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Resilience of d-wave superconductivity to nearest-neighbor repulsion
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Many theoretical approaches find d-wave superconductivity in the prototypical one-band Hubbard model for
high-temperature superconductors. At strong coupling (U � W , where U is the on-site repulsion and W = 8t the
bandwidth) pairing is controlled by the exchange energy J = 4t2/U . One may then surmise, ignoring retardation
effects, that near-neighbor Coulomb repulsion V will destroy superconductivity when it becomes larger than J , a
condition that is easily satisfied in cuprates, for example. Using cellular dynamical mean-field theory with an exact
diagonalization solver for the extended Hubbard model, we show that pairing at strong coupling is preserved,
even when V � J , as long as V � U/2. While at weak coupling V always reduces the spin fluctuations and
hence d-wave pairing, at strong coupling, in the underdoped regime, the increase of J = 4t2/(U − V ) caused by
V increases binding at low frequency while the pair-breaking effect of V is pushed to high frequency. These two
effects compensate in the underdoped regime, in the presence of a pseudogap. While the pseudogap competes
with superconductivity, the proximity to the Mott transition that leads to the pseudogap, and retardation effects,
protect d-wave superconductivity from V .
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I. INTRODUCTION

The existence of d-wave superconductivity in the one-band
two-dimensional (2D) Hubbard model has been established
through a variety of theoretical methods at both weak1–25

and strong coupling,26–32 in other words, for one-site in-
teraction U either much smaller or much larger than the
bandwidth W . Generalizations of dynamical mean-field theory
are particularly suited for the strong-coupling limit, but
they are also an excellent guide to the physics at weak to
intermediate coupling.33–42 These calculations suggest that
pairing is maximized at intermediate coupling, where the
on-site interaction U is of order the bandwidth W = 8t . Some
nonperturbative calculations based on weak-coupling ideas
even agree at intermediate coupling43 with strong-coupling-
based approaches.

In all these approaches, spin fluctuations with either an
antiferromagnetic or a singlet character38,44,45 have been
argued to drive the pairing. These spin fluctuations result from
the presence of an on-site Coulomb repulsion U . At strong
coupling, the characteristic energy scale of these fluctuations,
the exchange interaction J , is given by 4t2/U , and the d-wave
gap symmetry adopted by the Cooper pairs allows them to
avoid the direct effect of the on-site repulsion U .

Little attention has been paid so far to the effect of the
nearest-neighbor Coulomb repulsion (or extended Hubbard
interaction) V that we expect to be detrimental to d-wave
superconductivity. Roughly speaking, in a simple BCS picture
that does not take retardation into account, we expect the
effective interaction to be the difference J − V . In ordinary
phonon-mediated superconductivity, the repulsion V is re-
placed by a smaller pseudopotential Vc to account for the
fact that binding occurs at low frequencies through phonons
while the Coulomb interaction acts over a broad energy scale.
This so-called Anderson-Morel mechanism46,47 leads to the
following estimate for the Coulomb pseudopotential Vc =
V/[1 + N (0)V ln(EF /ωD)], where the Debye frequency is ωD

and the Fermi energy EF . One expects that in strongly cor-
related superconductivity, the ratio EF /ωD must be replaced
by a number closer to unity in which case this mechanism
would no longer be effective and superconductivity should
disappear as soon as V > J . This issue is crucial to understand
high-temperature superconductors since that condition, or the
weaker condition V > �s with �s the spin gap, is likely
to be satisfied in these materials, although the presence of
highly polarizable charge layers may weaken V .48,49 From the
value of the near-neighbor Coulomb interaction with a relative
dielectric constant of order 10 we estimate V ≈ 400 meV
while J ≈ 130 meV.50

So far, it has been shown using a variational wave-function
approach for the t-U -J -V model at strong coupling that super-
conductivity persists as long as51 3J/4 > δ2(V − J/4), where
δ is the doping. A large-N calculation gives superconductivity
at least up to V = 2J ,52 while density matrix renormalization
group (DMRG) calculations on Hubbard or t-J ladders53–55

suggest that pairing can survive up to V ≈ 4J .56 At very
small coupling (U � W ), it has been argued56 that pairing
is destroyed as soon as V � U (U/W ). This weak-coupling
bound is close to the result of a FLEX calculation.57

Here we show that d-wave superconductivity in the one-
band two-dimensional Hubbard model at strong coupling is in
fact more robust than expected. Even for V � J , as long as the
inequality V < U/2 is satisfied, superconductivity persists.
This illustrates differences between pairing at weak and at
strong coupling, especially in the pseudogap regime. The
resilience of d-wave superconductivity to V can be traced to
the increase in the effective J caused by V at strong coupling,
i.e., when at half filling the system is a Mott insulator. This
increase in J is visible in the dynamics of both the spin
susceptibility and the Cooper pair Green’s function which is
enhanced by V at low frequency. The pair-breaking effect of
V manifests itself at higher frequency. This leads overall to
a sizable range of values of V where the order parameter
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is essentially independent of V in the underdoped regime
where a pseudogap appears. Recall that at strong coupling,
the pseudogap extends up to optimal doping, a sign that Mott
physics extends well beyond half filling.58

We use cellular dynamical mean-field theory that allows
us to study the strong-coupling limit and allows one to take
into account both J and V as well as the effect of retardation.
We first present the method and model and conclude with a
discussion after the presentation of the results obtained from
large scale numerical calculations.

II. MODEL AND METHOD

We start from the one-band extended Hubbard model on a
square lattice,

H = −
∑
i,j,σ

tij c
†
i,σ cj,σ + U

∑
i

ni↑ni↓ + V
∑
〈i,j〉

ninj , (1)

where c
(†)
i,σ is the destruction (creation) operator for an electron

of spin σ at site i and niσ = c
†
i,σ ci,σ is the corresponding

number operator (ni = ni↑ + ni↓). We assume a band structure
close to that of YBa2Cu3O7 (YBCO), with nearest-neighbor
hopping t set to unity, diagonal hopping t ′ = −0.3, and
third-neighbor hopping t ′′ = 0.2, unless otherwise indicated.
This model is solved with a four-site plaquette cellular dy-
namical mean-field theory (CDMFT) at T = 0 using an exact
diagonalization solver39,59–61 that allows us to obtain real-time
quantities without analytic continuation. This approach has
been used to reveal the presence of d-wave superconductivity
in the one-band Hubbard model,39 and to study the pairing
dynamics and retardation when V = 0.40

As in previous studies of the 2D Hubbard model with this
approach,39 the plaquette is hybridized with a set of eight
bath orbitals, as illustrated in Fig. 1, with six parameters to
be determined through the CDMFT self-consistency relation:
the hybridizations θ1,2 between the bath and the cluster, the
bath energies ε1,2, and the bath d-wave pairing parameters d1,2

which, when nonzero, signal the presence of superconductivity

t

t′

θ1

θ2

ε1

ε2

d1

−d2−d1

d2

FIG. 1. (Color online) Cluster and bath parametrization used in
this work. Hopping terms are shown by solid lines, bath hybridization
by dashed lines, and bath pairing terms by dotted lines.

and lead to a nonvanishing cluster d-wave order parameter

ψ =
∑
〈i,j〉x

(ci↑cj↓ + cj↑ci↓) −
∑
〈i,j〉y

(ci↑cj↓ + cj↑ci↓) + H.c.

(2)
The order parameter is extracted from the lattice Green’s
function while the doping is measured on the cluster.

The CDMFT self-consistency condition cannot be satisfied
exactly with a discrete bath; it can only be optimized by
minimizing the so-called distance function39

d =
ωc∑
ωn

Tr|G′−1(iωn) − Ḡ−1(iωn)|2, (3)

where G′ is the full electron Green’s function matrix computed
on the cluster in the presence of a bath by exact diagonalization,
and Ḡ is the local cluster Green’s function

Ḡ = 1

N

∑
k

1

iωn − ε(k) + μ − �(iωn)
, (4)

constructed from the known dispersion relation matrix ε(k)
and the computed self-energy matrix �. The wave vector
k runs over the reduced Brillouin zone. The Matsubara
frequencies are those associated with a “fictitious” temperature
1/β and are summed up to a cutoff frequency (ωc = 2 and
β = 50 in this work).

While the extended interaction V within the cluster can be
treated exactly with an approach such as CDMFT, the coupling
to neighboring clusters requires the Hartree approximation.62

More specifically, the model Hamiltonian Eq. (1) is modified
by replacing the intercluster interaction by

V
∑
〈i,j〉c

ninj + V
∑
〈i,j〉ic

(n̄inj + nin̄j − n̄i n̄j ), (5)

where 〈i,j 〉c denotes nearest-neighbor pairs within the pla-
quette and 〈i,j 〉ic nearest-neighbor pairs across plaquettes.
The mean field n̄i must be determined self-consistently; in
practice, it is treated as the six bath parameters within the
CDMFT self-consistency loop and thus both the dynamical
mean field (represented by the bath parameters) and the static
Hartree mean field are converged simultaneously. Since we do
not consider charge order in this work, the mean fields n̄i are
the same on all four sites of the plaquette, by symmetry.

To verify the accuracy of this approach, consider momentar-
ily the half-filled, particle-hole symmetric extended Hubbard
model with t ′ = t ′′ = 0. In that simple case, the Hartree field n̄i

is fixed by particle-hole symmetry. We find that the dynamical
spin susceptibility at the antiferromagnetic wave vector Q =
(π,π ) has a dominant peak at a low frequency ωχ . The position
of this peak is shown in Fig. 2 as a function of V for two
values of U . In the large U limit, the half-filled extended
Hubbard model should map to the Heisenberg model with
a superexchange parameter J = 4t2/(U − V ). The energy
denominator is easily understood by comparing the energy,
at t = 0, between a configuration where all sites are exactly
singly occupied and another configuration in which one elec-
tron has vacated a site in order to doubly occupy a neighboring
site. Four V bonds are lost, but three are gained. Since we
expect the frequency ωχ to scale as J in the large-U limit, Fig. 2
confirms that we obtain the correct scaling with V . Hence, our
approach leads to the correct strong-coupling physics.
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FIG. 2. (Color online) Blue dots: Inverse frequency of the
dominant peak in the antiferromagnetic susceptibility of the extended
Hubbard model at half filling, as a function of the nearest-neighbor
interaction V , for U = 16 and U = 32 (t = 1). These inverse
frequencies are expected to be J −1 = (U − V )/4t2 in the large-U
limit.

III. RESULTS

To concentrate on the effect of short-range spin fluctuations
on superconductivity, we ignore the possibility of long-range
antiferromagnetic order predicted by CDMFT at low doping,39

as well as the possibility of long-range charge-density waves
in the presence of V . At weak coupling charge-density waves
may occur for U ≈ 4V in two dimensions.57,63,64 We found a
similar result at half filling for strong coupling.

The d-wave order parameter for YBCO hopping parameters
is displayed in Fig. 3 for hole doping at U = 4, 8, and
16. In each panel, obtained for a given value of U , we
display the results for different values of V . The Mott
transition at half filling that separates weak from strong
coupling occurs around U = 6.65–67 As observed before,39 in
the weak-coupling case (U = 4) superconductivity is strongest
at half filling when competition with antiferromagnetism is
prohibited [Fig. 3(a)]. At larger coupling, the Mott transition
destroys superconductivity at half filling [Figs. 3(b) and 3(c)].
Results obtained with slightly different approaches on larger
clusters hint at a critical doping for superconductivity,41,68 but
this effect is not seen on the four-site plaquette used here.

The value of V influences the order parameter in strik-
ingly different ways at weak and at strong coupling. For
U = 4, superconductivity has essentially disappeared at
V/U = 1.5/4 = 0.375, in agreement with the upper limit
V/U = U/W found by weak-coupling analysis.56 This is con-
sistent with the fact that at weak coupling, V always decreases
the strength of spin fluctuations.63,64 By contrast, at strong cou-
pling, V can increase the strength of spin fluctuations through
J = 4t2/(U − V ), and for the same ratio V/U = 0.375, the
order parameter is still large for U = 8 in Fig. 3(b). In fact,
it is barely influenced by V in the pseudogap (underdoped)
regime close to half filling (x = 0.05). On the lower panel, for
U = 16, we have V/J = 16 at V = 8 and superconductivity
still persists. The ratio V/J is maximum at V = U/2.
We estimate that V ≈ U/2 is the upper bound for the
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FIG. 3. (Color online) d-wave order parameter ψ obtained from
the off-diagonal component of the lattice Green’s function as a
function of cluster doping for U = 4, 8, and 16 and various values
of V .

appearance of d-wave superconductivity (ignoring competing
orders).

The link between superconducting order parameter and spin
fluctuations was demonstrated at V = 0 by the correlation
between the peaks in the imaginary part of the anomalous
self-energy and the peaks in the spin fluctuation.40,69 This
correlation persists here (not shown). To further investigate
this link between spin fluctuations and superconductivity, let
us thus first focus on the spin dynamics revealed by the the local
spin spectral function χ ′′(ω) illustrated in Fig. 4. Figure 4(a)
shows χ ′′(ω) at U = 8, V = 1 for the underdoped (x = 0.05)
and overdoped (x = 0.20) regimes. The corresponding charge
susceptibility is negligible on this scale. Spin fluctuations are
much smaller in the overdoped regime and their weight is
spread in wave vector contrary to the underdoped case. Figure
4(b) shows that in the underdoped regime (x = 0.05) where
there is a pseudogap, a moderate extended interaction V at
strong coupling mainly shifts the spectrum of Q = (π,π )
spin fluctuations to higher frequencies, as expected from
the increase of J = 4t2/(U − V ) caused by V ; it decreases
somewhat the overall spectral weight without affecting the
spectral shape.

To show that low-frequency spin fluctuations are apparent
in the pair dynamics, we compare the characteristic frequency
ωχ of spin fluctuations, given by the position of the dominant
peak of χ ′′(Q,ω), with a characteristic frequency in the pair
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SÉNÉCHAL, DAY, BOULIANE, AND TREMBLAY PHYSICAL REVIEW B 87, 075123 (2013)

0

20

40

60

80

100

120
(a) U = 8, V = 1

local susceptibility

0

20

40

60

80

100

120

0 0.5 1 1.5 2
ω

(b) U = 8, x = 0.05
Q = (π, π)

x = 0.05
x = 0.20

V = 0
V = 1
V = 2
V = 3

FIG. 4. (Color online) (a) Imaginary part of the local spin
susceptibility χ ′′(ω) for U = 8, V = 1 for an underdoped (x = 0.05)
and an overdoped (x = 0.20) case. (b) In the underdoped regime
(x = 0.05) apart from a shift of the low-frequency peak to higher
frequencies, it is mostly the amplitude, not the structure of the
imaginary part of the plaquette antiferromagnetic spin susceptibility
χ ′′(Q,ω), that is slightly affected by V .

dynamics, as was done in Ref. 40. The pair dynamics can be
studied through the integral

IF (ω) = −
∫ ω

0

dω′

π
Im FR

ij (ω′), (6)

where FR is the retarded Gork’ov function (or anoma-
lous Green’s function) defined in imaginary time by Fij ≡
−〈T ci↑(τ )cj↓(0)〉 with i and j nearest neighbors. The infinite
frequency limit of IF (ω) is equal to 〈ci↑cj↓〉 which in turn is
proportional to the T = 0 d-wave order parameter ψ . IF (ω)
is useful to estimate the frequencies relevant for binding. We
call IF (ω) the cumulative order parameter.

In BCS theory, IF (ω) is a monotonically increasing function
of ω that reaches its asymptotic value at the BCS cutoff
frequency ωc.40 In the Eliashberg approach that includes
retardation as well as the Coulomb pseudopotential,40 the
function overshoots its asymptotic value at frequencies near
the main phonon frequencies before decaying to its final value
because of pair-breaking effects at higher frequencies. We
define the characteristic frequency ωF as the point where IF (ω)
reaches half of its asymptotic value. If one imagines that FR

ij (ω)
is made of a single peak, then that peak would be located at
ωF . Figure 5 illustrates the cumulative order parameter IF (ω)
for various values of V . The top two panels are for two values
of doping x at U = 8, and the bottom one for U = 16 in
the underdoped regime. The asymptotic value is indicated
by a horizontal line. Following a sharp rise around ω = ωF ,
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FIG. 5. (Color online) Integral of the anomalous Green’s function
(or Gork’ov function) IF (ω) obtained after extrapolation to η = 0 of
ω + iη for several values of V at (a) U = 8, x = 0.05, (b) U = 8, x =
0.2, and (c) U = 16, x = 0.05. The asymptotic value of the integral,
IF (∞), equal to the order parameter, is shown as horizontal lines.
We call IF (ω) the cumulative order parameter. The characteristic
frequency ωF is defined as the frequency at which IF (ω) is equal to
half of its asymptotic value. The horizontal arrow in (a) indicates how
ωF is obtained.

the function has a maximum and then decreases towards its
asymptotic value, as in Eliashberg theory.

The link between the characteristic spin-fluctuation fre-
quency ωχ and the characteristic frequency of the pair ωF

is summarized in Fig. 6, which shows the evolution with
doping of (a) the position ωχ of the main antiferromagnetic
(AF) susceptibility peak, (b) its strength, and finally (c) the
characteristic frequency ωF , for four values of V at U = 8.
Clearly, ωχ , χ , and ωF all decrease with doping. This shows
that spin fluctuations and pair dynamics are strongly linked.
Note that susceptibilities are computed using the band Lanczos
method on the cluster; this provides a Lehmann representation
for χ (ω):

χ (ω) =
∑

r

Rr

ω − ωr

, (7)

where ωr is the position of each peak and Rr its strength.
Even for V = 0, however, the increase in J as measured

by ωχ and ωF in the underdoped regime, x < 0.10, does not
correspond to an increase in the order parameter. As can be
seen in Fig. 3, for x = 0.05 and x = 0.20 the d-wave order
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FIG. 6. (Color online) (a) Position of the lowest peak in the AF
susceptibility χ ′′(ω) and the strength χ of that peak in (b), for U =
8. (c) shows the corresponding superconducting (SC) characteristic
frequency ωF .

parameter is essentially identical when V = 0 and the increase
in ωF near half filling manifests itself only in the maximum
value of the cumulative order parameter IF (ω) in Fig. 5, not in
the value of the order parameter. Clearly the order parameter
does not increase in the underdoped regime despite the increase
in the characteristic spin-fluctuation frequency ωχ because of
another effect. That effect is the pseudogap. The pseudogap
removes many of the states near the Fermi energy that would
otherwise be paired.

The presence of the pseudogap can be seen by contrasting
the single-particle local density of states at two dopings. In
the overdoped regime (x = 0.20) the local density of states
has no pseudogap in the normal state, as seen from the dashed
red line in Fig. 7(b). Only the superconducting gap is visible.
By contrast, even at V = 0 there is clearly a pseudogap in
the underdoped regime, as can be seen from Fig. 7(a). The
effect of superconductivity manifests itself only through the
small more symmetric gap near ω = 0.37 The pseudogap, as
measured from the peak to peak distance, increases slightly
with V in the underdoped regime.

The detrimental effect of the pseudogap on the supercon-
ducting order parameter was demonstrated in Fig. 7 of Ref. 40,
where the bubble contribution to the pairing susceptibility
decreases as we approach half filling. This means that in
the absence of interactions between the particles forming the
pair (represented by vertex corrections), self-energy effects
disfavor superconductivity. This physics is also present at
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FIG. 7. (Color online) Local density of states for four values V =
1,2,3,4 and U = 8 for (a) underdoped x = 0.05, and (b) overdoped
x = 0.2 regimes. The dotted line in (b) is for the normal state V = 0,
all other lines in (a) and (b) are for the superconducting state.

weak to intermediate coupling when the pseudogap is induced
by long wavelength antiferromagnetic fluctuations20 (and not
by the incipient short-range Mott localization that appears at
strong coupling70,71).

IV. DISCUSSION

The effect of spin fluctuations and of near-neighbor repul-
sion V on pairing is relatively straightforward in the overdoped
regime (x � 0.10). There, as seen in Fig. 3(b) and Figs. 6(a)
and 6(c), the order parameter increases with the characteristic
spin frequency ωχ and the characteristic pair frequency ωF .
As for the V = 0 case, superconductivity disappears at finite
V when the amplitude χ of the lowest frequency peak in
the spin fluctuations [Fig. 6(b)] vanishes,40 as observed in
experiment.72,73 The main effect of V is to decrease the spin
fluctuations, as happens systematically at weak coupling.63,64

As we approach half filling, the decrease of the order
parameter for all values of V [Figs. 3(b) and 3(c)], despite
the increase in the amplitude χ of the lowest peak in the
spin fluctuations (Fig. 6), is mainly due to the increase of
the pseudogap: it removes more and more states from the
Fermi energy as the doping x decreases (Fig. 7). Note that
V causes opposite changes in the amplitude χ and in the
characteristic frequencies (Fig. 6), which might explain the
near independence of the order parameter with respect to V

in Figs. 3(b) and 3(c). However, these changes are small on
a relative scale and are probably not the main reason for the
insensitivity of the order parameter to V .

The resilience of d-wave superconductivity to V at strong
coupling is best understood from the U = 16 results for
the cumulative order parameter IF (ω) shown in Fig. 5(c)
for x = 0.05. The largest value of IF (ω) scales roughly as
J = 4t2/(U − V ), in other words, V increases the binding
at low frequency, where the retardation is large. However, V
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also has the expected pair-breaking effect: Larger V causes
larger pair breaking so that the low-frequency increase in
IF (ω) is essentially compensated by the time IF (ω) reaches its
asymptotic value (the order parameter).

To understand more deeply the dual role of V , as both
pair binding and pair breaking, it is helpful to return to the
solution of the Eliashberg equations in the electron-phonon
case. Figures 7 and 13 of Ref. 47 show that the imaginary
part of the gap function remains positive for all frequencies
when the Coulomb pseudopotential vanishes. By contrast, one
verifies from Fig. 11 of the same paper that the imaginary
part of the gap function changes from positive to negative
as frequency increases when the Coulomb pseudopotential is
finite. A sign change in the imaginary part of the gap function
should lead to a similar behavior in the imaginary part of
the Gorkov function F (ω). In this case its integral IF (ω), as
defined in Eq. (6), should reach a maximum before decreasing
to its asymptotic large frequency value. By contrast, when
the imaginary part of the gap function remains positive at all
frequencies, i.e., in the absence of Coulomb pseudopotential,
IF (ω) should increase monotonically to its asymptotic value,
as in BCS theory. Since we observe that IF (ω) has a maximum
at finite frequency, we are in the case where the Coulomb
pseudopotential is important. A comparison of Figs. 11 and 13
of Ref. 47 also shows that the maximum value of the imaginary
part of the gap function (and that of its frequency integral, as
one can check) increases with the electron-phonon coupling
constant. In our case, the increase in J = 4t2/(U − V ) caused
by V similarly leads to an increase in the maximum value
of the cumulative order parameter IF (ω). In other words, we
can surmise that the increase in V leads to larger binding
at low frequency, as an increase in the electron-phonon
coupling constant, but it also leads to more pair breaking at
large frequency, coming from the Coulomb pseudopotential-
like effect of V , and these two effects nearly cancel each
other.

In the electron-phonon case, one also notes that the
imaginary part of the gap function vanishes at about two to
three times the maximum phonon frequency. This is where the
cumulative order parameter IF (ω) would reach its asymptotic
value. In the case of spin fluctuations, 2J is a measure of the
width of the spin-fluctuation spectrum. Hence, since the V = 0
value of J decreases by a factor of 2 between U = 8 in Fig. 5(a)
and U = 16 in Fig. 5(c), we would expect a corresponding
decrease by a factor of 2 for the frequency at which IF (ω)
reaches its asymptotic value. One can verify, by comparing
the two figures, that IF (ω) becomes frequency independent
around ω = 2.5 when U = 16, x = 0.05 while for U = 8, at
the same doping, the four curves tail off around ω = 5.

The opposing effects discussed above conspire to leave
the order parameter rather insensitive to V in the presence
of a pseudogap. The pseudogap induced by Mott physics74

is detrimental to superconductivity, but in its presence
superconductivity is effectively protected from near-neighbor
repulsion V . Indeed, in a doped Mott insulator, short-range
incipient localization is strong enough to create a pseudogap,
but while V causes pair breaking at high frequency, it
also enhances spin fluctuations [J = 4t2/(U − V )] at low
frequencies, thus compensating the pair-breaking effect.
Overall, retardation effects are crucial for the resilience of
d-wave superconductivity to near-neighbor repulsion.

Note added in proof. Related work by Plakida and
Oudovenko75 came recently to our attention.
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