = −μδab and define

Estat
pot = Ẽstat

pot − μ0n, (42)

Esum
pot = Ẽsum

pot − 1

4
Tr �0 − μ0n

2
. (43)

Here, μ0 is the value of μ for which the impurity is half filled.
If the impurity model is particle-hole symmetric, the above
expressions respect this symmetry as well. It is then natural to
quantify the sum rule violation by the ratio∣∣∣∣�Epot

μ0

∣∣∣∣ =
∣∣∣∣∣ Ẽ

stat
pot − Ẽsum

pot + 1
4 Tr εl

μ0

∣∣∣∣∣ , (44)

where �Epot = Estat
pot − Esum

pot and εl with l = 0 (NCA) or l = 1
(OCA) is given in Eq. (34). If the NCA/OCA works well, one
expects |�Epot/μ0| 	 1 which we indeed observed by direct
comparison with numerically exact CT-QMC data; see Sec. IV.
From the examples studied, we found that one can use Eq. (44)
as a tool to estimate the quality of the approximation.

D. Numerical results

1. Two-level quantum dot model

The numerical results presented in the following sections
are obtained for a model for a two-level quantum dot (impurity
with two orbitals) with asymmetric coupling to two leads
(bath degrees of freedom). The model has been studied in
Ref. 39 in view of potential quantum critical points related
to the occupancy switching of the two levels. Here, we use it
to illustrate the internal inconsistencies one can encounter in
the NCA/OCA and to benchmark our NCA/OCA calculations
against the CT-QMC results of Ref. 39.

The two orbitals are labeled with the index α = n,w,
distinguishing between narrow (n) and wide (w) level. We
study both spinless and spinful impurity electrons interacting
via an interorbital repulsion U and coupled to the bath via
orbital dependent parameters Vα (note that in neither case is
an intraorbital interaction included). The spinless version of
the model takes the form

Hsl = Unnnw − μ
∑

α

nα +
∑
p,α

Vα

(
c†pdα + d†

αcp

) + Hbath

(45)

with nα = d†
αdα and μ the chemical potential. The spinful

version is the same but with spin indices added:

Hsf = Unnnw − μ
∑

α

nα

+
∑
p,α,σ

Vα(c†pσ dασ + d†
ασ cpσ ) + Hbath (46)

where σ =↑, ↓ labels the spin and nα now = ∑
σ d†

ασ dασ .
We assume that the bath degrees of freedom are described

by a broad and featureless band with a semicircular density of
states of width W = 4t :

ρ(ε) =
√

4t2 − ε2

2t2π
. (47)

The coupling Vα of the two quantum dot levels to the leads
introduces a broadening of the levels. In the noninteracting
limit for dots with energy levels close to the center of the band
and weak hybridization (as compared to W ), the broadening
of the two levels is given by

�n = π |Vn|2ρ(0) and �w = π |Vw|2ρ(0). (48)

Throughout this article we assume �n = 0.04t and �w = 0.25t

which is much smaller than the bandwidth W = 4t of the bath
electrons. The width of the broader level is chosen as the unit
of energy; i.e., �w = 1. In these units, the level broadening of
the narrow level is �n = 0.16 and the bandwidth is W = 16.

Performing the commutators shows that for these models
the coefficient cα

2 controlling the 1/ω2
n decay of the Green’s

function for orbital α is (ᾱ denotes the other orbital)

cα
2 = U 〈n̂ᾱ〉 − μ = Unᾱ − μ (49)

from which we obtain

�α
0 = Unᾱ (50)
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FIG. 2. (Color online) High-frequency behavior of the self-
energy in the NCA for the spinless model for (a) the narrow level and
(b) the wide level. The (blue) solid line represents the Hartree shift
expected from the sum rule. The (green) dashed line represents the
high-frequency limit obtained from the NCA equations with U = 12,
μ = 4.8, and β = 25.

for the Hartree shift. The coefficient �α
1 giving the 1/ωn term

in the self-energy is

�α
1 = U 2

(〈
n̂2

ᾱ

〉 − (〈n̂ᾱ〉)2
)
. (51)

In the spinless model n̂2
ᾱ = n̂ᾱ so the expression reduces to

�α
1,sl = U 2

(
nᾱ − n2

ᾱ

)
, (52)

but in the spinful model the expectation value of n̂2
α enters.

2. Numerical results for Hartree shift �0

In the following we present numerical results for the Hartree
shift �0. Particle-hole symmetry protects the value �0 = μ0

where μ0,sl = U/2 for the spinless and μ0,sf = U for the
spinful model. This symmetry protection is respected by
the NCA and OCA so we focus on results away from the
particle-hole symmetric limit.

We first consider the spinless model Eq. (45). Figures 2
and 3 show the real part of the self-energy for the narrow
(α = n) and the wide (α = w) level as obtained in the NCA
and OCA, respectively. For these calculations, we have used a
large interorbital interaction U = 12 and have fixed μ = 4.8
and β = 25. For these parameters, the total filling n = nn +
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FIG. 3. (Color online) High-frequency behavior of the self-
energy in the OCA for the spinless model for (a) the narrow level
and (b) the wide level. The (blue) solid line represents the Hartree
shift expected from the sum rule. The (green) dashed line represents
the high-frequency limit obtained from the OCA equations which is
indistinguishable from the Hartree shift within the resolution of the
graph. The following parameters have been used: U = 12, μ = 4.8,
and β = 25.
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FIG. 4. (Color online) Real part of the self-energy for the spinful
two-orbital model within the NCA for (a) the narrow and (b) the wide
level with spin σ . The (blue) solid line represents the Hartree shift
expected from the sum rule. The (green) dashed line represents the
high-frequency limit obtained from the NCA equations.

nw is slightly below half filling, n = 1, and the broader level
is preferably occupied, nw > nn. In the NCA (Fig. 2), the
difference between the value for Hartree shift expected from
the sum rule, Eq. (50), and the actual high-frequency limit of
the NCA self-energy is noticeable. The discrepancy is clearly
visible for the narrow level but quite small for the wide level. In
the OCA (Fig. 3), a distinction is not resolved within numerical
precision.

We next consider the spinful model Eq. (46). Again, we
compare the value from Eq. (50) to the high-frequency limit of
the real part of the self-energy in the NCA/OCA; see Figs. 4
and 5. For a given orbital, the self-energy is identical for the
two spin components and we show only one. The parameters
were chosen as U = 2, μ = 0.4, and β = 25. We note that the
discrepancy between the value of the Hartree shift from the
sum rule and the actual high-frequency limit is now manifest
in both approximations. Moreover, Fig. 4(b) shows that also
negative (unphysical) values for the high-frequency limit are
possible in the NCA/OCA.

In Fig. 6 we finally show the dependence of the sum-rule
violation term εl

ασ,ασ [Eq. (34)] on the electronic density n

for the spinful model. As mentioned earlier, εl
ασ,ασ vanishes

at particle-hole symmetry (n = 2) and also approaches zero in
the limits n → 0 and n → 4. Notice the clear improvement of
the OCA over the NCA.
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FIG. 5. (Color online) Real part of the self-energy for the spinful
two-orbital model within the OCA for (a) the narrow and (b) the wide
level with spin σ . The (blue) solid line represents the Hartree shift
expected from the sum rule. The (green) dashed line represents the
high-frequency limit obtained from the OCA equations.
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FIG. 6. (Color online) The term εl
ασ,ασ [Eq. (34)] which quantifies

the sum rule violation in the Hartree shift as function of the electron
density n for U = 2.4 and β = 5 as obtained from the NCA and
OCA in the spinful model. Note the clear improvement of the OCA
as compared to the NCA.

3. Numerical results for �1

The next higher moment in the high-frequency expansion
of the self-energy is given by the coefficient �1 determining
the asymptotic 1/ωn behavior. The sum rule for �1 is generally
violated even at particle-hole symmetry and in the following
we present results for this case.

Figure 7 compares ωnIm �α(iωn) to the asymptotic value
expected from Eq. (52) for the spinless model with large
interactions U = 12. In the NCA, we find that the sum rule for
the wide level is satisfied within a few percent while for the
narrow level it is roughly 10–15%. In the OCA, the sum rule
is satisfied within the precision of the graph.

Figure 8 shows the same analysis for the spinful model
at moderately strong interactions U = 2.4. While the sum
rule violation in the NCA is rather striking, the OCA clearly
improves leading to an overall agreement of 10–15%.

4. Numerical results for the potential energy

We now preset numerical results for the potential energy
sum rule Eq. (43). Because we expect the biggest discrepancy
for the spinful model, we restrict our discussion to this case.

ωn

ω
n
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ω
n
)

ωn

α = n
α = w

spinless

OCANCA

FIG. 7. (Color online) Comparison between ωnIm �α(iωn) and
the asymptotic value if the sum rule for the coefficient �1 [Eq. (52)]
was fulfilled (dashed line). Results are obtained within NCA (left
panel) and OCA (right panel) for the spinless model at particle-hole
symmetry with U = 12, μ = 4.5, and β = 25. For these parameters,
a direct comparison between NCA/OCA and CT-QMC is provided in
Fig. 10.
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FIG. 8. (Color online) Comparison between ωnIm �ασ (iωn) and
the asymptotic value if the sum rule for the coefficient �1 was fulfilled
(dashed line for the narrow level α = n and dashed-dotted line for the
wide level α = w). Results are obtained within NCA (left panel) and
OCA (right panel) for the spinful model at particle-hole symmetry
with U = 2.4, μ = 2.4, and β = 50. For these parameters, a direct
comparison between NCA/OCA and CT-QMC is provided in Fig. 11.

Figure 9(a) shows the (particle-hole symmetric) potential
energy [Eqs. (42) and (43)] as function of the total electron
density on the impurity. We have normalized the curves with
respect to μ0, the chemical potential at half filling (μ0 = U

for the spinful model). Note that the value for Esum
pot , which is

obtained from the Matsubara sum of G(iωn)�(iωn), changes
markedly between NCA and OCA while the thermodynamic
expectation value of the potential energy Estat

pot changes only
by a few percent. We therefore conclude that Estat

pot is more
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FIG. 9. (Color online) (a) The potential energy obtained from the
two expressions Eqs. (42) and (43) as a function of the impurity
electron density n. (b) The ratio |�Epot/μ0| quantifying the sum rule
violation for the same data as in (a).
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accurate, in accordance with the result of a perturbative
expansion in the hybridization strength.

Figure 9(b) shows the ratio |�Epot/μ0| for the same data
as in Fig. 9(a). The sum rule violation is biggest around n = 1
and n = 3 but is smaller at half filling and vanishes in the
empty (n = 0) or filled (n = 4) limit.

IV. BENCHMARKING

We now turn to a direct comparison of the NCA/OCA with
continuous time quantum Monte Carlo (CT-QMC) data39 for
the two-orbital quantum dot model introduced in Sec. III D1.
This allows us to directly address the accuracy of the
NCA/OCA self-energy. The calculations were performed at
particle-hole symmetry where the sum rule for the Hartree
shift is exact within NCA/OCA for the parameters of Fig. 7
and Fig. 11. We find that the degree to which the sum rule for
�1 is violated gives a good estimate of the overall accuracy of
the approximate self-energy.

Figure 10 shows the imaginary part of the self-energy
as a function of ωn for the spinless model at particle-hole
symmetry for an interaction U = 12. For this large value of the
interaction, the NCA prediction for the self-energy of the wide
orbital is relatively close to the exact result. However, the NCA
overestimates the self-energy for the narrow orbital by about a
factor of 2. The NCA thus fails to even qualitatively reproduce
the subtle distinction between the two inequivalent orbitals
arising from the orbital asymmetry of the hybridization.
The inclusion of the one-crossing approximation substantially
improves the results. These observations are in agreement with
the results for the sum rule violation of the coefficient �1

presented in Fig. 7.
For the spinful model, we find that the agreement is

less quantitative. Figure 11 shows the imaginary part of
the impurity self-energy at particle-hole symmetry for an
interorbital interaction U = 2.4. As compared to the exact
result, both NCA and OCA predict a more insulating behavior
for the narrow orbital. By extrapolating ωnIm �n(iωn) to
ωn → 0 we find that OCA gives a gap for the narrow level
which is almost twice the value found in CT-QMC. On
the other hand, the self-energy for the broader level has
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FIG. 10. (Color online) Low-frequency behavior of the imaginary
part of the self-energy in the NCA and OCA for the spinless
model compared with continuous time quantum Monte Carlo results
(Ref. 39) for the parameters specified in the plot. The sum rule
violation for �1 is shown in Fig. 7.
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FIG. 11. (Color online) Low-frequency behavior of the imaginary
part of the self-energy in the NCA and OCA for the spinful
model compared with continuous time quantum Monte Carlo results
(Ref. 39) for the parameters specified in the plot. The sum rule
violation for �1 is shown in Fig. 8.

metallic characteristics in the NCA/OCA while it is weakly
insulating in the CT-QMC. The cause for these errors can
be attributed to the fact the metal-insulator transition line
is inaccurately predicted by NCA/OCA. Again, the overall
accuracy is consistent with the degree to which the sum rule
for �1 is violated, as shown in Fig. 8.

V. CONCLUSIONS

In summary, we reviewed the self-consistent hybridization
expansions for multiorbital quantum impurity models in
the NCA and the OCA. We tested the degree to which
these approximations respect several sum rules which hold
in the exact theory. We focused on three examples. The first
two were obtained from the analysis of the high-frequency
expansion of the impurity self-energy. We found that already
the static contribution (Hartree shift) cannot be obtained from
the thermodynamic expectation which fixes it in the exact
theory. Similarly, the sum rule for the coefficient of the 1/ωn

term is violated. The third example which we have studied is
a sum rule which relates the potential energy to the Matsubara
sum of G(iωn)�(iωn).

We note here that the observed sum rule violations are not
incompatible with the fact that the NCA and OCA are �-
derivable conserving approximations. � derivability ensures
that various equivalent representations of the partition function
based on integration of thermodynamic (static) quantities
remain equivalent in the approximate treatment. However,
� derivability does not ensure that sum rules, which relate
dynamic to static properties, are satisfied.

In addition to the investigation of the above-mentioned
sum rules, we also benchmarked the NCA/OCA against exact
CT-QMC results for a two-level quantum dot model with
asymmetric coupling to two leads. From these different tests,
we conclude that the NCA/OCA performs less satisfactorily
for weak interactions, away from particle-hole symmetry, and
in situations with multiple (potentially inequivalent) orbitals.
In situations where exact results are not available, all three
tests, i.e., the Hartree shift and the 1/ω term of the self-energy
as well as the potential energy sum rule, provide simple tools
to estimate the quality of the NCA/OCA. In our experience,
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the 1/ω term is particularly informative and we suggest using
its relative error as a rule of thumb to address the accuracy of
the approximation.

The error in the Hartree approximation has implications for
the use of the NCA or OCA as impurity solvers for dynamical
mean-field theory. A crucial aspect of the “DFT + DMFT”
method3,40–42 which adds correlations to band theory is the
“double-counting correction” which is introduced to correctly
place the energy of the correlated level relative to other orbitals
in the material.42–45 The Hartree shift enters the computation
of the double-counting correction in an essential way, and if
it is not reliably estimated then the physics is likely not to be
correctly represented.

Both NCA and OCA are designed for the strong correlation
limit and their accuracy is essentially controlled by the ratio
of the hybridization to the local interaction. For the models
we studied, we found that the NCA gives poor results for
the self-energy even if the interaction is large compared to
the hybridization. For example, the NCA self-energy does not
reproduce the orbital asymmetry in a qualitative way. On the
other hand, we found that the OCA clearly improves over
the NCA giving in particular a much improved account of
the orbital asymmetries and a much smaller error in the sum
rules. However, for moderate correlations it wrongly locates
the transition point at which a gap opens in the spectrum
and this can lead to qualitative errors in the low-frequency
portions of the spectrum. The probable magnitude of these
errors can be estimated from the errors in the sum rule relating
the coefficient of 1/ω in the self-energy to an expectation
value. If this sum rule is reasonably well (�15%) obeyed, the

small computational cost (relative to quantum Monte Carlo)
of the OCA makes this an attractive choice for study of the
strongly interacting limit in a semiquantitative way.

An interesting application of the NCA/OCA involves
nonequilibrium studies such as interaction quenches or switch-
ing on of an electric field.16,21–23 In these nonequilibrium
systems, the imaginary-time expansion is replaced by a unitary
propagation on the Keldysh contour. By comparison with
exact CT-QMC, it was found that the NCA/OCA works
reasonably well for short enough time scales (as compared to
the inverse of the hybridization strength).22 Other quantities,
e.g., the relaxation to the steady state in the long-time limit, are
markedly different from QMC results. We surmise that similar
internal consistency checks exist also for real-time propagation
which may be used for assessing the quality of nonequilibrium
simulations.
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155111 (2001).
20T. Pruschke and N. Grewe, Z. Phys. B 74, 439 (1989).
21M. Eckstein, T. Oka, and P. Werner, Phys. Rev. Lett. 105, 146404

(2010).
22E. Gull, D. R. Reichman, and A. J. Millis, Phys. Rev. B 84, 085134

(2011).
23P. Werner, N. Tsuji, and M. Eckstein, Phys. Rev. B 86, 205101

(2012).
24N. Grewe, Z. Phys. B 53, 271 (1983).
25C. Knecht, master’s thesis, Johannes Gutenberg Universität Mainz,

2003.
26A. Comanac, Ph.D. thesis, Columbia University, 2007.
27N. Grewe, S. Schmitt, T. Jabben, and F. B. Anders, J. Phys.:

Condens. Matter 20, 365217 (2008).
28E. Müller-Hartmann, Z. Phys. B 57, 281 (1984).
29Y. Kuramoto and H. Kojima, Z. Phys. B 57, 95 (1984).
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